博碩士論文 85244004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:119 、訪客IP:18.224.52.190
姓名 江準熙(Juen-Shi Jiang)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 1999年集集大地震前後地震活動、震源機制及地殼應力分佈與變化之研究
(A Study on the Patterns and Changes in Seismicity, Focal Mechanism and Crustal Stress before and after the 1999 Chi-Chi, Taiwan, Earthquake)
相關論文
★ 利用S波與尾波探求蘭陽平原局部場址效應★ 以地表位移量推算921地震時車籠埔斷層之錯動參數
★ 利用921地震序列之強地動資料對台灣強地動衰減模式與反應譜速估之研究★ 台灣西南部地區地震釋放之能量與規模關係之研究
★ 1999年集集地震序列強地動峰值隨方位角變動及以偏極化分析輔助地震定位方法之研究★ 九二一集集大地震序列各地累積絕對速度值(CAV)之研究
★ 以反應譜比值法推求地震時結構物振動行為之研究★ 紅河斷裂帶地震活動以及東南亞地殼與上部地函構造之研究
★ 台灣地區地震危害度的不確定性分析與參數拆解★ 台灣小規模地震再發統計模式參數研究
★ 台灣ShakeMap震度之研究-以九二一集集地震序列為例★ 高密度地震資料分析及其用於台灣中部及東部孕震構造之研究
★ 斷層錯動、地殼變位及強地動與地震災害相關性之研究: 以1935年及1999年台灣中部兩次地震為例★ 利用傅氏振幅譜比法分析全台灣強震站的場址
★ 以Gamma Model對台灣餘震叢集現象之研究★ 台灣西南部GPS資造時間序列分析與地殼變形模式研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為探討1999年集集地震震源區受到該次大地震釋放應力後,可能引起的應力調整作用,本研究綜合分析了集集地震震源區之地震活動、震源機制與地殼應力,並應用多種型態辨識方法由餘震分佈辨識斷層面,進而分析集集主餘震與已知斷層構造之關連性。
就地震活動分析而言,本研究使用地震群集法客觀篩選出1999年集集大地震之餘震資料,然後再應用震源疊合法,重新定位調整餘震活動,結果發現餘震活動顯著形成6個集集大地震前所沒有的群集現象。另由b值分析顯示集集大地震前之地震活動,較大規模的次數明顯不足,集集大地震後的餘震活動彌補了大量較大規模次數。藉由移動時窗方式之b值時序分析,本研究發現自1994年到集集大地震前b值有逐漸增大之線性特徵,此一異常現象是否為地震前兆,值得進一步深入探討。
就震源機制分析而言,集集地震震源區之較大與較深地震以逆斷層為主,較小與較淺地震則以走向滑移斷層為主。換言之,在集集震源區逆斷層機制主導大規模的地震,反應區域性的地殼應力型態。就空間分佈而言,車籠埔斷層東側之斷層上盤區域,主要受到逆斷層機制作用;在車籠埔斷層東南方與車籠埔斷層南北兩端的區域,主要受到走向滑移斷層機制作用;在車籠埔斷層中段與中央山脈東側則主要受到正斷層機制作用。各類震源機制隨著時間序列以近乎等比例方式發生,這意味著集集大地震引發大區域全面性的地體構造運動,因此三種震源機制個數都以大約相等比例的方式隨著時間觸發。
餘震分佈為辨識斷層面常用的傳統方法,本研究成功的應用多種型態辨識方法,包括地震群集法、震源疊合法、主分量分析與等面積投影法,分析餘震活動之空間分佈形貌,並搭配對比震源機制解已知的二個節面,藉以辨識斷層面。本研究總共辨識得出115個斷層面,提供後續斷層構造與地震活動相關性研究之寶貴線索,包括先存的斷層、新生的斷層或者是潛藏地下的盲斷層。
就地殼應力分析而言,藉由規模與震矩之經驗關係先由地震規模估算震矩值,再與震源機制結合而成經驗震矩張量,最後透過震矩張量總和方法,本研究分析1999年集集地震前後在震源區地殼應力之分佈與變化。結果顯示,雖然集集地震前後震源區之地震活動與震源機制分佈有很大差異,但是整體的地殼應力型態並無改變。用網格方式的應力估計結果,本研究為集集震源區建立了一個經驗震源機制、震矩張量與地殼應力資料庫。
綜合以上地震活動、震源機制與地殼應力分析的結果,本研究發現在走向滑移的構造環境下,伴隨地震之變形多集中於走向滑移斷層帶附近,地震的規模較小;在擠壓的構造環境下,伴隨地震之變形多分佈於廣大區域和比較分散的斷層帶上,甚至觸發先前存在的斷層構造重新活動,不但會引發大規模的地震,其影響範圍亦較廣泛。
摘要(英) In order to investigate stress adjustments in the source region of the 1999 Chi-Chi earthquake, the regional seismic activities, focal mechanisms, and crustal stresses are together analyzed in this study. In addition, we have identified the true fault planes by applying several methods of pattern recognition on aftershock distributions. The results are further used to examine their relevance to the known fault structures.
