博碩士論文 85323052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:3.138.32.53
姓名 簡建偉(Chien-Wei Chien)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電子構裝用金屬基複合材料之研究
(PProcessing and Properties of Metal Matrix Composites for Electronic Peackaging Applications)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本論文利用粉末冶金法,製作一系列之金屬基複合材料,研究其製程、微結構,及性質。論文主要分為三大部分,第一部分為熱壓法(Hot Press) 製作高Sip體積分率之Al/Sip複合材料之研究,第二部分為Si預形體(Si Preform)之製作及擠壓浸透法(Squeeze Infiltration)製作高Sip體積分率Al/Sip複合材料之研究,第三部分則為無壓浸透法( Pressureless Infiltration)製作W-15wt.%Cu 複合材料之研究。
第一部分研究以400及550MPa 之熱壓壓力製作矽體積分率75%~85% 之鋁基複合材料。探討燒結溫度、矽顆粒尺寸,及體積分率對於複合材料性質之影響。實驗結果顯示,以液相燒結法(620℃)製作試片,可達到較高之緻密度、熱傳導性及較佳之抗彎強度。隨著矽顆粒體積分率之增高,複合材料之熱膨脹係數、熱傳導率,及抗彎強度會隨之降低。而在相同之Si體積分率下,較細小之Si顆粒可降低熱膨脹係數並有效提升複合材料之抗彎強度。
第二部分之研究係以擠壓浸透法製作高Sip體積分率之Al/Sip複合材料;除了探討冷壓壓力對Sip預型體體積分率之影響外,並以物理量測與機械測試等方法,評估Si顆粒尺寸與體積分率對於高Sip體積分率Al/Sip複合材料性質之影響。以40~130MPa之冷壓壓力搭配不同之Si顆粒尺寸,經1000℃,7個小時之燒結,可製作體積分率約60-70%之Sip預型體。而以500℃之模具預熱溫度,搭配750℃之Al合金溶湯以及75MPa之擠壓浸透壓力,可製作緻密度極高之Al/Sip複合材料。經測試,複合材料之各項性質皆隨著Sip體積分率增高而降低;而當Sip體積分率相近時,複合材料之緻密度、熱膨脹係數,以及熱傳導率等性質皆隨著Si顆粒增大而升高,至於抗彎強度,則呈現相反之趨勢。實驗結果顯示,高Sip體積分率之Al/Sip複合材料,兼具低密度、低熱膨脹係數、高熱傳導率,以及適當之抗彎強度,頗具應用於電子構裝領域之潛力。
第三部分則以無壓浸透法(Pressureless Infiltration),將三種不同粒徑(1μm, 3μm, 21μm)之鎢粉末,在400-550MPa下成型後,於不同燒結溫度下,製作鎢骨架以及W-15wt%Cu複合材料。藉由顯微結構、物理性質、機械性質及抗電弧沖蝕能力的探討,評估鎢顆粒大小對W-15wt%Cu複合材料性質之影響。實驗結果得知,W/Cu複合材料之熱膨脹係數與熱傳導率皆隨著鎢粉顆粒增大而逐漸升高,而電阻係數及鎢骨架之抗彎強度,則隨著鎢顆粒尺寸增大而降低。經定距單弧沖蝕試驗,細鎢顆粒之W/Cu複合材料,其鎢骨架仍完整,而粗鎢顆粒之W/Cu複合材料的鎢顆粒有被沖蝕剝離現象,且經沖蝕後,粗鎢顆粒之W/Cu複合材料的表面粗度遠大於細鎢顆粒之W/Cu複合材料。
關鍵字(中) ★ 金屬基複合材料
★ 電子構裝
關鍵字(英) ★ Metal Matrix Composites
★ Electronic Package
論文目次 總目錄
摘要 .......................... II
總目錄............................. IV
圖目錄.........................XI
表目錄.........................XVI
第一章 研究背景與文獻回顧............... 1
1.1 金屬基複合材料簡介 ............... 1
1.1.1液相製程....................1
1.1.1.1 攪拌鑄造法.................. 3
1.1.1.2 壓力浸透法..................3
1.1.1.3 擠壓浸透法.................. 3
1.1.1.4 真空吸引浸透法................ 5
1.1.1.5 無壓浸透法................. 5
1.1.1.6 超音波浸透法................. 5
1.1.1.7 離心鑄造法.................. 7
1.1.1.8 螺旋擠壓鑄造法................ 7
1.1.2固相製程 ...................9
1.1.2.1 粉末冶金法 .................9
1.1.2.2擴散鍵結法................. 9
1.1.3雙相製程 ...................9
1.1.3.1 複合鑄造法 .................9
1.1.3.2 快速凝固法 .................10
1.1.3.3 噴塗沈積法 .................10
1.2電子構裝簡介.................... 11
1.2.1電子構裝層次 .................. 11
1.2.2電子構裝技術 .................. 15
1.2.2.1 電子構裝材料需求特性............... 17
1.2.2.2電子構裝散熱要求.............. 17
1.2.3 電子構裝種類.................. 18
