博碩士論文 82246003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:143 、訪客IP:52.15.158.238
姓名 范丙林(Ping-Lin Fan)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 光電實驗曲線係數擬合之研究
(Study of Optoelectronic Experiments Coefficients Fitting)
相關論文
★ 腦電波傅利葉特徵頻譜之研究★ 光電星雲生物晶片之製作
★ 電場控制器光學應用★ 手機照相鏡頭設計
★ 氣功靜坐法對於人體生理現象影響之研究★ 針刺及止痛在大鼠模型的痛覺量測系統
★ 新光學三角量測系統與應用★ 離軸式光學變焦設計
★ 腦電波量測與應用★ Fresnel lens應用之量測
★ 線型光學式三角量測系統與應用★ 非接觸式電場感應系統
★ 應用田口法開發LED燈具設計★ 巴金森氏症雷射線三角量測系統
★ 以Sol-Gel法製備高濃度TiO2用於染料敏化太陽能電池光電極之特性研究★ 生產線上之影像量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
在本論文中,吾人嘗試利用如最小方差法(least squares method),離散式傅立葉轉換(discrete Fourier transform), 二元小波轉換(dyadic wavelet transform)和小波轉換(wavelet transform)等數學工具,將其應用在光學元件分析及電力系統傳輸線故障偵測的設計上。
首先,成長在砷化鎵上不同厚度大小的自我組成砷化銦量子點的應力影響被有系統的研究。藉由螢光光譜,各量子點的能階訊息可被觀察出來。在研究不同厚度大小砷化銦量子點的應力影響時,活化能和載子動態特性也是一個值得觀察的現象。藉由波長積分強度可定性出這些量子點試片的熱熄行為(thermal quench behavior)。而利用最小方差法和將小波轉換運用在係數估測上則可求出活化能係數,並將兩方法所得結果做一比較。
兩種不同的傳輸線保護機制同時被提出,並做比較。首先,一個以可適應式的相量測量單元為基礎的傳輸線保護方法被提出。在此一架構在雙端式演算法上的保護機制中,即時的電流和電壓資料首先被取得。藉由取樣方法可得到離散的電流和電壓資料,根據最小方差法則可得到不同寬度的離散式傅立葉轉換,藉由離散式傅立葉轉換方法,基頻的穩態相量可以很容易被估測而得。根據這些大小和相位資料,一個組合式故障偵測指標便可以被推導出來。另外一個以二元小波轉換為基礎的傳輸線故障偵測機制也被提出。藉由選取適當的離散近似係數當做故障偵測指標,根據此一簡易指標,可以在傳輸線的故障偵測,故障分類和故障方向辨別上有極佳的表現。最後並將兩方法所得結果做一比較,結果顯示架構在二元小波轉換上的方法較為簡易方便。
最後,吾人將小波轉換運用在像差係數的估測上。球差和失焦係數項同時被估測,並與最小方差法方法所得結果做一比較。當雜訊被考慮時,由於小波轉換方法在空間域和頻率域上同時具有局部化的特性,因此對雜訊較有免疫力。結果顯示小波轉換方法較最小方差法為優越。利用信號雜訊比作為一評估指標時,隨著高斯雜訊的引入,當其變異數增加時,小波轉換方法的優越性則更為明顯。
摘要(英) Abstract
In this dissertation, the authors apply the numerical methods such as the least square method (LSM), the discrete Fourier transform (DFT), dyadic wavelet transform and the wavelet transform (WT) for applications in optical device and in fault detection for transmission line of power system.
The thickness-dependent renormalization of strain effects on self-organized InAs quantum dots has been systematically investigated. By means of observing the photoluminescence spectra, the related information of energy band of device microstructure can be obtained. The activation energy and the carrier dynamics of the quantum dots with various thickness are interesting phenomena for investing strain effects of InAs quantum dots grown on GaAs. We can utilize the plot of energy-integrated intensity to characterize their thermal quench behavior. With the LSM and the WT method to coefficients estimating, the activation energy of the quantum dots can be fitted. The results are also compared.