In the study of seismic activities, we first define the aftershocks of the Chi-Chi earthquake by the earthquake clustering method. The locations of aftershocks are then adjusted by the hypocenter collapsing method. The results show six distinct clusters of aftershocks. An analysis of the b value shows a lack of larger earthquakes before the Chi-Chi earthquake which was subsequently compensated by intensive its aftershocks. Using a moving window in time, we have observed that the b value gradually increases from 0.8 to 1.0 beginning 1994 until 1999. Whether this anomalously linear increase of the b value is a precursor of the Chi-Chi earthquake deserves further investigations.
In the study of focal mechanisms, we found the larger and deeper earthquakes often exhibit thrust faulting whereas smaller and shallower earthquakes exhibit strike-slip type. The fact that larger earthquakes are dominantly thrust faulting is a reflection of the regional crustal stress regimes in the Chi-Chi source. With respect to the Chelungpu fault, thrust faulting dominates the hanging wall areas to the east, strike-slip faulting near its southern and northern ends, and southeastern side, whereas normal faulting in its central part and to the eastern side of the Central Mountain Range. Furthermore, the relative ratios of the numbers of the three types of focal mechanism are almost constant throughout the three-year period after the Chi-Chi.
Regarding fault plane identification, a traditional way to effectively identify a fault plane is based on aftershock distributions. We have successfully applied several methods of pattern recognition, including earthquake clustering, hypocenter collapsing, principal component analysis, and equal area projection, to determine the true fault plane from the two nodal planes of a focal mechanism. The results of 115 identified fault planes are informative for subsequent studies on possible association of seismic activities with fault structures, including pre-existing faults, new fractures, or underground blind faults.
In the study of crustal stresses, we analyzed the stress patterns and changes of the source region due to the Chi-Chi earthquake by the method of moment tensor summation, where the moment tensor of an individual earthquake is constructed from its focal mechanism solution and a scalar moment derived from the moment-magnitude relationship. The results reveal that although the distributions of seismicity and focal-mechanism patterns are different before and after the 1999 Chi-Chi earthquake, the overall patterns of crustal stresses remain similar. A grid analysis of stress estimation has established a database of empirical focal mechanisms, moment tensors, and crustal stresses of the Chi-Chi source region.
In summary, the results of composite analyses of seismic activities, focal mechanisms, and crustal stresses can be summed up as follows. In a shear stress environment, the strike-slip deformation is usually concentrated around known faults, often induces earthquakes with small magnitudes. In a compressional stress environment, the thrust deformation often induces earthquakes which will distribute in broad areas and usually triggers complex types of focal mechanisms on pre-existing faults with significant magnitudes.