1.2.3.1 晶片接合.................. 18
1.2.3.2 電子構裝聯線................ 21
1.2.3.3 BGA構裝.................. 26
1.2.3.4 CSP構裝.................. 27
1.2.3.5 塑膠構裝.................. 29
1.2.3.6 陶瓷構裝.................. 29
1.2.3.7 多晶片模組構裝............... 30
1.2.3.8 印刷電路板構裝............... 33
1.2.4電子構裝材料之研究............. 33
1.2.5電子構裝用金屬基複合材料性質預估........ 34
1.2.5.1 體積分率 ................. 34
1.2.5.2 理論密度 ................. 35
1.2.5.3 熱膨脹係數 ................ 35
1.2.5.4熱傳導率 ..................36
1.3 電接觸材料簡介................ 38
1.3.1電接觸材料之性質要求................. 38
1.3.2電接點之破壞模式................... 40
1.3.3W/Cu複合材料於電接觸材料領域之應用......... 41
1.3.4電弧沖蝕模式.................... 43
1.4 研究目的........................ 46
第二章 熱壓(Hot Press)製作高Si體積分率Al/Sip複合材料之研
究............................. 48
2.1前言........................ 48
2.2 實驗方法步驟...................49
2.2.1 調配組成及混粉............... 49
2.2.2 熱壓燒結.................. 54
2.2.3 物理性質量測................ 57
2.2.3.1密度量測..................... 57
2.2.3.2熱膨脹係數(CTE)量測............... 58
2.2.3.3熱傳導係數(TC)量測................ 58
2.2.4 機械性質試驗.................. 58
2.2.5 微結構分析................... 60
2.3 結果與討論 ................... 60
2.3.1微結構分析 .....................60
2.3.2 Al/Sip複合材料之物理性質............... 61
2.3.2.1 熱膨脹係數 ...................61
2.3.2.2 熱傳導率.................... 61
2.3.3 Al/Sip複合材料之機械性質................ 62
2.3.4 Al/Sip複合材料應用於電子構裝領域可行性之評估..... 62
2.4 結論.......................... 67
第三章 擠壓浸透法(Squeeze Infiltration)製作高Si體積分率Al/Sip複合材
料之研究.......................... 68
3.1前言 ..........................68
3.2 實驗方法與步驟.....................69
3.3 結果與討論.......................70
3.3.1 微結構分析 ..................... 70
3.3.2 Al/Sip複合材料之物理性質............... 71
3.3.2.1 熱膨脹係數....................71
3.3.2.2 熱傳導率 .................... 72
3.3.3Al/Sip複合材料之機械性質............... 72
3.3.4Al/Sip複合材料應用於電子構裝領域可行性之評估 .....73
3.4 結論.......................... 79
第四章 無壓浸透法製作W/Cu 複合材料之研究........... 80
4.1前言.........................80
4.2實驗方法與步驟....................81
4.2.1 W骨架燒結...................... 81
4.2.1.1 粉末準備 .................... 81
4.2.1.2 混粉. ..................... 81
4.2.1.3 預壓.................... .. 86
4.2.1.4 預燒...................... 86
4.2.1.5 燒結...................... 87
4.2.2 無壓浸透....................... 91
4.2.3 物理性質量測.....................91
4.2.3.1 密度量測.................... 91
4.2.3.2 熱膨脹係數量測................. 93
4.2.3.3 電阻率之量測與熱傳導率之轉換.......... 93
4.2.4機械性質量測................... 93
4.2.4.1 彎曲試驗.................... 93
4.2.4.2 硬度量測.................. ..94
4.2.5耐電弧沖蝕能力試驗............. 94
