博碩士論文 84343004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.119.133.206
姓名 施明憲(Ming-Sam Shih)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 Random Walk方法對轉注射出成型充填過程中氣泡消長行為之數值模擬分
(Random Walk Approach on Study of Void Formation in Resin Transfer Molding)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在樹脂轉注成形(RTM)充填過程中,氣泡的生成與殘留直接影響了產品的機械性質。本研究將分為兩部份,以數值模擬法與實驗區分。第一部份:以蒙地卡羅亂向步進法,來分別探討氣泡生成的兩個主要階段:巨微觀流動面速度差異及氣泡崩解。以樹脂橫向流經纖維束為模型,第一階段,由於纖維束內、外區域滲透度的差異造成流動面運動快慢的不同,纖維束中的氣泡生成機構於是形成。主要的影響因數是纖維內外的滲透度比值和毛細力的影響,結果顯示當滲透度比值 ,則流動面的運動差異便足以於纖維束內形成初始氣泡。 第二階段,當初始氣泡形成後纖維束內的流動主要是毛細力主導的微觀流持續的向纖維束滲透,造成了初始氣泡的壓縮效應,液體表面張力與背壓會形成一門檻壓力值。壓縮初始氣泡的速率與門檻壓力之升高速率,為影響微小氣泡生成的主要因素; 結果顯示當毛細數 時,崩解的氣泡就會顯著增加。 第二部份:在探討氣泡生成的過程中,毛細效應是不可忽略的,本研究對毛細壓力的量測採用無因次參數 理論進行分析,並設計實驗取得毛細壓力與孔隙關連。
第一部份流動模型較複雜,由於傳統數值方法對氣泡崩解後的微小氣泡模擬有技術上的限制(自由面形狀定義的複雜性與隔點產生的困難性),因此第一部份數值法採用蒙地卡羅法(Monte Carlo method)及亂向步進子(Random walk)來預測流動面前進的位置,亂向步進子之位移機率強度,以 (壓力梯度)與 (可動性)乘積的修正來計算。
摘要(英) The presence of the void is harmful to the product’s mechanical properties. In the present study, a Monte-Carlo-like random walk model is firstly proposed for the simulation of void formation, namely, the voids of the first kind and the voids of the second kind, during the filling stage of RTM. The former is resulted from the kinetic difference along the free surface movement, and the latter is the product of the first type void. An obstacle in the flow field always tends to lift the potential on void entrapment. Results show that the void of the first kind is formed within the fiber bundle as the permeability ratio of the fiber mats to the fiber bundle is greater than 10. Once the first type voids are formed, the dissolution of that voids may occur due to the capillary action. That is, micro flow provides compression strength on the bubbles within the bundle to against the threshold pressure, such that some gas molecules were rejected out periodically to reach balance to the external pressure. Results show that, the content of second type voids increases as the decreases. The critical is found to be . Below which the number of the void is inversely proportional to in a parabolic trend.
Based on the similarity of capillary rise, a centrifugal platform is conducted to perform the required data for the correlation between capillary pressure and other properties of the fibrous network proposed by theorem. A Monte-Carlo-like random walk approach is developed here to resolve the time-dependent, free-surface flows and to study the transport of tiny bubbles by tracing the paths of fictitious random walk, colored black or white. By using the strong correlation functions ( and ), the local displacing probability of random walks can be determined.
