博碩士論文 86323011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:238 、訪客IP:18.225.149.138
姓名 鍾國榮(Kwo-Zong Chong)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鎂合金燃燒、鑽削加工與表面處理之研究
(Study on the Combustion Characteristics, Optimizing Drilling Condictions and Conversion Coating Treatment of Magnesium and its alloys)
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 純鈦陽極處理技術之研發
★ 鋁鎂合金陽極處理技術之研發★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響
★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響★ 製程參數對A356鋁合金品質的影響及可靠度的評估
★ 噴砂與前處理對鋁合金陽極皮膜品質的影響★ 鎂合金回收重溶之品質與疲勞性質分析
★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響
★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響★ 不同輥軋及退火製程對AA5052-H32鋁陽極皮膜生長的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘 要
本研究針對鎂合金材料於生產過程中所可能面臨之關鍵技術來加以研究及探討。研究主要可分為三部分,包括:第一部分為鎂合金材料於不同氣氛下之燃燒行為的探討,藉以瞭解鎂材料之燃燒行為與其防制之道;第二部分為鎂合金材料之鑽削加工參數的最佳化,除避免因加工而導致燃燒災害外,亦可確保加工品質及避免機械加工後所導致的機械性質之下降;第三部分為鎂合金材料之非鉻系表面化成處理的開發與研究,開發環保型之非鉻系表面防蝕化成處理法,使表面化成處理法除可以達到防蝕效果外,亦可兼顧環保及處理後工件之機械性質。以下針對各主題再加以說明:
第一部份:實驗中以瓦斯火炬加熱鎂合金AZ61A之塊狀材料,並加以觀察及記錄其燃燒反應過程。鎂合金塊於加熱初期生成Mg(OH)2於試塊表面,因此可以保護試塊並避免其氧化。隨著溫度上升及試塊的熔化,Mg(OH)2 -> MgO + H2O及2Mg + CO2 -> 2MgO + C 等反應產生。隨著鎂熔液的溢出,反應產物 MgO 逐漸生成,並伴隨釋出大量的熱量。當溫度足夠高時,逆反應 MgO + C -> Mg + CO 產生,消耗了MgO、碳層及部分先前所釋出之熱焓。而所產生的Mg則繼續與外界氣氛反應生成MgO,而形成連續且循環之氧化燃燒反應。最後之燃燒產物為燃燒殆盡之鎂試塊所轉化成的氧化鎂及些許為反應完之碳。
在固定容積的氣氛下時,利用實驗與對照組所獲得之溫度差可以得知鎂合金燃燒放熱所釋出之熱焓量。實驗中所使用的氣氛種類包括:氬氣(Ar)、空氣及不同比例之二氧化碳/氬氣(CO2/Ar)混和氣氛。根據實驗的結果可推論出每材料於不同氣氛下的燃燒機制與放熱特性。而可能進行之相關化學反應亦於研究中加以整理匯集並討論。
第二部份:對鎂合金材料來說,加工參數的選擇及進行加工時必須避免引起鎂切削屑的燃燒與破壞加工後之表面狀態與被加工件的機械性質。本研究中,首先針對鑽削參數,如:鑽頭刃口角角度、加工速度等參數對加工後表面品質及切削抵抗力的影響。由結果可知,表面粗糙度與切削抵抗力隨著偏離最佳值越遠而增加,且隨著材料移除速率的提高而增加。實驗中並探討加工過程的壓應力對被加工材料AZ61A微結構之影響。結果顯示,當鑽頭之刃口角角度由標準的118度降至55度時,被加工件可獲得最佳之表面品質及最小的變形雙晶層(Deformation twinning)產生。此外,若配合使用5%氫氧化鈉水溶液(5% NaOH solution)來當作鑽削加工時的介質時,被加工件的表面粗糙度及微結構型態可再進一步地被改善。
第三部分:本研究主要為開發鎂及鎂合金材料所適用之非鉻系防蝕化成處理,利用過錳酸鹽及磷酸氫鹽溶液來作為鎂合金材料的表面化成溶液。研究中利用SEM來觀察化成後之表面層型態;並且利用XRD及XPS-ESCA來探討非鉻系化成皮膜之組成。XRD的結果顯示,該化成皮膜層為非晶質之結構組成,並且化成處理前、後,鎂材料中的b相(Mg17Al12)之繞射強度有些許改變。而XPS-ESCA的結果顯示,AZ系列之鎂合金材料中之非鉻系化成皮膜存在有MgO、Mg(OH)2、MgAl2O4、Al2O3、Al(OH)3、MnO2或Mn2O3、多氧氫氧化物(oxy-hydroxides)及磷酸物等化合物;而純鎂材料的非鉻系化成皮膜則存在有MgO、 Mg(OH)2、MnO2、多氧氫氧化物(oxy-hydroxides)、磷酸鹽及 等化合物。根據電化學極位測試(Polarization test)之結果顯示,AZ系列之鎂合金材料經過非鉻系過錳酸鹽及磷酸氫鹽溶液之化成處理後可以具有與常用之鉻系(JIS H 8651 MX-1)之化成處理法相當或略高之防蝕能力。
摘要(英) Abstract
This study aimed at investigating some important issues when dealing with the material, magnesium and its alloys, which are the most popular light metal applying to many common purposes. The study could be divided into few main subjects, they are combustion behaviors, machining and improving corrosion resistance of magnesium and its alloys. Regarding to the knowing of combustion behavior of magnesium materials under different atmospheres, it could help preventing the fire hazard and developing the protective atmosphere when melting. The optimizing of machining conditions, not only help preventing fire hazard from ignition of chips but also improving the properties of magnesium work-pieces after machining. Non-chrome conversion treatment is a substitute of dichromic treatment. It is expecting to provide less environmental impacts and maintain good corrosion resistance as well. The individual briefs are as following:
Part I: AZ61A cakes were heated by the gas torch and combusted. The progressive development of heated cake was recorded and described. The product of Mg(OH)2 covers on the surface of heated AZ61A cake and protects it from oxidation. Reactions of Mg(OH)2 → MgO + H2O occurred during heating by flame and after AZ61A melted. Molten metal continuously oozed out and produced MgO accompanied with great amount of heat to react with carbon film (2Mg + CO2→ 2MgO + C). This led to reaction of MgO + C → Mg + CO and the product of Mg carried out oxidation and formed MgO. The residual showed that all AZ61A completely burned out and became a mess of white powder. The specimens of AZ61A were also set on the specimen holder in the designed containers filled with several atmosphere gases (Ar, air, CO2 and different ratios of CO2/Ar). The responded temperatures from specimen holders were recorded and analyzed. Mechanisms for illustrating the reaction of Mg with different gases were schematically illustrated. Possible reactions of Mg with O2, CO2 and CO were also discussed in this study.
Part II: For magnesium alloys, optimizing the machining conditions is necessary to prevent ignition of chips. In this study, effects of point angles of drill bits and drilling parameters on surface roughness and cutting resistance forces were measured and studied. Surface roughness and cutting resistance forces are increased following the increase of point angle and material removal rate. Point angle (2p) descends from 118° to 55° producing the smoothest machined surface and minimum variance in the measured roughness. In addition, effect of drilling operation on varying microstructure of AZ61A was also investigated in this study. The drilled sample showed a minimum extent of deformation twinning layer, when the drill bit adopted a point angle of 55°. The drilled sample developed a superior surface roughness and a short extent of twinning layer generated on the matrix of machined sample, if a 5% NaOH solution was used as lubricant and a 55° point angle was used.
Part III: A chrome-free conversion coating treatment, mainly permanganate phosphate solution, for magnesium and its alloys was developed in this study. The morphology of conversion-coated layer was observed by using SEM; the crystal structures and compositions was analyzed and determined by using XRD and XPS. The XRD results indicate an existence of amorphous structure on the coated specimen and only show a greater intensity of Mg17Al12 than as received sample. The XPS results show that the coated layer includes products of MgO, Mg(OH)2, MgAl2O4, Al2O3, Al(OH)3, MnO2 or Mn2O3 and amorphous oxy-hydroxides for Mg-Al-Zn alloys but MgO, Mg(OH)2, MnO2, amorphous oxy-hydroxides and MgMn2O8 for pure Mg. The electrochemical polarization test results demonstrate that the presented conversion treatment for series of AZ alloys develop an equivalent capability in corrosion potential to JIS H 8651 MX-1 (similar to Dow NO. 1), chrome-based method.