Two different approaches for transmission lines protection are proposed. First, an adaptive phasor measurement unit (PMU) based protection scheme is proposed. In this algorithm based on two-ends method which the authors proposed, real-time voltage and current measurements are obtained firstly and discrete data can be obtained by sampling. With the aid of the LSM, the phasors can be solved. By using DFT of different window size, the phasors are easily estimated. Based on the amplitude and phase information, a fault detection index is then derived. Second, a dyadic wavelet transform based fault detection scheme is also proposed. The coefficient of discrete approximation of the dyadic wavelet transform is used to be an index for transmission lines fault detection, fault classification, and fault direction discrimination. The results reveal the dyadic wavelet transform based approach is a simple and effective one.
The authors utilize the WT method to estimate the aberration coefficients for a simulated wave-front. The spherical aberration coefficient and defocus are both estimated, and the numerical results are compared with those obtained by the LSM. With noise added, the results reveal the excellency of the WT method. The wave-fronts are also reconstructed by two methods simultaneously. The signal-to-noise ratio is also used as a performance index for evaluation between two methods with Gaussian white noise added. As the variance of Gaussian white noise increases, the superiority of the WT method is obvious.
關鍵字(中) ★ 係數擬合 關鍵字(英) ★ Coefficients fitting
論文目次 Contents
Abstract I
List of Tables IV
List of Figures V
Acronym VIII
Chapter 1 Introduction 1
1-1 Background 1
1-2 Motivation 5
1-2-1 Strain Effects on Self-Organized Quantum Dots 5
1-2-2 Transmission Lines Protection Scheme for Power System 6
1-2-3 Aberration Coefficients Fitting 8
1-3 Chapter Outlines 9
Chapter 2 Numerical Methods 12
2-1 Least Squares Methods 12
2-2 Discrete Fourier Transform 14
2-3 Wavelet Transform 17
2-4 Dyadic Wavelet Transform 18
Chapter 3 Thickness-Dependent Renormalization of Strain Effects on Self-Organized InAs Quantum Dots grown on GaAs 21
3-1 Experiments 22
3-2 Results and Discussion 23
3-3 Conclusion 26
Chapter 4 Fault Detection with PMU Based Approach and Dyadic Wavelet Transform for Transmission lines of Power System 28
4-1 Part I: PMU Based Approach 29
4-1-1 Basic Principles 29
4-1-2 The Adaptive Protection Scheme 32
4-1-3 Performance Evaluation 33
4-2 Part II: Dyadic Wavelet Transform Based Approach 36
4-2-1 Basic Ideas 36
4-2-2 Experiments with Simulated Waveforms 37
4-3 Conclusion 40
Chapter 5 Aberration Coefficients Fitting by Using the Least Squares Method and the Wavelet Transform method 41
5-1 Computing Aberration Coefficients by the Least-Squares Method 42
5-2 Computing Aberration Coefficients by the Wavelet Transform 44
5-3 Simulation Results 47
5-4 Conclusion 49
Chapter 6 Summary and Future Works 51
6-1 Summary 51
6-2 Future Works 53
References 54
Tables 67
Figures 76
Appendix A 102
Appendix B 105
參考文獻 References
Chapter1.
[1.1] L. Rabiner, B. Gold, ”Theory and Application of Digital Signal Procassing. Prentice Hall,1975.
[1.2] D. DeFatta, J. Lucas and W. Hodgkiss, Digital Signal Processing: A System Design Approcah.John Wiley and Sons.1998.
[1.3] A. Oppenheim and R, Schafer, Digital Signal Processing. Prentice Hall,1975.
[1.4] T. J. Abatzoglou, J.M. Mendel and G.A. Harada, “The contrained total least squares technique and its applications to harmonic superresolution ,” IEEE Trans. Acoust.,Speech, Signal Processing, Vol ASSP-39, pp.1070-1087, May 1991.