關鍵字(中) ★ 震源機制
★ 震矩張量
★ 主分量分析
★ 地震群集
★ 震源疊合
★ 應力張量
關鍵字(英) ★ hypocenter collapsing
★ stress tensor
★ earthquake clustering
★ focal mechanism
★ moment tensor
★ principal component analysis
論文目次 論文提要 ………………………………...……………………………………i
誌謝 …...………………………………………………………………………ii
目錄 …….…………………………..…………………………………………iii
圖目 …….…………………………..…………………………………………iv
表目 …….…………………………..…….…………………………...………vii
符號說明 .…………………………..…….………………………………...…viii
第一章 前言……………………………………………….……………………1
1.1研究動機與文獻回顧……………………………………….………...…..1
1.2本文內容大綱……………………………………………….…………..12
第二章 資料來源與可信度分析……………………………….…………......13
2.1波形逆推解之震矩張量資料……………………………….…………...13
2.2 由P波初動震源機制解推算震矩張量…………………….………......17
2.3 P波初動解與波形逆推解之震矩張量資料的比較………….…….…..21
第三章 1999年集集地震震源區之地震活動分析...........................................32
3.1應用地震群集與震源疊合法分析集集大地震後之餘震活動分佈…....32
3.2集集大地震前後震源區地震活動之時空變化………….…….……......40
第四章 1999年集集地震序列震源機制之總體時空特徵………………...…52
4.1 由震源機制劃分為走向滑移斷層、正斷層與逆斷層之分類方法……52
4.2 1999年集集地震序列之震源機制分類………………………………...54
4.3 震源機制之時空特徵………………………………..............................58
第五章 由餘震分佈辨識斷層面之方法及其應用…………...........................72
5.1 震源機制解之不定性與辨識斷層面之重要性…………......................72
5.2 應用多種型態辨識方法由餘震分佈辨識斷層面………………..........73
5.3由餘震分佈辨識斷層面之結果與分析…………....................................84
第六章 1999年集集地震前後地殼應力分佈與變化…………......................96
6.1 使用震源機制資料逆推地殼應力方向之方法…………......................96
6.2 使用震矩張量總和估計地殼應力之方法…………..............................99
6.3 1999年集集地震前後之地殼應力分析………….................................105
第七章 結論與討論………….........................................................................115
參考文獻…………...........................................................................................119
附錄A 震矩張量之分解……….….................................................................127
附錄B 震源機制解之震源參數表..................................................................130
附錄C由餘震分佈辨識斷層面之震源參數表………...................................147
附錄D由餘震分佈辨識斷層面之等面積投影……………...........................151
作者簡介…………...........................................................................................161
參考文獻 Aki, K., and P. G. Richards, 2002, Quantitative Seismology, 2nd ed., University Science Books, Sausalito, California, 37-62 pp.
Angelier, J., 1979, Determination of the mean principal directions of stresses for a given fault population. Tectonophysics, 56, 717-726.
Angelier, J., 1984, Tectonic analysis of fault slip data sets. J. Geophys. Res., 89, 5835-5848.
Angelier, J., H. T. Chu, and J. C. Lee, 1997, Shear concentration in collision zone: Kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan, Tectonophysics, 274, 117-143.
Apperson, K. D., 1991, Stress fields of the overriding plate at convergent margins and beneath active volcanic arcs, Science, 254, 670-678.
Biq, C., 1972, Dual-trench structure in the Taiwan-Luzon region, Proc. Geol. Soc. China., 15, 65-75.
Bott, M. H. P., 1959, The mechanics of oblique slip faulting, Geol. Mag., 96, 109-117.
Brune, J. N., 1968, Seismic moment, seismicity, and rate of slip along major fault zones, J. Geophys. Res., 73, 777-784.
Chi, W. C., D. Dreger, and A. Kaverina, 2001, Finite-source modeling of the 1999 Taiwan (Chi-Chi) Earthquake derived from a dense strong-motion network, Bull. Seism. Soc. Am., 91, 1144-1157.
Chi, W. C., and D. Dreger, 2002, Finite fault inversion of the September 25, 1999 (Mw = 6.4) Taiwan earthquake: Implications for GPS displacements of Chi-Chi, Taiwan earthquake sequence. data, Geophys. Res. Lett., 29, 1694.