關鍵字(中) ★ 鎂合金
★ 燃燒氧化反應
★ 鑽削加工
★ 變形雙晶
★ 加工介質
★ 非鉻系化成處理法
★ 化成皮膜
★ 腐蝕防制
關鍵字(英) ★ non-chrome conversion treatment
★ lubricant
★ deformation twinning
★ drilling
★ combustion oxidation reaction
★ magnesium alloys
★ conversion coating
★ corrosion resistance
論文目次 目 錄
中文摘要 -------------------------------------------------------------- (I)
英文摘要 -------------------------------------------------------------(III)
目錄 ------------------------------------------------------------------ (V)
圖目錄 ---------------------------------------------------------------- (X)
表目錄 ---------------------------------------------------------------(XVI)
第一章 緒 論
緒 論 -----------------------------------------------------------------1
第二章 研究背景及研究動機
2-1 鎂及鎂合金產業之發展 -----------------------------------------------2
2-1-1 全球輕金屬之發展概論 ---------------------------------------------2
2-1-2 鎂合金製程之現狀與發展 -------------------------------------------5
2-1-3 鎂合金生產之注意事項 ---------------------------------------------8
2-2 鎂及鎂合金材料的介紹 -----------------------------------------------9
2-2-1 鎂金屬 -----------------------------------------------------------9
2-2-2 鎂合金及其添加合金 ----------------------------------------------11
2-2-3 鎂合金之常見添加合金元素的介紹 ----------------------------------12
2-2-3-1 鎂合金之分類與規格 --------------------------------------------12
2-2-3-2 鋁元素的影響 --------------------------------------------------13
2-2-3-3 鋅元素的影響 --------------------------------------------------13
2-2-3-4 錳元素的影響 --------------------------------------------------14
2-2-3-5 鈹元素的影響 --------------------------------------------------15
2-2-3-6 稀土元素(Rare earth)的影響 ------------------------------------15
2-2-3-7 鋯元素的影響 --------------------------------------------------15
2-2-3-8 鐵、鎳元素的影響 ----------------------------------------------15
2-3 今後所需從事之課題 ------------------------------------------------15
第三章 不同氣體氣氛下鎂合金材料燃燒行為之探討
3-1 前 言 -------------------------------------------------------------21
3-2 文獻回顧 ----------------------------------------------------------22
3-2-1 鎂合金材料相關之災害事故的分佈情形 ------------------------------22
3-2-2 鎂合金材料之化學特性 --------------------------------------------23
3-2-3 目前常用的鎂合金材料之保護性氣氛 --------------------------------23
3-2-4 鎂材料於空氣氣氛下的燃燒現象描述 --------------------------------27
3-2-5 鎂材料於空氣氣氛下的燃燒機制 ------------------------------------30
3-2-6 鎂材料於二氧化碳氣氛下的燃燒現象描述 ----------------------------31
3-2-7 鎂材料於二氧化碳氣氛下的燃燒機制 --------------------------------34
3-3 實驗設計與規劃 ----------------------------------------------------35
3-3-1 實驗材料之準備 --------------------------------------------------36
3-3-2 實驗設備之組立 --------------------------------------------------36
3-3-3 實驗步驟之介紹 --------------------------------------------------38
3-4 實驗結果與討論 ----------------------------------------------------38
3-4-1 空氣氣氛下以火炬加熱鎂試塊之燃燒的過程 --------------------------38
3-4-2 鎂合金試片在空氣氣氛下的燃燒溫度測試結果 ------------------------41