[1.5] K. S. Arun, ”A unitarily constrained total least squares problem in signal processing,” SIAM J. Matrix Anal., Vol.13, NO3, pp.729-745, July 1992.
[1.6] G. H. Golub and C.F.Van Loan, ”An analysis of the total least squares problem,” SIAM J. Numer. Anal.,Vol.17, No.6, pp.883-893, Dec.1980.
[1.7] S. M. Kay, Modern Spectral Estimation, Theory and Application, Englewood Cliffs: Prentice Hall ,1988.
[1.8] G. W. Stewart, Introduction to Matrix Computations, New York: Academic Press, 1973.
[1.9] A. A Girgis, ”A New Kalman Filtering-Based Digital Distance Relay”, IEEE Transaction on Power Apparatus and System, Vol. Pas-101, No.9, pp.3471-3479, September 1982.
[1.10] T. akagi, Y. Yamakoshi, J. Baba, K. Uemura, and T. Sakaguchi, ’A New Alogrithm of an Accurate Fault Location for EHV/UHV Transmission Lines: Part I- Fourier Transformation Method”, IEEE Transactions on Power Apparatus and System,Vol. PAS-100, No.3, pp.1316-1323, March 1981.
[1.11] T. Takagi, Y. Yamakoshi, J. Baba, K. Uemura, and T. Sakaguchi, ’A New Alogrithm of an Accurate Fault Location for EHV/UHV Transmission Lines:Part II-Lapace Transform Method”, IEEE Transsctions on Power Apparatus and System,Vol.PAS-101, No.3, pp.564-573, March 1982 .
[1.12] M. Kezunovic, J. Mrkic, and B.Perunicic, ”An Accurate Fault Location Algorithm Using Synchronized Sampling”, Electric Power Systems Research, Vol.29, pp.161-169, 1994.
[1.13] A. A Girbis, D. G. Hart, and W. L. Peterson, ”A New Fault Location Technique For Two-and Tree-Terminal Lines”, IEEE Transactions on Power Delivery, Vol.7, No.1, pp.98-107, January 1992.
[1.14] D. Novosel, D. G. Hart, E. Udren, and J Garitty, ”Unsynchronized Two-Terminal Fault Location Estimation”, IEEE Transactions on Power Delivery, Vol.11, No.1, pp.130-137, January 1996.
[1.15]A. T. John, and S. Jamali, ”Accurate Fault Locaton Technique For Power Transmission Lines”, IEE Proceedings, Vol.137, Pt.C, No, pp.395-402, November 1990.
[1.16] P. K. Aggarwal, D. V. Coury, A. T. Johns, and A. Kalam, ”A Practical Approach to Accurate Fault Location on Extra High Voltage Teed Feeders”, IEEE Transactions on Power Delivery, Vol.8, No.3, pp.874-883, July 1992.
[1.17] D. J. Lawrence, L. Z. Cabeza, and L. T. Hochberg, ”Development of an Advanced Transmission Line Fault Location, Part I: Input Transducer Analysis and Requirements”, IEEE Transactionson Power Delivery, Vol.7, No.4, pp.1963-1971, October 1992.
[1.18] Z. Q. Bo, G. Weller, T. Lomas, and M. A. Redfern, “Positional Protection of Transmission Systems Using Global Positioning System”, IEEE Trans. on Power Delivery, Vol. 15, No. 4, pp. 1163-1168, October 2000.
[1.19] R. K. Aggarwal and A. T. Johns, “A Differential Line Protection Scheme for Power Systems Based On Composite Voltage and Current Measurements”, IEEE Trans. on Power Delivery, Vol. 4, No. 3, pp. 1595-1601, July 1989.
[1.20] H. Y. Li, E. P. Southern, P. A. Crossley, S. Potts, S. D. A. Pickering, B. R. J. Caunce and G. C. Weller, “A New Type of Differential Feeder Protection Relay Using the Global Positioning System for Data Synchronization”, IEEE Trans. on Power Delivery, vol. 12, no.3, pp. 1090-1097, July 1997.