Fitzenz, D. D., and S. A. Miller, 2004, New insights on stress rotations from a forward regional model of the San Andreas Fault system near its Big Bend in southern California, J. Geophys. Res., 109, B08404, doi:10.1029/2003JB002890.
Frohlich, C., 1992, Triangle diagrams: Ternary graphs to display similarity and diversity of earthquake focal mechanisms, Phys. Earth Planet. Inter., 75, 193-198.
Frohlich, C., and K. D. Apperson, 1992, Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries. Tectonics, 11, 279-296.
Gephart, J. W., and Forsyth, D. W., 1984, An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. J. Geophys. Res., 89, 9305-9320.
Gephart, J. W., 1985, Principal stress directions and the ambiguity in fault plane identification from focal mechanisms. Bull. Seism. Soc. Am., 75, 621-625.
Gephart, J. W., 1990a, FMSI:A fortran program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor. Computers & Geosciences, 16, 953-989.
Gephart, J. W., 1990b, Stress and the direction of slip on fault planes. Tectonics, 9, 845-858.
Hardebeck, J. L., and E. Hauksson, 1999, Role of fluids in faulting inferred from stress field signatures, Science, 285, 236-239.
Hardebeck, J. L., and E. Hauksson, 2001, Crustal stress field in southern California and its implications for fault mechanics, J. Geophys. Res., 106, 21859-21882.
Hardebeck, J. L., and P. M. Shearer, 2002, A new method for determining first-motion focal mechanisms, Bull. Seismol. Soc. Am., 92, 2264-2276.
Hardebeck, J. L., and P. M. Shearer, 2003, Using S/P Amplitude Ratios to Constrain the Focal Mechanisms of Small Earthquakes, Bull. Seismol. Soc. Am., 93, 2434-2444.
Hardebeck, J. L., and A. J. Michael, 2004, Stress orientations at intermediate angles to the San Andreas Fault, California, J. Geophys. Res., 109, B11303, doi:10.1029/2004JB003239.
Hauksson, E., 1994, State of stress from focal mechanisms before and after the 1992 Landers earthquake sequence, Bull. Seismol. Soc. Am., 84, 917-934.
Herrmann, R. B., 1975, A student's guide to the use of P and S wave data for focal mechanism determination. Earthquake notes, 46, 29-39.
Ho, C. S., 1988, An introduction to the geology of Taiwan: Explanatory text of the geologic map of Taiwan, 192 pp., Min. of Econ. Aff., Taipei, Taiwan, Republic of China.
Hu, J. C., and J. Angelier, 2001, 3-D distinct element analysis accounts for stress permutations in brittle tectonics, Program Proceeding of 2001 Joint Geosciences Assembly, 60-61.
Hu, J. C., and J. Angelier, 2004, Stress permutations: 3-D distinct element analysis accounts for a common phenomenon in brittle tectonics, J. Geophys. Res., 109, B09403, doi:10.1029/2003JB002616.
Jackon, J., and D. Mckenzie, 1988, The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East, Geophys. J., 93, 45-73.
Jiang, J. S., B. S. Huang, Y. B. Tsai, and T.C. Shin , 2004, Changes in Regional Strain and Stress Patterns Associated with the 1999 Chi-Chi, Taiwan, Earthquake Based on Focal Mechanism Data. AGU Fall Meeting, San Francisco, USA.
Jiang, J. S., B. S. Huang, Y. B. Tsai, and T. C. Shin, 2005, The Patterns and Changes in Crustal Stress before and after the 1999 Chi-Chi, Taiwan, Earthquake. Chapman Conference on Radiated Energy and the Physics of Earthquake Faulting, Portland, Maine, USA.
Jones, R. H., and R. C. Stewart, 1997, A method for determining significant structures in a cloud of earthquakes, J. Geophys. Res., 102, 8245-8254.
Jones, L. M., 1998, Focal mechanisms and the state of stress on the San Andreas Fault in Southern California, J. Geophys. Res., 93, 8869-8891.