關鍵字(中) ★ 轉注射出成型
★ 蒙地卡羅法
★ 亂向步進子
★ 達西定律
★ 門檻壓力
★ 氣泡
關鍵字(英) ★ Resin Transfer Molding (RTM)
★ Monte Carlo
★ Rando
論文目次 摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅴ
表目錄 ⅤII
圖目錄 ⅤIII
符號說明 XI
第一章、緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究方向 10
第二章、理論模式 12
2-1動力論(Kinetic Theory)與 有限擴散聚集 (Diffusion-Limited Aggregation,DLA) 12
2-2 達西定律 15
第三章、數值方法 19
3-1網路模型(Network Model) 20
3-2亂向步進子與位移機率強度 20
3-3多重格點法 22
3-4數值流程(part I) 25
第四章、實 驗 過 程 27
4-1實驗原理(毛細壓力的量測法) 27
4-2實驗裝置 29
4-2-1 實驗材料 30
4-2-2 實驗設備 31
4-3實驗步驟 32
4-4 注意事項 33
第五章、結 果 與 討 論 35
5-1 毛細壓力與製程參數間之實驗關係式 35
5-2 算例的訂定與製程參數探討 37
5-2-1 氣泡形成機制 38
5-2-2 氣泡特性與分佈 39
第六章、結 論 47
參考文獻 49
附錄 一﹑動力論對流體運動的描述 60
附錄 二﹑多重格點法(multi-grid method) 64
表 67
圖 68
參考文獻 1. B. T. Åström, R. B. Pipes ,and S. G. Advani, "On Flow through Aligned Beds and Its Application to Composites Processing", J. of Composite Material, 20, 1351-1373(1992).
2. B. R. Gebart, "Permeability of Unidirectional Reinforcements for RTM", J. of Composite Materials, 26 (8), 1101-1133 (1992).
3. J. G. Williams, C. E. Morris, M. and B. C. Ennis, "Liquid Flow through Aligned Fiber Beds", Polymer Engineering Science, 14, 413-419 (1974).
4. R. C. Lam, and J. L. Kardos, "The Permeabiltiy and Compressibility of Aligned and Cross-plied Carbon Fiber Beds During Processing of Composites", ANTEC ‘89, 1408-1412(1989).
5. L. J. Broutman and R. H. Krock, "Modern Composite Materials", Addison-Wesley Publishing Company, Reading, MA, (1967)
6. M. V. Bruschke, "A Predictive Model for Permeability and Non-isothermal Flow of Viscous and Shear-thinning Fluids in Anisotropic Fibrous Media", Ph.D. thesis, University of Delaware, Newark, U.S.A (1992).
7. T. G. Gutowski, Z. Cai, S. Bauer, D. Boucher, J. Kingery, and S. Wineman, "Consolidation Experiments for Laminate Composites", J. of Composite Material, 21, 650-669(1987).
8. L. Skartsis and J. L. Kardos, "The Newtonian permeability and consolidation of oriented carbon fiber beds", Proceeding America Society For Composites, Fifth Technical Conference, 27-41 (1990).
9. M. V. Bruschke and S. G. Advani, "A finite Element/Control Volume Approach to Mold Filling in Anisotropy Porous Media", Polymer Composites, 11, 398-405 (1990).
10. T. A. K. Sadiq, S. G. Advani and R. S. Parnas, "Experimental Investigation of Transverse Flow Through Aligned Cylinders", International J. Multiphase Flow, 21, 755-774 (1995).
11. J. A. Molnar, L. Trevino, and L. J. Lee, "Liquid Flow In Molds Percolated Fiber Mats", Polymer Composites, 10(6), 414-423(1989).
12. M. V. Bruschke and S. G. Advani, "RTM: Filling Simulation of Complex Three Dimensional Shell-like Structures", SAMPE QUARTERLY, 2-11, October (1991).
13. L. Trevino, K. Rupel, W. B. Young, M. J. Liou and L. J. Lee, "Analysis of Resin Injection Molding in Molds with Preplaced Fiber Mats I: Permeability and Compressibility Measurements", Polymer Composites, 12, 20-29 (1991).
14. K. Han, L. Trevino, W. B. Young, L. J. Lee and M. J. Liou, "Fiber Mat Deformation During Mold filling in Structural RIM", The 46th Annual Conference of the Composites Institute of the Society of the Plastics Industry Inc.,18-21, February (1991).
15. K. J. Ahn and J. C. Seferis, " Simultaneous Measurements of Permeability and Capillary Pressure of Thermosetting Matrices in Woven Fabric Reinforcements", Polymer Composites, 12, 146-152(1991).