[1.21] J. A. Jiang, J. Z. Yang, Y. H. Lin, C. W. Liu, and J. C. Ma, “An Adaptive PMU Based Fault Detection/Location Technique for Transmission Lines, Part I: Theory and Algorithms”, IEEE Trans. on Power Delivery, vol. 15, no. 2, pp. 486-493, April 2000.
[1.22] J. A. Jiang, Y. H. Lin, J. Z. Yang, T. M. Too, C. W. Liu, “An Adaptive PMU Based Fault Detection/Location Technique for Transmission Lines, Part II: PMU Implementation and Performance Evaluation”, IEEE Trans. on Power Delivery, vol. 15, no. 4, pp. 1136-1146, October 2000.
[1.23] O. Chaari, M. Meunier, and F. Brouaye, “Wavelet: a New Tool for the Resonant Grounded Power Distribution Systems Relaying”, IEEE Trans. on Power Delivery, vol. 11, no.3, pp. 1301-1308, July 1997.
[1.24] R.K.Martinet, J. Morlet, and A.Grossmann, “Analysis of sound patterns through wavelet transforms”, Int. J. Patt. Rec. Art. Intell.1,273-302(1987).
[1.25] C. K. Chui, " Wavelet: A tutorial in theory and application," Academic Press, 1991.
[1.26] P. Delsing, T. Claeson, G. S. Kazacha, L. S. Kuzmin, and K. K. Likharev, “ 1-D array implementation of the resistively- couple single-electron transistor,” IEEE Trans. Magn. Vol. 27, No. 2, March,1991
[1.27] C. Wasshuber, H, Kosina, S. Siegfried, “A comparative study of single-electron memoroes”, IEEE Trans. Electron Devices, vol. 45, NO. 11, Nov. 1998.
[1.28] D. Pan and E. Towe, “A five-period normal-incidence (In, Ga)As/GaAs quantum-dot infrared photodector,” Appl. Phys. Lett. 75, 2079 (1999).
[1.29] Yu. M. Shernyakov et. al., “1.3 μm GaAs-based laser using quantum dots obtained by activated spinnodal decomposition,” Electron. Lett., 35, (11), pp. 898-900.
[1.30] A. Passaseo, G. Maruccio, M. De Vittorio, R. Rinaldi, and R. Cingolani, “Wavelength control from 1.25 to 1.4 μm in InxGa1-xAs quantum dot structures grown by metal chemical vapor deposition,” Appl. Phys. Lett. 78, 1382 (2001).
[1.32] J. Tatebayashi, M. Nishioka, and Y. Arakawa, “Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 78, 3469 (2001).
[1.33] V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunve, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting 1.3 μm ,” Appl. Phys. Lett. 74, 2815 (1999).
[1.34] M. Sopanen, H. P. Xin, and C. W. Tu, “Self-assembled GaInNAs quantum dot structures for 1.3 and 1.5 μm emission on GaAs,” Appl. Phys. Lett. 76, 994 (2000).
[1.35] K. Nishi, H. Saito, and J.-S. Lee, “ A narrow photoluminescence linewidth of 21 meV at 1.35μm from strain-reduced InAs quantum dots cover by In0.2Ga0.8As grown on GaAs substrates,”Appl. Phys. Lett. 74, 1111 (1999).
[1.36] J. Bloch, J. Shah, W. S. Hobson, and J. Lopata, “ Optical properties of multiple layers of self-organized InAs quantum dots emitting at 1.3 μm ,” Appl. Phys. Lett. 77, 2545 (2000).
[1.37] K. Mukai and M. Sugawara, “Suppression of temperature sensitivity of interband emission energy in 1.3-μm-region by an InAsGa overgrowth on self-assembled InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 74, 3963 (1999).
[1.38] A. G. Phadke and J. S. Thorp, Computer Relaying for Power Systems, John Wiley & Sons, New York, 1988.