4.2.6微結構分析.................. 96
4.3 結果與討論...................... 96
4.3.1 微結構分析..................... 96
4.3.2 W/Cu複合材料之物理性質............. . 98
4.3.2.1 緻密度..................... 98
4.3.2.2 熱膨脹係數................. . 98
4.3.2.3 電阻率................... . 102
4.3.2.4 熱傳導率................... . 102
4.3.3 W/Cu複合材料之機械性質............... 102
4.3.3.1 W骨架之彎曲試驗分析.............. 102
4.3.3.2 W/Cu複合材料破斷面之微結構及硬度分析...... 105
4.3.4 W/Cu複合材料之抗電弧沖蝕能力........... 108
4.4 結論..........................116
第伍章 總結論......................117
第陸章 未來研究方向...................118
第七章 參考文獻 .......................119
參考文獻 1.陳炎成, “金屬基複合材料簡介”, 工研院工材所, 金屬基複合材料講習會, 1-10.
2.I. A. Ibrahim, F. A. Mohamed, and E. J. Lavernia, “Particulate Reinforced Metal Matrix Composites-A Review”, J. Materials Science, Vol. 26, 1991, p.1137.
3.G. Ramani, R. M. Pillai, B. C. Pai and K. G. Satyanarayana, “Effect of Mixing Conditions and Reactive Elements on the Porosity and Dispersion of SiC Particulate in Cast Al-SiCp Composites”, J. Materials Science Letters, Vol.12, 1993, p.1117.
4.G. S. Hanumanth and G. A. Irons, “Particle incorporation by Melt Stirring for the Production of Metal-Matrix Composites” J. Materials Science, Vol.28, 1993, p.2459.
5.A. J. Cook and P. S. Weerner, “Pressure Infiltration Casting of Metal Matrix Composites” Materials Science and Engineering, A144, 1991, p.189.
6.S. Ray, ‘Review-Synthesis of Cast Metal Matrix Particulate Composites”, J. Materials Science, Vol.28, 1993, p.5397.
7.Y. Kun, V. Dollhopf, and R. Kochendorfer, “CVD SiC/Al Composites Produced by a Vacuum Suction Infiltration Casting Process”, Composites Science Technology, Vol.46, 1993, p.1.
8.M. K. Aghajanian, M. A. Rocazella, J. T. Burke, and S. D. Keck, “The Fabrication of Metal Matrix Composites by a Pressureless Infiltration Technique”, J. Materials Science, Vol.26, 1991, p.447.
9.H. Nakanishi, Y. Tsunekawa, M. Okumiyya, and N. Mohri, “Ultrasonic Infiltration in Alumina Fiber/Molten Aluminum System”, Materials Transactions JIM, Vol.34, No.1, 1993, p.62.
10.P. K. Rohatgi, R. Asthana, and S. Das, “Solidification, Structure, and Properties of Cast Metal-Ceramic Particle Composites”, International Metals Review, Vol.31, No.3, 1986, p.115.
11.Y. M. Pan, M. E. Fine, and H. S. Cheng, “Aging Effects on Wear Behavior of P/M Aluminum Alloy SiC Particle Composites”, Scripta Metallurgica, Vol.24, 1990, p.1341.
12.Z. Y. Ma, J. Bi, X. Y. Lu, M. Lou, and Y. X. Gao, “Quench Strengthening Mechanism of Al-SiC Composites”, Scripta Metallurgica, Vol.29, 1993, p.225.
