參考文獻 |
[1] L.-X. Wang and J. M. Mendal, “Generating fuzzy rules by learning from examples,” IEEE Trans. Syst., Man, and Cybern., vol. 22, no. 6, pp. 1414–1427, 1992.
[2] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualitative modeling,” IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 7–31, 1993.
[3] T. Sudkamp and R. J. Hammell, “Interpolation, completion and learning fuzzy rules,” IEEE Trans. Syst., Man., Cybern., vol. 24, no. 2, pp. 332–342, 1994.
[4] E. Kim, M. Park, S. Ji, and M. Park, “A new approach to fuzzy modeling,” IEEE Trans. Fuzzy Syst., vol. 5, no. 3, pp. 328–337, 1997.
[5] T.-P. Wu and S.-M. Chen, “A new method for constructing membership functions and fuzzy rules from training examples,” IEEE Trans. Syst., Man, and Cybern. B, vol. 29, no. 1, pp. 25–40, 1999.
[6] C.-C. Wong and C.-C. Chen, “A hybrid clustering and gradient descent approach for fuzzy modeling,” IEEE Trans. Syst., Man, and Cybern. B, vol. 29, no. 6, pp. 686–693, 1999.
[7] C.-C. Wong and C.-C. Chen, “A GA-based method for constructing fuzzy systems directly from numerical data,” IEEE Trans. Syst., Man, Cybern. B, vol. 30, no. 6, pp. 904–911, 2000.
[8] M. Setnes and H. Roubos, “GA-fuzzy modeling and classification: complexity and performance,” IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 509–522, 2000.
[9] M. Russo, “FuGeNeSys—A fuzzy genetic neural system for fuzzy modeling,” IEEE Trans. Fuzzy Syst., vol. 6, no. 3, pp. 373–388, 1998.
[10] H. Roubos and M. Setnes, “Compact and transparent fuzzy models and classifiers through iterative complexity reduction,” IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 516–524, 2001.
[11] Y.-W. Teng and W.-J. Wang, “GA-based fuzzy modeling with an exponential-partitioned structure,” Int. J. Fuzzy Syst., vol. 4, no. 4, pp. 905–910, 2002.
[12] Y.-W. Teng, W.-J. Wang, and C.-H. Chiu, “Function approximation via particular input space partition and region-based exponential membership functions,” Fuzzy Sets Syst., vol. 142, no. 2, pp. 267–291, 2004.
[13] S. Horikawa, T. Furuhashi, and Y. Uchikawa, “On fuzzy modeling using fuzzy neural networks with back-propagation algorithm,” IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 801–806, 1992.
[14] C. M. Higgins and R. M. Goodman, “Fuzzy rule-based networks for control,” IEEE Trans. Fuzzy Syst., vol. 2, no. 1, pp. 82–88, 1994.
[15] S. Abe and M. S. Lan, “Fuzzy rules extraction directly from numerical data for function approximation,” IEEE Trans. Syst., Man, and Cybern., vol. 25, no. 1, pp. 119–129, 1995.
[16] J. S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference systems,” IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685, 1993.
[17] J. J. Buckley, “Sugeno type controllers are universal controllers,” Fuzzy Sets Syst., vol. 53, pp. 209–304, 1993.
[18] B. Kosko, “Fuzzy systems as universal approximators,” IEEE Trans. Comput., vol. 28, no. 1, pp. 1329–1333, 1994.
[19] J. L. Castro and M. Delgado, “Fuzzy systems with defuzzification are universal approximators,” IEEE Trans. Syst., Man, Cybern., vol. 26, no. 1, pp. 149–152, 1996.
[20] I. Rojas, H. Pomares, J. Ortega, and A. Prieto, “Self-organized fuzzy system generation from training examples,” IEEE Trans. Fuzzy Syst., vol. 8, no. 1, pp. 23–36, 2000.
[21] H. Pomares, I. Rojas, J. Gonzalez, and A. Prieto, “Structure identification in complete rule-based fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 10, no. 3, pp. 349–359, 2002.
[22] C. C. Lee, “Fuzzy logic in control systems: Parts I, II,” IEEE Trans. Syst., Man, Cybern., vol. 20, no. 2, pp. 404–435, 1990.
[23] J. Espinosa and J. Vandewalle, “Constructing fuzzy models with linguistic integrity from numerical data-AFRELI algorithm,” IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 591–600, 2000.
[24] O. Cordón, F. Herrera, and P. Villar, “Generating the knowledge base of a fuzzy rule-based system by the genetic learning of the data base,” IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 667–674, 2001.
[25] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-Wesley, 1989.
[26] Z. Michalewics, Genetic Algorithms + Data Structures = Evolution Programs. New York: McGraw-Hill, 1994.
[27] J. S. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing. Englewood Cliffs, NJ: Prentice Hall, 1997.
[28] H. Pomares, I. Rojas, J. Gonzalez, and A. Prieto, “A systematic approach to a self-generating fuzzy rule-table for function approximation,” IEEE Trans. Syst., Man, Cybern. B, vol. 30, no. 3, pp. 431–447, 2000.