3-4-3 鎂合金試片在二氧化碳氣氛下燃燒溫度測試結果 ----------------------42
3-4-4 燃燒反應動力之探討 ----------------------------------------------43
3-4-5 鎂合金燃燒時所釋出熱量之探討 ------------------------------------45
3-4-6 燃燒反應機制之討論 ----------------------------------------------48
3-5 結 論 -------------------------------------------------------------50
第四章 鎂合金AZ61鑽孔工程之研究與分析
4-1 前 言 - 鑽削工法簡述 ----------------------------------------------54
4-2文獻回顧 -----------------------------------------------------------55
4-2-1 鑽削加工參數之影響 --------------------------------------------- 55
4-2-1-1 鑽頭的設計 ---------------------------------------------------- 55
4-2-1-2 加工時所使用參數 -----------------------------------------------59
4-2-1-3切削液的使用 -------------------------------------------------- 61
4-2-2 鎂合金材料的加工特性 --------------------------------------------62
4-2-2-1 鎂及其合金材料的被切削加工特性 ------------------------------ 62
4-2-2-2 鎂合金材料切削加工作業之安全防護 ----------------------------- 63
4-2-2-3 鎂合金加工的困難點及目前研究方向 ----------------------------- 64
4-2-3 鎂合金材料的雙晶(twinning)特性 --------------------------------67
4-2-3-1 雙晶結構的產生機制 --------------------------------------------67
4-2-3-2 雙晶結構對鎂合金材料之機械性質的影響 ---------------------------70
4-3 實驗方法與步驟 ----------------------------------------------------71
4-3-1 實驗設計與規劃 --------------------------------------------------71
4-3-2 實驗材料與準備規格 --------------------------------------------- 72
4-3-3 實驗儀器 ------------------------------------------------------- 73
4-3-4 實驗步驟 ------------------------------------------------------- 75
4-4 實驗結果與討論 --------------------------------------------------- 77
4-4-1 鑽頭刃口角角度(Point angle)對鑽穴之面粗度的影響 ----------------77
4-4-2 鑽削速度對鑽穴表面粗糙度與切削抵抗力之影響 -----------------------79
4-4-3 鑽削加工參數對鑽削後鎂合金材料之微結構組織的影響 ----------------83
4-4-4 切削介質的使用對表面粗度及切削抵抗力與雙晶區域的影響 -------------87
4-4-4-1 對表面粗糙度的影響 --------------------------------------------88
4-4-4-2 對切削抵抗力與變形雙晶區帶的影響 ------------------------------89
4-5 結 論 ------------------------------------------------------------92
第五章 非鉻系鎂合金材料之化成表面處理之研究
5-1前 言 --------------------------------------------------------------97
5-1-1 鎂合金材料的簡介 ------------------------------------------------97
5-1-2 鎂合金材料之腐蝕因子簡介 ----------------------------------------97
5-1-3 鎂合金材料之腐蝕機制 -------------------------------------------100
5-1-4 鎂合金材料防蝕手法之簡介 ---------------------------------------102
5-1-5 目前各方致力中的防蝕方法 ---------------------------------------104
5-2 文獻回顧 ---------------------------------------------------------104
5-2-1 鎂合金防蝕處理法概述 -------------------------------------------104
5-2-1-1 陽極處理 -----------------------------------------------------105
5-2-1-2 電鍍處理 -----------------------------------------------------107
5-2-1-3 無電鍍處理 ---------------------------------------------------109
5-2-1-4 表面化成處理 -------------------------------------------------109
5-2-1-4-1 鎂合金材料的化成處理 ----------------------------------------110