13.D. J. Loyd, “Fabrication of Fibre Composites Using an Aluminum Superplastic Alloy as Matrix”, J. Materials Science, Vol.19, 1984, 2488.
14.F. A. Girot, L. Albingre, J. M. Ouenisset, and R. Naslain, “Rheocasting Al Matrix Composites”, J. Metals, Nov. 1987, p.18.
15.M. Gupta, F. A. Mohamed, and E. J. Lavernia, “Heat Transfer Mechanisms and Their Effects on Microstructure During Spray Atomization and Codeposition of Metal Matrix Composites”, Materials Science and Engineering, A144, 1991, p.99.
16.J H. Lau, Chip on Board Technologies for Multichip Modules, An International Thomson Publishing Company, New York, 1994.
17.M. Pecht, Handbook of Electronic Package Design, Marcel Dekker, Inc., New York, 1991.
18.R.R.Tummala, “Ceramic and Glass-Ceramic Packaging in 1990s”, J. Am. Ceramic Soc., Vol.74, No.5, 1991, pp.895-908.
19.M. L. Minges, Electronic Materials Handbook, Vol.1, ASM International, Materials Park, OH, 1989.
20.C. A. Harper, Electronic Packaging and Interconnection Handbook, McGraw-Hill, New York, 1991.
21.E. Suhir and Y. C. Lee, “Thermal; Mechanical; and Environmental Durability Design Methodologies”, International Electronic Materials Handbook, Vol.1, 1988, pp.45-69.
22.R. Darveaux, K. L. Murty, and I. Turlik, “Predictive Thermal and Mechanical Modeling of a development MCM”, ibid, pp.36-41.
23.K. Schmidta and C. Zweben, “Packaging”, International Electronic Materials Handbook, Vol.1, 1988, pp.1117-1125.
24.M. K. Premkumar and R. R. Sawtell, “Alumnium-Silicon Carbide—A Materials Solution for Thermally Demanding Packaging”, Advanced Packaging, Sep./Oct, 1996, pp.22-25.
25.李宗銘,”半導體封裝材料發展趨勢”,工業材料139期,87年7月,pp.108-116
26.C. Thaw, R. Minet, J. Zemany, and C.Zweben, “Metal Matrix Composite Microwave Packaging”, SAMPLE Journal, Nov./Dec. 1987, pp.40-43.
27.P. Yih and D. D. L. Chung, “Copper-Matrix Molybdenum Particle Composites Made from Copper Coated Molybdenum Powder”, Journal of Electronic Materials, Vol.24, No.7, 1995, pp.841-851.
28.K. A. Schnibt, B. T. Rodini, and C. Zweber, “Composite Packaging Materials”, International Electronic Materials Handbook, Vol.1, 1988, pp.1122-1125.
29.D. A. Foster, ”Electronic Thermal Management Using Copper Coated Graphite Fibers “, SAMPLE QUALITY, Oct. 1989, pp.58-64.
30.P. Yih and D. D. L. Chung, “Silicon Carbide Whisker Copper-Matrix Composites Fabricated by Hot Pressing Copper Coated Whiskers”, Journal of Materials Science, Vol.31, 1996, pp.399-406.
31.P. Yih and D. D. L. Chung, “Powder Metallurgy Fabrication of Metal Matrix Composites Using Coating Fillers”, The International Journal of Powder Metallurgy, Vol.31, No.4, 1995, pp.335-340.
32.R. M. German, K. F. Hens, and J. L. Johnson, “Powder Metallurgy Processing of Thermal Management Materials for Microelectronic Applications”, The International Journal of Power Metallurgy, Vol.30, No.2, 1994, pp.205-215.
33.A.L.Geiger and M.Jackson, “Low-Expansion MMCs Boost Avionics”, Advanced Materials & Processes, Vol.7, 1989, pp.23-30.
34.S. Jin, “Developing Lead-Free Solders: A Challenge and Opportunity”, JOM, July 1993, p.13.
35.E. H. Kerner, “The Elastic and Thermoelastic Properties of Composite Media”, Process Phys. Soc., Vol.68B, 1956, p.808.