[1.38] Working Group H-7 of the Relaying Channels Subcommittee of the IEEE Power System Relaying Committee, “Synchronized Sampling and Phasor Measurements for Relaying and Control”, IEEE Trans. on Power Delivery, vol. 9, no. 1, pp. 442-452, January 1994.
[1.39] A. A. Girgis and E. B. Makram, “Application of Adaptive Kalman Filtering in Fault Classification, Distance Protection, and Fault Location Using Microprocessors”, IEEE Trans. on Power Systems, Vol. 3, No. 1, pp. 301-309, February 1988.
[1.40] D. V. Coury and D. C. Jorge, “Artificial Neural Network Approach to Distance Protection of Transmission Lines”, IEEE Trans. on Power Delivery, Vol. 13, No. 1, pp. 102-108, January 1998.
[1.41] T. S. Sidhu, H. Singh, and M. S. Sachdev, “Design, Implementation and Testing of An Artificial Neural Network Based Fault Direction Discriminator for Protecting Transmission Lines”, IEEE Trans. on Power Delivery, Vol. 10, No. 2, pp. 697-706, April 1995.
[1.42] M. Akke and J. S Thorp, “Some Improvements In the Three-Phase Differential Equation Algorithm for Fast Transmission Line Protection”, IEEE Trans. on Power Delivery, vol. 13, no. 1, pp. 66-72, January 1998.
[1.43] M. M. Mansour and G. W. Swift, “A Multi-Microprocessor Based Traveling Wave Relay - Theory and Realization”, IEEE Trans. on Power Delivery, Vol. 1, No. 1, pp. 272-279, January 1986.
[1.44] Z. Q. Bo, G. Weller, T. Lomas, and M. A. Redfern, “Positional Protection of Transmission Systems Using Global Positioning System”, IEEE Trans. on Power Delivery, Vol. 15, No. 4, pp. 1163-1168, October 2000.
[1.45] R. K. Aggarwal and A. T. Johns, “A Differential Line Protection Scheme for Power Systems Based On Composite Voltage and Current Measurements”, IEEE Trans. on Power Delivery, Vol. 4, No. 3, pp. 1595-1601, July 1989.
[1.46] H. Y. Li, E. P. Southern, P. A. Crossley, S. Potts, S. D. A. Pickering, B. R. J. Caunce and G. C. Weller, “A New Type of Differential Feeder Protection Relay Using the Global Positioning System for Data Synchronization”, IEEE Trans. on Power Delivery, vol. 12, no.3, pp. 1090-1097, July 1997.
[1.47] J. A. Jiang, J. Z. Yang, Y. H. Lin, C. W. Liu, and J. C. Ma, “An Adaptive PMU Based Fault Detection/Location Technique for Transmission Lines, Part I: Theory and Algorithms”, IEEE Trans. on Power Delivery, vol. 15, no. 2, pp. 486-493, April 2000.
[1.48] J. A. Jiang, Y. H. Lin, J. Z. Yang, T. M. Too, C. W. Liu, “An Adaptive PMU Based Fault Detection/Location Technique for Transmission Lines, Part II: PMU Implementation and Performance Evaluation”, IEEE Trans. on Power Delivery, vol. 15, no. 4, pp. 1136-1146, October 2000.
[1.49] “Alternative Transient Program Rule Book”, Vol. 1, X. U. Leuven Center, July 1987.
[1.50] S.Santoso, E. J. Powers, and P. Hofmann, “Power quality assesment via wavelet transform analysis,” IEEE Trans. on Power Delivery, vol. 11, No 2, pp. 924-930, Apr. 1996.
[1.51 ] P. Pillay, and A. Bhattacharjee,”Application of wavelets to model short term power system disturbances,” IEEE Trans. on Power System, vol. 11, No 4, pp.2031-2037, November 1996.
[1.52] M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1975), Sec.9.2.
[1.53] F. Zernike, “Beugungstheorie des Schnridenver-Eahrens und Seiner Verbesserten Form, der Phasenkontrastmethode,” Physica 1, 689 (1934).