5-2-1-4-2 重鉻酸系表面化成處理法 --------------------------------------113
5-2-1-4-3 非鉻系表面化成處理法 ----------------------------------------116
5-3 實驗步驟與準備 ---------------------------------------------------124
5-3-1 鎂合金實驗試片之準備 -------------------------------------------124
5-3-2 化成處理浴的開發 -----------------------------------------------126
5-3-3 分析儀器簡介 ---------------------------------------------------127
5-3-4 表面化成處理 ---------------------------------------------------129
5-3-4-1 鉻酸系表面化成處理 -------------------------------------------129
5-3-4-2 非鉻系表面化成處理 -------------------------------------------130
5-4 實驗結果與討論 ---------------------------------------------------130
5-4-1 非鉻系化成處理浴之開發 -----------------------------------------130
5-4-2 MnHPO4添加量對表面化成處理的影響 -------------------------------131
5-4-3 KMnO4添加量對表面化成處理的影響 --------------------------------135
5-4-4 表面化成皮膜層之XRD分析 ----------------------------------------136
5-4-5 表面化成皮膜之SEM與EDX分析 -------------------------------------139
5-4-6 表面化成皮膜之ESCA分析 -----------------------------------------142
5-4-6-1 前處理過程之ESCA分析 -----------------------------------------142
5-4-6-2 化成處理過程之ESCA分析 ---------------------------------------156
5-4-7 鎂材料經過化成處理後之動態極位曲線之探討 ------------------------159
5-4-8 非鉻系過錳酸鹽-磷酸鹽化成處理法之皮膜機制探討 -------------------161
第六章 結 論
6-1 鎂合金材料於不同環境氣氛下之化學關係 -----------------------------167
6-2 鎂合金材料之鑽削參數的最佳化 -------------------------------------167
6-3 鎂合金材料之非鉻系化成處理的探討 ---------------------------------168
6-4 未來之研究方向 ---------------------------------------------------169
參考文獻總表 ---------------------------------------------------------170
參考文獻 參考文獻
[1] 蔡幸甫,工業材料,166 (10) (2000) 165-168
[2] 蔡幸甫,工業材料,174 (6) (2001) 77-83
[3] 芝池 成人,工業材料-特集 需要拡大するマグネシウム合金,47 (5) (1999) 27-31
[4] 楊智超,工業材料,152 (8) (1999) 72-80
[5] 井口 朝男,工業材料-特集 需要拡大するマグネシウム合金,47 (5) (1999) 37-40
[6] 林景扶,工業材料,152 (8) (1999) 81-94
[7] HYDRO MAGNESIUM, “SAFTY IN MAGNESIUM DIE CASTING”, Brochure, 1996, p.4
[8] 金屬中心, 工業人才培訓計畫講義—鎂合金鑄造製程技術, Mar., 1999, p. 43
[9] J. R. Davis, Metals Handbook: Magnesium and Magnesium Alloys, Desk ed., Materials Park, Oh. : ASM International, 1998, p. 559-574
[10] 小島 陽,工業材料-特集 需要拡大するマグネシウム合金, 47 (5) (1999) 18-22
[11] I. J. Polmear, Mater. Sci. Techno., 10 (1994) 1-16
[12] W. Hume-Rthery, The Structure of Metals and Alloys, 2nd ed., The Institute of Metals, London, 1944
[13] L. A. Carapella, Met. Prog., 48 (1945) 297
[14] A. Beck, Magnesium and Seine Legierungen, Berlin, 1939 (Springer-Verlag, Technology of Magnesium Alloys, London, Hughes, 1940)
[15] J. D. Hanawalt, C. E. Nelson, and J. A. Peloubet, Trans. AIME, 147 (1942) 273
[16] 吳漢宗、楊智超,材料手冊-非鐵金屬材料,中國材料科學學會,1984,Ch.6 鎂及鎂合金
[17] ASM, Metals Handbook, 10th ed., Volumn 9: Metallographic Techniques and Microstructures, Materials Park, Ohio, USA, c1990-1997
[18] 吳醒非,工業材料,174 (6) (2001) 93-96
[19] 小原 久,工業材料-特集 需要拡大するマグネシウム合金,47 (5) (1999) 23-26
[20] 日本マグネシウム協会,マグネシウムの取扱い安全手引き, p. 1-5