16. C. W. Chan and S.T. Hwang, "Modeling Nonisothermal Impregnation of Fibrous Media With Reactive Polymer Resin", Polymer Engineering and Science, 32, 310-318(1992).
17. A. W. Chan and D. E. Larive and R J. Morgan, "Anisotropic Permeability of Faber Preforms: Constant Flow Rate Measure", J. of Composite Material, 27, 996-1008 (1993).
18. Z. Cai and A. L. Berdichevsky,Numerical Simulation on the Permeability Variations of a Fiber Assembly", Polymer Composites, 14, 529-539(1993).
19. A. L. Berdichevsky and Z. Cai, "Preform Permeability Predictions by Self-Consistent Method and Finite Element Simulation," Polymer Composites, 14, 132-143 (1993).
20. Z. Cai and A. L. Berdichevsky, "An Improved Self- Consistent Method for Estimating the Permeability of a Fiber Assembly", Polymer Composites, 14, 314-323 (1993).
21. K. L. Adams and L. Rebenfeld, "In-Plane Flow of Fluids in Fabrics: Structure/Flow Characterization", Textile Research J., 57,647-654 (1987).
22. K. L. Adams, B. Miller, and L. Rebenfeld, "Forced In-Plane Flow of an Epoxy Resin in Fibrous Networks", Polymer Engineering Science, 26, 1434-1441 (1986).
23. T. J. Wang, C. H. Wu and L. J. Lee, "In-Plane Permeability Measurement and Analysis in Liquid Composite Molding", Polymer composites, 15, 278-288 (1994).
24. K. J. Ahn, J. C. Seferis, J. O. Price, and A. J. Berg, "Permeation Measurements through Prepreg Laminates", Polymer Composites, 27(6), 19-25 (1991).
25. D.G. Kiriakidis and G. H. Neale, "The Effects of Medium Thickness on The Island Size Distribution in Immiscible Displacement Flow in Porous Media", Chemical Engineering Community, 127-134(1993).
26. R. S. Parnas and F. R. Phelan Jr., "The Effect of Heterogeneous Porous Media on Mold Filling in Resin Transfer Molding", SAMPE QUARTERLY, 53-60 January (1991).
27. Albert W. Chan and Roger J. Morgan, "Tow Impregnation during Resin Transfer Molding of Bi-directional Non-woven Fabrics", Polymer Composites, 14(4), 335-340, August 1993.
28. G. R. Palmese, andV. M. Karbhari, "Effects of Sizing on Microscopic Flow in Resin Transfer Molding", Polymer Composites, 16(4), 313-318(1995).
29. K. Han, L. J. Lee, and M. J. Liou, "Fiber Mat Deformation in Liquid Composite Molding. II: Modeling", Polymer Composites, 14, 151-160(1993).
30. L. Skartsis, J. L. Kardos, and B. Khomami, "Polymer Flow through Fibrous Media", Journal of Rheology, 36, 589-620(1992).
31. A. Hammami, F. Trochu, R. Gauvin, and S. Wirth, "Directional Permeability Measurement of Deformed Reinfircement", Journal of Reinforced Plastics and Composites, 15, 552-562(1996).
32. K. L. Han, L. J. Lee, and M Liou, "Fiber Mat Deformation in Liquid Composite Molding. I: Experiment Analysis", Ploymer Composites, 14, 144-150(1993).
33. T. J. Wang, C. H. Wu and L. J. Lee, "In-Plane Permeability Measurement and Analysis in Liquid Composite Molding", Polymer composites, 15, 278-288 (1994).
34. K. Han, L. Trevino, W. B. Young, L. J. Lee and M. J. Liou, "Fiber Mat Deformation During Mold filling in Structural RIM", The 46th Annual Conference of the Composites Institute of the Society of the Plastics Industry Inc., Feb., 18-21 (1991).