36.L. Rayleigh, “On The Influence of Obstacles Arranged in Rectangular Order Upon The Properties of a Medium”, Phil.Mag., Vol.34, 1892, p.481.
37.Metals Handbook, Desk ed., Boyer Gall, 1985, pp.20, 16-20, 21.
38.Metals Handbook, “Electric Contact Materials” 10th ed., ASM 1990, Vol.2, pp. 840-868.
39.A. V. Nadkarni and J. E. Synk, “Dispersion-Strengthened Materials,” Metals Handbook, 9th ed., Vol. 7, ASM 1984, pp. 710-727.
40.D. E. Tyler and W. T. Black, “Introduction to Copper and Copper Alloys,” Metals Handbook, 10th ed., Vol. 2, ASM 1990, pp. 216-240.
41.N. C. Kothari,“Factors Affecting Tungsten-Copper and Tungsten-Silver Electrical Contact Materials” , Powder Metallurgy International, 1982, vol.14, no.3, pp.139-143.
42.R. Holmes, “Electric Contacts Handbook,” Springer-Verlag, 3rd ed., Berlin 1958.
43.Z. K. Chen, and K. Sawg, “Characteristics of Ag contact morphology in breaking arcs,” Wear, 1996, vol. 199, pp. 237-244.
44.M. Sun, Q. Wang and M. Lindmayer, “The Model of Interaction Between Arc and AgMeO Contact Materials,” IEEE Transactions on Components Packaging and Manufacturing Technology, Pt. A, 1994, vol.17, no.3, pp.490-494.
45.S. N. Kharin, “Post Bridge Phenomena in Electrical Contacts at the Initial Stage,” IEEE Transactions on Components Packaging and Manufacturing Technology, Pt. A, 1996, vol. 19, no. 3, pp. 313-319.
46.T. Bregel, W. Krauss-Vogt, R. Michal, K. E. Saeger,“On the Application of W/Cu Materials in the Fields of Powder Engineering and Plasma Technology” , IEEE Transactions on Components Hybrids Manufacturing and Technology, 1991, vol.14, no.1, pp.569-573.
47.T. B. Massalski, “Binary Alloy Phase Diagrams” , 2nd ed. 1990, Materials Park, OH, ASM International, p.1503.
48.林正雄,“電接觸材料”粉末冶金手冊,中華民國粉末冶金協會出版,中華民國83年7月,pp.410-419.
49.K. V. Sebastian, “Properties of Sintered and Infiltrated Tungsten-Copper Electrical Contact Material” , International Journal of Powder Metallurgy Powder Technology., 1981, vol.17, no.4, pp.297-303.
50.B. L. Mordike, J. Kaczmar, M. Kielbinski and K. U. Kainer, “Effect of Tungsten Content on the Properties and Structure of Cold Extruded Cu-W Composite Materials” ,Powder Metallurgy International., 1991, vol.23, no.2, pp.91-95.
51.R. M. German, K. F. Hens, and J. L. Johnson, “Powder Metallurgy Processing of Thermal Management Materials for Microelectronic Applications” , The International Journal Powder Metallurgy, 1994, vol.30, no.2, pp.205-215.
52.J. Kaczmar , “Effect of Production Engineering Parameters on Structure and Properties of Cu-W Composite Powders” , Powder Metallurgy, 1989, vol.32, no.3, pp.171-175.
53.Z. K. Chen and K. Sawa, “Effect of Oxide Film and Arc Duration Characteristics on Ag ContactResistance Behavior,” IEEE Transactions on Components Packaging and Manufacturing Technology, Pt.A, 1995, vol.18, no.2, pp.409-416
54.B. J. Wang and N. Saka, “Thermal Analysis of Electrode Heating and Melting due to a Spark,” IEEE Transactions on Components Packaging and Manufacturing Technology, Pt.A, 1993, vol. 16, no. 4, pp. 456-466.
55.B. J. Wang, N. Saka and E. Rabinowicz, “Static-gap, single-spark of Ag-CdO and pure metal electrodes,” Wear, 1992, vol. 157, pp. 31-49.