[21] 林景扶, 工業材料-輕金屬特刊, 152 (1999) 110-122
[22] 金屬中心, 工業人才培訓計畫講義—鎂合金鑄造製程技術, Mar., 1999, p. 55-63
[23] 曾小勤、王渠東、丁文江, 輕合金加工技術, 27 (9) (1999) 5-9
[24] HYDRO MAGNESIUM, “SAFTY IN MAGNESIUM DIE CASTING”, Brochure, 1996, p. 1-12
[25] 日本マグネシウム協会, マグネシウムマニュアル, 1997, p. 30
[26] T. Takeno and S. Yuasa, Combustion Sci. Techno., 21 (1980) 109-121
[27] S. J. Gregg et al., J. Institute of Metals, 87 (1958) 187-203
[28] W. W. Smeltzer, J. Electrochemical Society, 105 (1958) 67-71
[29] W. M. Jr. Fassell et al., Solid Propellant Rocket Research, Academic Press, 1960, p. 259-269
[30] S. Yuasa and A. Fukuchi, Twenty-Fifth Symposium (International) on Combustion/ The Combustion Institute, (1994) 1587-1594
[31] A. E. Valov et al., Fizika Goreniya i Vzryva, 30 (4) (1994) 29-35
[32] A. Fukuchi et al., Twenty-Sixth Symposium (International) on Combustion/ The Combustion Institute, (1996) 1945-1951
[33] B. Legrand et al., Twenty-seventh Symposium (International) on Combustion/ The Combustion Institute, (1998) 2413-2419
[34] R. A. Robie et al., Thermodynamic Properties of Minerals and Related Substances, Geological Survey, US Government Printing Office, 1979
[35] H. R. Oswald and R. Asper, Bivalent metal hydroxides, in: R.M.A. Lieth (Ed.), Preparation and Crystal Growth of Materials with Layered Structures, Reidel, Dordrecht, Holland, 1977, p.83
[36] Sutton Tools Pty. Ltd., Sutton Tools 1998 Catalogue, Victoria Australia, 1998
[37] R. A. Williams, ASME., J. Eng. Ind., 96 (1974) 1207-1215
[38] M. E. Merchant, J. Appl. Phys., 16 (1945) 267-275
[39] A. K. Pal et al., Int. J. Mach. Tool Des. Res., 4 (1965) 205-211
[40] M. C. Shaw, Metal Cutting Principles, Oxford University Press, London, 1984,
Ch. 12
[41] M. C. Shaw and C. Oxford, Trans. ASME, (1957) 139-148
[42] M. D. Kinsman, Machinery, 102 (1963) 1014-1018
[43] D. F. Galloway, Trans. ASME, 79 (1957) 191-231
[44] H. Hrnst and W. A. Haggarty, Trans. ASME, 80 (1958) 1059-1072
[45] T. SAGA et al., J. Japan Inst. Light Met., 42 (12) (1992) 747-751
[46] S. Wiriyacosol and E. J. A. Armarego, Ann. CIRP, 28 (1) (1979) 87-91
[47] 丸山 弘志 原著, 賴耿陽 譯著, 工具之選擇與使用, 復漢, 台南市, 1997, p.44
[48] KALPAKJIAN, Manufacturing Engineering and Technology 3rd ed., Addison-Wesley, USA, 1995, Ch. 20
[49] 機械加工マニュアル委員会 編, 機械加工マニュアル, 誠文堂新先社, p.34-35
[50] C. Cassin and G. Boothroyd, J. Mech. Eng. Sci., 7 (1) (1965) 67-81
[51] M. C. Shaw et al., Trans. ASME, 73 (1951) 45-56
[52] M. E. Merchant, Am. Chem. Soc. Div. Petrol Chem., 3 (4A) (1958) 179-189
[53] American Society for Metals, ASM Metals handbook: Volume 2, Metals Park, Ohio, 1990, p.455-479
[54] 日本マグネシウム協会, マグネシウムの取扱い安全手引き, 1994, p. 24-33
[55] HYDRO MAGNESIUM, “SAFTY IN MAGNESIUM DIE CASTING”, Brochure, 1996, p.1-12
[56] 用途拡大が期待されるマグネシウム加工をもっと理解しよう, 機械技術, 45 (4) (1997) 1-3
[57] 小川 誠, 機械技術-特集 マグネシウム加工徹底マニュアル, 45 (6) (1997) 32-36