[1.54] D. Malacara, J. M. Carpio-Valad`ez, and J. J.S`anchez-Mondrag`on, “ Wave-front fitting with discrete orthogonal polynomials in a unit radius circle,” Opt. Eng. 29, 672-675 (1990).
[1-55] J. Y. Wang and D. E. Silva, “Wave-front interpretation with Zernike polynomials,” Appl. Opt. 19, 1510-1518 (1980).
[1-56] E. Freysz, B. Pouligny. F. Argoul, and A. Arneodo, “Optical wavelet transform of fractal aggregatet,” Phys. Rev. Lett.64, 7745-7748(1990).
[1-57] R.K.Martinet, J.Morlet, and A.Grossmann, “Analysis of sound patterns through wavelet transforms,” Int. J. Patt. Rec Art.Intell.1,273-302(1987).
[1.58] H. J. Caufield, “Wavelet transforms and their relatives, ” Photon. Spectra 26,73(1992).
[1-59] J. M. Combes, A. Grossmann, and Ph. Tchamitchian, eds.,Wavelets: Time-Frequency Methods and Phase Space (Springer-Verlag.Berlin, 1989).
[1.60] G. E. Forsythe, J. Soc. Ind. Math. 5, 74(1957).
[1.61] Daubechies, “The wavelet transform time-frequency localization and signal analysis, ” IEEE Trans.Inf. Theory 36,961-1005(1990).
Chapter 2.
[2.1] R. L. Burden and J.D.Faires, Nmerical Analysis, Brooks/Cole, 1997.
[2.2] A. G. Phadke and J. S. Thorp, Computer Relaying for Power Systems, John Wiley & Sons, New York, 1988.
[2.3] C. S. Burrus, R. A. Gopinath, and H.T. Guo, Introduction to Wavelets and Wavelet transform, Prentic Hall Press,1998.
[2.4] X. Zhang, J. Zheng, and H. Gao, “Curve fitting using wavelet transform for resolving simulated overlapped spectra”, Analytica Chimica Acta 443(2001) P117-125.
Chapter 3.
[3.1] A. Passaseo, G. Maruccio, M. De Vittorio, R. Rinaldi, and R. Cingolani, “Wavelength control from 1.25 to 1.4 μm in InxGa1-xAs quantum dot structures grown by metal chemical vapor deposition,” Appl. Phys. Lett. 78, 1382 (2001).
[3.2] J. Tatebayashi, M. Nishioka, and Y. Arakawa, “Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 78, 3469 (2001).
[3.3] V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunve, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, and D. Bimberg, “InAs/InGaAs quantum dot structures on GaAs substrates emitting 1.3 μm ,” Appl. Phys. Lett. 74, 2815 (1999).
[3.4] M. Sopanen, H. P. Xin, and C. W. Tu, “Self-assembled GaInNAs quantum dot structures for 1.3 and 1.5 μm emission on GaAs,” Appl. Phys. Lett. 76, 994 (2000).
[3.5] K. Nishi, H. Saito, and J.-S. Lee, “ A narrow photoluminescence linewidth of 21 meV at 1.35μm from strain-reduced InAs quantum dots cover by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111 (1999).
[3.6] J. Bloch, J. Shah, W. S. Hobson, and J. Lopata, “ Optical properties of multiple layers of self-organized InAs quantum dots emitting at 1.3 μm ,” Appl. Phys. Lett. 77, 2545 (2000).
[3.7] K. Mukai and M. Sugawara, “ Suppression of temperature sensitivity of interband emission energy in 1.3-μm-region by an InAsGa overgrowth on self-assembled InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 74, 3963 (1999).
[3.8] For the InAs and GaAs deformation potential parameters we used a(eV; InAs) = -6.08; a(eV; GaAs) = -8.33; b(eV; InAs) = -1.8; b(eV; GaAs) = -1.7; C11(InAs) = 8.329; C12(1011dyne/cm2; InAs) = 4.526; C11(1011dyne/cm2; GaAs) = 11.879; C12(1011dyne/cm2; GaAs) = 5.376; K. H. Hellwege, Ed., Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group III 17a, Springer, Berlin, (1982); Groups III-V 22a, Springer, Berlin, (1986).