Jost, M. L., and R. B. Herrmann, 1989, A student's guide to and review of moment tensors, Seismol. Res. Lett., 60, 37-57.
Kao, H., and P. R. Jian, 1999, Source paramaters of regional earthquakes in Taiwan: July 1995 - December 1996, TAO, 10, 585-604.
Kao, H., and W.-P. Chen, 2000, The Chi-Chi earthquake sequence: Active out-of sequence thrust faulting in Taiwan, Science, 288, 2346-2349.
Knopoff, L., and M. J. Randall, 1970, The compensated linear vector dipole: A possible mechanism for deep earthquakes, J. Geophys. Res., 75, 4957-4963.
Kostrov, B. V., 1974, Seismic moment and energy of earthquakes, and seismic flow of rock. Izv. Acad. Sci. USSR Phys. Solid Earth, Engl. Transl., 1, 23-40.
Lai Y. C., B. S. Huang, H. Y. Yen, K. C. Chen, Y. L. Huang, Y. R. Chen and J.S. Jiang, 2005, Array Observations for Narrow-Band Background Noises in the Hualien Area and their Seismological Implications., TAO, 16, 315-329.
Lettis, W. R., D.L. Wells, and J.N. Baldwin, 1997, Empirical observations regarding reverse earthquakes, blind thrust faults, and Quaternary deformation: Are blind thrust faults truly blind?, Bull. Seism. Soc. Am., 87, 1171-1198.
Liang, B., and M. Wyss, 1991, Estimates of orientations of stress and strain tensors based on fault-plane solutions in the epicentral area of the great Hawaii. earthquake of 1868, Bull. Seismol. Soc. Am., 81, 2320-2334.
Lin, C. H., Y. H. Yeh, and Y. B. Tsai, 1985, Determination of regional stress directions in Taiwan from fault plane solutions, Bull. Inst. Earth Sci., Academia Sinica, 5, 67-85.
Lin, C. H., 2001, The 1999 Taiwan earthquake: a proposed stress-focusing, heel-shaped model, Bull. Seism. Soc. Am., 91, 1053-1061.
Lin, C. H., and M. Ando, 2004, Seismological evidence of simultaneous mountain-building and crust-thickening from the 1999 Taiwan Chi-Chi earthquake (Mw=7.6), Earth, Planets and Space, 56, 163-167.
Lisle, R. J., 1988, ROMSA: A basic program for paleostress analysis using fault-striation data, Computers & Geosciences, 14, 255-259.
Lisle, R. J., 1992, New method of estimating regional stress orientations : application to focal mechanism of recent British earthquakes, Geophys. J. Int., 110, 276-282.
Ma, K. F., C. T. Lee, Y. B. Tsai, T. C. Shin, and J. Mori, 1999, The Chi-Chi, Taiwan Earthquake: Large Surface Displacements on an Inland Thrust Fault, EOS, 80, 605-611.
Ma, K. F., T. R. Song, S. J. Lee, and S. I. Wu, 2000, Spatial Slip Distribution of the September 20, 1999, Chi-Chi, Taiwan, Earthquake: Inverted from Teleseismic Data, Geophy. Res. Let., 27, 3417-3420.
Ma, K. F., J. Mori, S. J. Lee, and S. B. Yu, 2001, Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seismol. Soc. Am., 91, 1069-1087.
Ma, K. F., and S. I. Wu, 2001, Quick slip distribution determination of moderate to large island earthquakes using near-source strong motion waveforms, Earthquake Engin. And Earthquake Seism., 3, 1-10.
Ma, K. F., C. H. Chan, and R.S. Stein, 2005, Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw = 7.6 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 110, doi:10.1029/2004JB003389.
Maeda, N., 1992, A method of determining focal mechanisms and quantifying the uncertainty of the determined focal mechanisms for microearthquakes, Bull. Seismol. Soc. Am., 82, 2410-2429.