35. C. J. Wu, L. W. Hourng and J. C. Liao, "Numerical and Experimental Study on the Edge Effect of Resin Transfer Molding", J. of Reinforced Plastics and Composites, 14, 964-722(1995).
36. C. J. Wu and L. W. Hourng, "Permeable Boundary Condition For Numerical Simulation in Resin Transfer Molding", Polymer Engineering and Science, 35, 1272-1281(1995).
37. 張智淵, "轉注成型充填過程中氣泡形成之數值模擬",國立中央大學機械工程研究所博士論文(1997).
38. K. N. Kendall, and C.D. Rudd, "Flow and Cure Phenemena in Liquid Composite Molding", Polymer Composites, 15(5), 334-348(1994).
39. F. Trochu and R. Gauvin, "Limitations Of A Boundary-Fitted Finite Difference Method For The Simulation Of The Resin Transfer Molding Process", Journal Of Reinforced Plastics and Composites, 11, 772-786(1992).
40. G. Q. Martin, and J. S. Son, "Fluid Mechanics of Mold for Fiber Reinforced Plastics", Proceeding of the ASM/ESD 2nd Conference on Advanced Composite, Dearborn, Michigan, 149-157(1986).
41. J. P. Coulter, and S. I. Güçeri, "Resin Impregnation during Composite Manufacturing:"Theory and Experimentation", Composite Science and Technology, 35, 317-330(1989).
42. R. Gauvin, and M. Chibani, "The Modeling of Mold Filling in Resin Transfer Molding", International Polymer Processing, 1, 43-46(1986).
43. W. B. Young, K. Rupel, K. Han, L. J. Lee and M. J. Liou, "Analysis of Resin Injection Molding in Molds With Preplaced Fiber Mats. II: Numerical simulation and Experiments of Mold Filling" , Polymer Composites, 12, 30-38 (1991).
44. M. V. Bruschke, and S. G. Advani, "A Numerical Siumlation of the Resin Transfer Mold Filling Process", Proceedings of the Society of Plastics Engineers 47th. Annual Technical Conference (Antec/’89), 1769-1773(1989).
45. M. V. Bruschke and S. G. Advani, "A finite Element/Control Volume Approach to Mold Filling in Anisotropic Porous Media", Polymer Composites, 11, 398-405(1990).
46. M. K. Um and W. I. Lee, "A Study on the Mold Filling Process in Resin Transfer Molding", Polymer Engineering and Science, 31, 765-771(1991).
47. K. Kurematsu, and M. Koishi, "Kinetic Studies on Void Formation During Liquid Epoxy Resin Impregnation Through Polyester Non-woven Fabric", Colloid and Polymer Science, 263, 454-464(1985).
48. T. S. Lundstrom, B. R. Gebart and C. Y. Lundemo, "Void Formation in RTM", J. of Reinforced Plastics and Composites, 12, 1339-1349(1993).
49. R.J. Crowson, A. J. Scott, and D. W. Saunders, "Rheology of Short Glass Fiber-Reinforced Thermoplastics and Its Application to Injection Molding.III", Polymer Engineering and Science. 21(12), 748-754(1981).
50. A. D. Mahale, R. K. Prud'homme and L. Rebenfeld, "Quantitative Measurement of Voids Formed During Liquid Impregnation of Non-woven Multifilament Glass Networks Using an Optical Visualization Technique", Polymer Engineering and Science, 32, 319- 326(1992).
51. Y. T. Chen, C. W. Macosko and H. T. Daves, "Wetting of Fiber Mats for Composites Manufacturing: II. Air Entrapment Model”, AICHE J., 41, 2274-2281(1995).
52. N.Patel, V. Rohatgi and L. J. LLee, "Micro Scale Flow Behavior and Void Formation Mechanism During Impregnation Through a Undirection Stitched Fiberglass Mat", Polymer Engineering and Science, 35, 837-851(1995).