[58] Robert E. Read-Hill, Physical Metallurgy Principles 3rd ed., PWS Publishing CO., Boston, 1994, p. 541-548
[59] T. S. Shih et al., Mater. Sci. Eng. A-Struct., 325 (2002) 152-162
[60] Metcut, Machining Data Handbook 3rd edition, MDC, Metcut Research Associates, Cincinnati, 1986, p. (15-14)-(15-15)
[61] Metal Cutting Tool Institute, Metal Cutting Tool Handbook 7th edition, Industrial Press, New York, 1989, p. 60
[62] T. Lyman and H. E. Boyer, Metals Handbook 8th edition, ASM, Metals Park, Ohio, 1976, p. 484-486
[63] T. J. Drozda and C. Wick, Tool and Manufacturing Engineering Handbook 4th edition, SME, Dearborn, Michigan, 1983, p. 3-27
[64] 楊金瑞、葉信宏,工業材料-輕金屬特刊,152 (8) (1999) 106-109
[65] G. L. Makar, J. Kruger, Inter. Mater. Rev., 38 (3) (1993) 138-153
[66] J. R. Davis, Metals Handbook: Magnesium and Magnesium Alloys, Desk ed., Materials Park, Oh. : ASM International, 1998, p. 559-574
[67] 金屬中心, 工業人才培訓計畫講義—鎂合金鑄造製程技術, Mar., 1999, p. 3
[68] 佐藤 文博 et al., 軽金属, 42 (12) (1992) 752-758
[69] Uhlig, Herbert Henry, Corrosion & Corrosion Control, Wiley, NY, 1985, Ch.20
[70] C. H. Brun et al., Memoires Scientifiques de la Revue de Metallurgie, 73 (10) (1976) 659-668
[71] W. M. Latimer, The oxidation States of the Elements and Their Potentials in Aqueous Solutions, 2nd ed., Prentice-Hall, NY, 1952, p.235
[72] H. H. Uhlig撰, 松田 誠谷、松島嚴 譯, 腐食反応とその制御:原理と応用, 產業圖書會社, 東京, 1970, p.16-17
[73] Denny A. Jones, Principle and Prevention of CORROSION, 2nd ed., Prentice-Hall, NY, 1996, Ch.2
[74] 高谷 松文, 軽金属, 45 (12) (1995) 713-718
[75] AMAX MAGNESIUM, Corrosion and Protection of Magnesium, Utah
[76] I. Nakatsugawa, Surface Modification Technology for Magnesium Products, Institute of Magnesium Technology, Inc., pp.24-29
[77] 佐藤 文博、淺川 義彦, 軽金属, 44 (2) (1994) 104-109
[78] 千 正男 et al., 軽金属, 39 (4) (1989) 300-303
[79] 金屬中心, 表面處理技術研習班講義, Aug., 1999, p. 14-15
[80] KALPAKJIAN, Manufacturing Engineering and Technology 3rd ed., Addison-Wesley, USA, 1995, Ch. 33
[81] 金屬表面技術協會編, 金屬表面技術便覽, 日刊工業新聞社, 東京, 1963, Ch. 11-12
[82] JIS, JIS ハンドブック-金属表面処理, 日本規格協會, 東京, 1983, p.514-515
[83] 秋本 政弘, 工業材料-特集 需要拡大するマグネシウム合金, 47 (5) (1999) 45-49
[84] K. Funatani, Surface & Coating Techno., 133-134 (2000) 264-272
[85] S. Budavari, The Merck index: An Encyclopedia of Chemical, Drugs and Biologicals, 12th ed., Merck research Laboratories, NJ, 1996, p. 1475
[86] S. Ono et al., Mater. Trans., JIM, 42 (7) (2001) 1225-1231
[87] 日本金屬學會編, 金屬便覽, 丸善社, 東京都, 1971, Ch. 11
[88] H. Umehara et al., Mater. Trans., JIM, 42 (8) (2001) 1691-1699
[89] D. Hawke et al., Met. Finishing, Oct. (1995) 34-38
[90] S. Ono et al., Corros. Rev., 16 (1998) 175-190
[91] Lange’s Handbook of Chemistry, 12th edition, McGraw Hill, NY, 1979, p. 5-13; 6-4:19
[92] G. Song et al., Corros. Sci., 41 (1999) 249-273
[93] R. Ambat et al., Corros. Sci., 42 (2000) 1433-1455
指導教授 施登士(Teng-Shih Shih) 審核日期 2002-10-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明