[3.9] E. Pehlke, N. Moll, A. Kely, and M. Scheffler, “ Shape and stability of quantum dot, ” App. Phys. A 65, 525 (1997).
[3.10] M. Grundmann, O. Stier, and D. Bimberg, “ InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonos, and electronic structure,” Phys. Rev. B52, 11969 (1995).
[3.11] R. M. Lin, T. E. Nee, M. C. Tsai, Y. H Chang, P. L. Fan and R. S. Chang, “ Thickness-dependent renormalization of strain effects on self-organized InAs quantum dots grown on GaAs,” J. Vac. Sci. Technol. A 20(3), May/Jun 2002.
Chapter 4.
[4.1] A. G. Phadke and J. S. Thorp, Computer Relaying for Power Systems, John Wiley & Sons, New York, 1988.
[4.2] Working Group H-7 of the Relaying Channels Subcommittee of the IEEE Power System Relaying Committee, “Synchronized Sampling and Phasor Measurements for Relaying and Control”, IEEE Trans. on Power Delivery, vol. 9, no. 1, pp. 442-452, January 1994.
[4.3] A. A. Girgis and E. B. Makram, “Application of Adaptive Kalman Filtering in Fault Classification, Distance Protection, and Fault Location Using Microprocessors”, IEEE Trans. on Power Systems, Vol. 3, No. 1, pp. 301-309, February 1988.
[4.4] D. V. Coury and D. C. Jorge, “Artificial Neural Network Approach to Distance Protection of Transmission Lines”, IEEE Trans. on Power Delivery, Vol. 13, No. 1, pp. 102-108, January 1998.
[4.5] T. S. Sidhu, H. Singh, and M. S. Sachdev, “Design, Implementation and Testing of An Artificial Neural Network Based Fault Direction Discriminator for Protecting Transmission Lines”, IEEE Trans. on Power Delivery, Vol. 10, No. 2, pp. 697-706, April 1995.
[4.6] M. Akke and J. S Thorp, “Some Improvements In the Three-Phase Differential Equation Algorithm for Fast Transmission Line Protection”, IEEE Trans. on Power Delivery, vol. 13, no. 1, pp. 66-72, January 1998.
[4.7] M. M. Mansour and G. W. Swift, “A Multi-Microprocessor Based Traveling Wave Relay - Theory and Realization”, IEEE Trans. on Power Delivery, Vol. 1, No. 1, pp. 272-279, January 1986.
[4.8] Z. Q. Bo, G. Weller, T. Lomas, and M. A. Redfern, “Positional Protection of Transmission Systems Using Global Positioning System”, IEEE Trans. on Power Delivery, Vol. 15, No. 4, pp. 1163-1168, October 2000.
[4.9] R. K. Aggarwal and A. T. Johns, “A Differential Line Protection Scheme for Power Systems Based On Composite Voltage and Current Measurements”, IEEE Trans. on Power Delivery, Vol. 4, No. 3, pp. 1595-1601, July 1989.
[4.10] H. Y. Li, E. P. Southern, P. A. Crossley, S. Potts, S. D. A. Pickering, B. R. J. Caunce and G. C. Weller, “A New Type of Differential Feeder Protection Relay Using the Global Positioning System for Data Synchronization”, IEEE Trans. on Power Delivery, vol. 12, no.3, pp. 1090-1097, July 1997.
[4.11] J. A. Jiang, J. Z. Yang, Y. H. Lin, C. W. Liu, and J. C. Ma, “An Adaptive PMU Based Fault Detection/Location Technique for Transmission Lines, Part I: Theory and Algorithms”, IEEE Trans. on Power Delivery, vol. 15, no. 2, pp. 486-493, April 2000.