53. R. C. Brown, " A Many Fiber Model of Airflow Through a Fibrous Filter", J. of Aerosol Science, 15, 583-593(1984) .
54. J. S. Hayward and B. Harris, "Effect of Process Variables on The Quality of RTM Mouldings", SAMPE J., 26, 39-46(1990).
55. Stabler, W. R., Tatterson, G. B., Sadler, R. L. and El-Shiekh, Aly H. M., "Void Minimization in the Manufacture of Carbon Fiber Composites by Resin Transfer Molding", SAMPE QUARTERLY, April, 38-42 (1992).
56. S. Levine and G. H. Neale, "Theory of the Rate of Wetting of a Porous Medium", Faraday Transactions 2, 71, 12-21(1975).
57. N. Patel and L. J. Lee. "Modeling of Void Formation and Removal in Liquid Composite Molding. Part I: Wettability Analysis", Polymer Composites, 17, 96-103(1996).
58. N. Patel and L. J. Lee. "Modeling of Void Formation and Removal in Liquid Composite Molding. Part II: Model Development and Implementation", Polymer Composites, 17, 104-114(1996).
59. K. M. Pillai and S. G. Advani, "A Model for Unsaturated Flow in Woven Fiber Preforms during Mold Filling in Resin Transfer Molding", J. of Composite Materials, 32(19), 1753-1783(1998).
60. R. Byron Bird, R. C. Armstrong, Ole Hassager, Charles F. Curtiss, "Dynamics of Polymeric Liquids- Vol. 2 , Kinetic Theory", Wiley Interscience(1987).
61. T. A. Witten and L. M. Sander, "Diffusion-limited Aggregation", The American Physical Society, 5686-5697(1983).
62. 廖致欽,"轉注成型之滲透率的量測與流場之觀察",國立中央大學機械工程研究所機械論文(1994).
63. 吳清振,"轉注成型充填過程中邊際效應之數值模擬",國立中央大學機械工程研究所博士論文(1995).
64. P. E. Collins, "Flow of Fluids Through Porous Materials", Chapman & Hall Ltd., London (1961).
65. K. M. Ng, and A. C. Payatakes, "Stochastic Simulation of the Motion, Breakup and Stranding of Oil Ganglia in Water-Wet Granular Porous Media during Immiscible Displacement", AIChE J., 26(3), 419-429(1980).
66. G. P. Androutsopoulos and R. Mann, "Evaluation of Mercury Porosimeter Experiments Using a Network Pore Structure Model", Chemical Engineering Science, 34, 1203-1212(1979).
67. J. Bear, "Dynamics of Fluids in Porous Media", Dover Publications Inc., New York(1972)
68. M. M. Dias and A. C. Payatakes, "Network Models for Two-phase Flow in Porous Media: Part1. Immiscible Microdisplacement of Non-wetting Fluids", J. of Fluid Mechanics, 164, 305-336(1986).
69. Rand Corporation, "A Million Random Digits with 100,000 Normal Deviates", Glencoe, IL: Free Press. (1955).
70. D. S. Burnett, "Finite Element Analysis From Comcepts to Applications", Addison-Wesley Publishing Company, Singapore (1987).
71. P. D. Thomas and J. F. Middlecoff, "Direct Control of the Grid Point Distribution in Meshes Generated by Elliptic Equation", AIAA Journal, 18, 652-656(1980).
72. Lloyd I. Osipow, "Surface Chemistry:Theory and Industrial Application", Robert E. Krieger Publishing Company, Hungtington, New York(1972).
73. N.Patel, V. Rohatgi and L.J.lee, "Micro Scale Flow Behavior and Void Formation Mechanism During Impregnation Through a Unidirection Stitched Fiberglass Mat", Polymer Engineering and Science, 35, 837-851(1995).
74. 張修銘, "轉注射出成型過程中氣泡成型機制之可視化探討", 國立中央大學機械工程研究所碩士論文(1997)
75. F. P. Bretherton, "The Motion of Long Bubbles in Tubes", J. Fluid Mechanics, 10, 166-188(1961).
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2003-6-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明