Mckenzie, D. P., 1969, The relation between fault plane solutions for earthquakes and the directions of the principal stresses, Bull. Seismol. Soc. Am., 59, 591-601.
Michael, A. J., 1984, Determination of stress from slip data: Fault and folds, J. Geophys. Res., 89, 11517-11526.
Michael, A. J., 1987, Use of focal mechanisms to determine stress: A control study. J. Geophys. Res., 92, 357-368.
Pezzopane, S. K., and Wesnousky S. G., 1989, Large earthquakes and crustal deformation near Taiwan., J. Geophys. Res., 94, 7250-7264.
P. Reasenberg, 1985, Second-Order Moment of Central California Seismicity, 1969-1982. J. Geophys. Res., 90, 5479-5495.
Rau, R. J., F. T. Wu, and T. C. Shin, 1996, Regional network focal mechanism determination using 3D velocity model and SH/P amplitude ratio, Bull. Seism. Soc. Am. 86, 1270-1283.
Reasenberg, P. A., and Simpson, R. W., 1992, Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake, Science, 255, 1686-1690.
Seno, T., 1977, The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate, Tectonophysics, 42, 209-226.
Seno, T., S. Stein, and A. E. Gripp, 1993, A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data, J. Geophys. Res., 98, 17941-17948.
Shaw, J. H., and P. M. Shearer, 1999, An elusive blind-thrust fault beneath metropolitan Los Angels, Science, 283, 1516-1518.
Stein, R. S., 1999, The role of stress transfer in earthquake occurrence, Nature, 402, 605-609.
Stein, R. S., and M. Wysession, 2003, An Introduction to Seismology, Earthquakes, and Earth Structure, 215-285.
Suppe, J., and J. Jamson, 1979, Fault-bend origin of frontal folds of the western Taiwan fold-and-thrust belt, Petro. Geol. Taiwan, 16, 1-18.
Teng, L., 1990, Geotectonic evolution of late Cenozoic arc-continental collision in Taiwan, Tectonophysics, 183, 57-76.
Townend, J., and M. D. Zoback, 2004, Regional tectonic stress near the San Andreas Fault in central and southern California, Geophys. Res. Lett., 31, L15S11, doi:10.1029/2003GL018918.
Wang, C. Y., C. H. Chang, and H. Y. Yen, 2000, An Interpretation of the 1999 Chi-Chi Earthquake in Taiwan Based on Thin-Skinned Thrust Model. TAO, 11, 609-630.
Wang, J., 1988, b vaule of shallow earthquakes in Taiwan. Bull. Seismol. Soc. Am., 78, 1243-1254.
Wang, J. H., 1992, Magnitude scales and their relations for Taiwan earthquakes: A review, TAO, 3, 449-468.
Wu, C., M. Takeo, and S. Ide, 2001, Source process of the Chi-Chi earthquake: A joint inversion of strong motion data and global positioning system data with multifault model, Bull. Seism. Soc. Am., 91, 1128-1143.
Wu, F.T., and R.J. Rau, 1998, Seismotectonics and identification of potential seismic source zones in Taiwan, TAO, 9, 739-754.
Wyss, M., B. Liang, W. R. Tanigawa, and X. Wu, 1992, Comparison of orientation of stress and strain tensors based on fault plane solutions in Kaoiki, Hawaii, J. Geophys. Res., 97, 4769-4790.
Yeh, Y. H., E. Barrier, C. H. Lin, and J. Angelier, 1991, Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes, Tectonophysics, 200, 267-280.
Yu, S. B., H. Y. Chen, and L. C. Kuo, 1997, Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59.
Zoback, M. D., and G. C. Beroza, 1991, Heterogeneous slip and stress release ine the Loma Prieta earthquake 2: Evidence for near frictionless faulting and complete co-seismic stress drop, (abstract), Eos Trans. AGU, 72, 44, Fall Meeting suppl., 309.
指導教授 辛在勤、黃柏壽、蔡義本
(Tzay-Chyn Shin、Bor-Shouh Huang、Yi-Ben Tsai)
審核日期 2005-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明