[4.12] J. A. Jiang, Y. H. Lin, J. Z. Yang, T. M. Too, C. W. Liu, “An Adaptive PMU Based Fault Detection/Location Technique for Transmission Lines, Part II: PMU Implementation and Performance Evaluation”, IEEE Trans. on Power Delivery, vol. 15, no. 4, pp. 1136-1146, October 2000.
[4.13] “Alternative Transient Program Rule Book”, Vol. 1, X. U. Leuven Center, July 1987.
[4.14] S.Santoso, E. J. Powers, and P. Hofmann, “Power quality assesment via wavelet transform analysis,” IEEE Trans. on Power Delivery, vol. 11, No 2, pp. 924-930, Apr. 1996.
[4.15 ] P. Pillay, and A. Bhattacharjee,”Application of wavelets to model short term power system disturbances,” IEEE Trans. on Power System, vol. 11, No 4, pp.2031-2037, November 1996.
[4.16] G. T. Heydt, and A.W. Galli,”Power quality problem analyzed using wavelets,” IEEE Trans. on Power Systems, vol. 12, No 2, pp.869-915, Apr. 1997.
[4.17] T. B. Littler, and D. J. Morrow, ”Wavelets for the analysis of power system disturbances,” IEEE Trans. on Power Delivery, vol.14, No 4, pp.358-364, Apr. 1999.
[4.18] S. Huang, C. Hsieh, and C. Lien Huang,” Application of Morlet wavelets to supervise power system disturbances,” IEEE Trans. on Power Delivery, vol. 14, No 1, pp.235-243, January 1999.
[4.19] A.W. Galli, and O.M. Nielsen,” Wavelet analysis for power systems transients,” IEEE Computer Applications in Power, pp.16-25, January 1999.
Chapter 5.
[5.1] M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1975), Sec.9.2.
[5.2] F. Zernike, “Beugungstheorie des Schnridenver-Eahrens und Seiner Verbesserten Form, der Phasenkontrastmethode,” Physica 1, 689 (1934).
[5.3] D. Malacara, J. M. Carpio-Valad`ez, and J. J. S`anchez-Mondrag`on, “ Wave-front fitting with discrete orthogonal polynomials in a unit radius circle,” Opt. Eng. 29, 672- 675 (1990).
[5.4] J. Y. Wang and D. E. Silva, “Wave-front interpretation with Zernike polynomials,” Appl. Opt. 19, 1510-1518 (1980).
[5.5] E. Freysz, B. Pouligny. F. Argoul, and A. Arneodo,“Optical wavelet transform of fractal aggregatet,” Phys. Rev. Lett. 64, 7745-7748 (1990).
[5.6] R. K. Martinet, J.Morlet, and A. Grossmann, “Analysis of sound patterns through wavelet transforms,” Int. J. Patt. Rec Art. Intell. 1, 273-302 (1987).
[5.7] H. J. Caufield, “Wavelet transforms and their relatives,” Photon. Spectra 26,73(1992).
[5.8] J. M. Combes, A. Grossmann, and Ph. Tchamitchian, eds., Wavelets: Time-Frequency Methods and Phase Space (Springer-Verlag.Berlin, 1989).
[5.9] G. E. Forsythe, J. Soc. Ind. Math. 5, 74 (1957).
[5.10] Daubechies, “The wavelet transform time-frequency localization and signal analysis, ” IEEE Trans. Inf. Theory, 36, 961-1005 (1990).
[5.11] H. Szu, Y. Sheng, and J. Chen, “The wavelet transform as a bank of matched filters, ” Appl. Opt. 31, 3267-3277 (1992).
[5.12] Y. Sheng, D. Roberge, and H. Szu, “Optical wavelet transform, ” Opt. Eng. 31, 1840-1845 (1992).
[5.13] D. Marr, E. Hildreth, Proc. Royal Soc. London B 207 (1980).
[5.14] Wavelet Toolbox For Use with MATLAB (The Math Works, Inc, 1997).
指導教授 張榮森(Rong-Seng Chang) 審核日期 2002-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明