56.B. J. Wang and N. Saka, “Spark erosion behavior of silver-based particulate composites,” Wear, 1996, vol. 195, pp. 133-147.
57.C. H. Leung, A. Lee and B. J. Wang, “Thermal Modeling of Electrical Contacts in Switches and Relays,” IEEE Transactions on Components Packaging and Manufacturing Technology, Pt.A, 1996, vol. 19, no. 3, pp. 346-352.
58.松山芳治、三谷裕康、鈴木壽著,賴耿陽譯著,粉末冶金學概論,中華民國79年10月,第10章,p.181.
59.Robert Marrs,Amkor Electronics Inc.,Cbandler,Ariz, “Trends In IC Packaging” ,Electronic Packaging &Production, August 1996, pp.24-30.
60.R. R. Tummala, J. Am. Ceramic Soc.30 (1991) 895.
61.R. K. Everett and R. J. Arsenault, Academic Press, (1991) 79.
62.M. Schwartz, Composite Materials Handbook, 2nd ed., New York, Mcgraw-Hill, (1992) 28.
63.I. A. Ibarim, F. A. Mohamed, E. J. Lavernia, “Particulate Reinforced Metal Matrix Composites – A Review,” Journal of Materials Science, vol. 26, 1991, pp. 1137-1156.
64.M. K. Prekumar, W. H. Hunt, and R. R. Sawtell, “Aluminum Composite Materials for Multichip Modules,” JOM, 1992, pp. 24-28.
65.Y. W. Kim, W. H. Goriffith, and F. H. Froes, “Surface Oxides in P/M Aluminum Alloys,” Journal of Metals, 1985, pp. 27-33.
66.J. F. Modolfo, “Aluminum Alloys : Structure and Properties,” Butter Worth & Co., London & Bostone, 1976, pp. 15.
67.汪建民主編,“粉末冶金技術手冊”,中華民國粉末冶金協會出版,1994,pp. 416-417.
68.ASTM Designation : C1161-90, pp. 329-335.
69.P. Yih, D. D. Chung, “Silicon Carbide Whisker Copper-Matrix Composites Fabricaated by Hot Pressing Coating Coated Whiskers,” International Journal of Power Metallurgy, vol.31, no. 4, 1996, pp. 399-406.
70.S. Elomari, M. D. Skibo, A. Sundarrajan, and H. Richard, “Thermal Expansion Behavior of Particulate Metal Matrix Composites,” Composites Science and Technology, vol.58, 1998, pp. 369-376.
71.I. D. Rigney, “Effect of Reinforcement Size and Distribution on Fracture Toughness of Composite Nickel Aluminide Intermetallics,” Materials Science and Engineering, vol. A158, 1992, pp. 31-45.
72.Y. L. Shen, Aneedleman, and S. Suresh, “Coefficient of Thermal Expansion of Metal-Matrix Composites for Electronic Packaging,” Metallurgical and Materials Transactions A, April 1994, vol. 25A, pp. 839-850.
73.段維新, “燒結理論” 粉末冶金手冊,中華民國粉末冶金協會出版,中華民國83年7月,pp.199-215.
74.P. Howard, M. J. Koczak, “How Porosity and Atmosphere Effect the Thermal Conductivity of P/M Parts,” International Journal of Powder Metallurgy, vol.17, 1981, pp. 25-35.
75.W. S. Wang and K. S. Hwang, “The Effect of Tungsten Particle Sizeon the Processing and Properties of Infiltrated W-Cu Compacts,” Metallurgical and Materials Transactions A, 1998, vol. 29A, pp. 1509-1516.
76.C. Zweben, “Metal-Matrix Compositesfor Electronic Packaging,” JOM, 1992, pp.15-23.
77.L. H.Van Vlack, Elements of Material Science and Engineering, 6th ed., p.399 (Addition-Wesley Company, California, U.S.A., 1989).
78.J. L. Johnson and R. M. German, “Phase Equilibria Effects on the Enhanced Liquid Phase Sintering of Tungsten-copper”, Metallurgical Transactions A, December 1993, vol. 24A, pp.2369-2377.
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2003-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明