[29] J. H. Nie and T. H. Lee, “Rule-based modeling: fast construction and optimal manipulation,” IEEE Trans. Syst., Man, Cybern. A, vol. 26, no. 6, pp. 728–738, 1996.
[30] W. Pedrycz, “Conditional fuzzy clustering in the design of radial basis function neural networks,” IEEE Trans. Neural Networks, vol. 9, no. 4, pp. 601–612, 1998.
[31] T. A. Runkler and J. C. Bezdek, “Alternating cluster estimation: a new tool for clustering and function approximation,” IEEE Trans. Fuzzy Syst., vol. 7, no. 4, pp. 377–393, 1999.
[32] K. Nozaki, H. Ishibuchi, and H. Tanaka, “A simple but powerful heuristic method for generating fuzzy rules from numerical data,” Fuzzy Sets Syst., vol. 86, pp. 251–270, 1997.
[33] M. Setnes, R. Babuška, U. Kaymak, and H. R. van Nauta Lemke, “Similarity measures in fuzzy rule base simplification,” IEEE Trans. Syst., Man, Cybern. B, vol. 28, no. 3, pp. 376–386, 1998.
[34] F. Jimenez, A. F. Gomez-Skarmeta, H. Roubos, and R. Babuska, “A multi-objective evolutionary algorithm for fuzzy modeling,” in Proc. IFSA World Congress and NAFIPS Int. Conf., Vancouver, Canada, July 2001, pp. 1222–1228.
[35] T. Sudkamp, A. Knapp, and J. Knapp, “Model generation by domain refinement and rule reduction,” IEEE Trans. Syst., Man, Cybern. B, vol. 33, no. 1, pp. 45–55, 2003.
[36] H. Ishibuchi, T. Nakashima, and T. Murata, “Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems,” IEEE Trans. Syst., Man, Cybern. B, vol. 29, no. 5, pp. 601–618, 1999.
[37] A. E. Gaweda and J. M. Zurada, “Data-driven linguistic modeling using relational fuzzy rules,” IEEE Trans. Fuzzy Syst., vol. 11, no. 1, pp. 121–134, 2003.
[38] W.-Y. Wang, T.-T. Lee, C.-L. Liu, and C.-H. Wang, “Function approximation using fuzzy neural networks with robust learning algorithm,”, IEEE Trans. Syst., Man, Cybern., B, vol. 27, no. 4, pp. 740–747, 1997.
[39] R. Thawonmas and S. Abe, “Function approximation based on fuzzy rules extracted from partitioned numerical data,” IEEE Trans. Syst., Man, Cybern., B, vol. 29, no. 4, pp. 525–534, 1999.
[40] C.-C. Chuang, S.-F. Su, and S.-S. Chen, “Robust TSK fuzzy modeling for function approximation with outliers,” IEEE Trans. Fuzzy Syst., vol. 9, no. 6, pp. 810–821, 2001.
[41] I. Batyrshin, O. Kaynak, and I. Rudas, “Fuzzy modeling based on generalized conjunction operations,” IEEE Trans. Fuzzy Syst., vol. 10, no. 5, pp. 678–683, 2002.
[42] H.-H. Tsai and P.-T. Yu, “On the optimal design of fuzzy neural networks with robust learning for function approximation,” IEEE Trans. Syst., Man, Cybern., B, vol. 30, no. 1, pp. 217–223, 2000.
[43] W.-Y. Wang and Y.-H. Li, “Evolutionary learning of BMF fuzzy-neural networks using a reduced-form genetic algorithm,” IEEE Trans. Syst., Man, Cybern., B, vol. 33, no. 6, pp. 966–976, 2003.
[44] J. Gonzalez, H. Rojas, J. Ortega, and A. Prieto, “A new clustering technique for function approximation,” IEEE Trans. Neural Networks, vol. 13, no. 1, pp. 132–142, 2002.
[45] M. Landajo, M.J. Rio, and R. Perez, “A note on smooth approximation capabilities of fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 9, no. 2, pp. 229–237, 2001.
[46] S.G. Tzafestas and K.C. Zikidis, “NeuroFAST: on-line neuro-fuzzy ART-based structure and parameter learning TSK model,” IEEE Trans. Syst., Man, Cybern., B, vol. 31, no. 5, pp. 797–802, 2001.
[47] L.-X. Wang and W. Chen, “Approximation accuracy of some neuro-fuzzy approaches,” IEEE Trans. Fuzzy Syst., vol. 8, no. 4, pp. 470–478, 2000.
[48] S. Wu and M.J. Er, “Dynamic fuzzy neural networks-a novel approach to function approximation,” IEEE Trans. Syst., Man, Cybern., B, vol. 30, no. 2, pp. 358–364, 2000.
[49] W.-Y. Wang, C.-Y. Cheng, and Y.-G. Leu, “An Online GA-Based Output-Feedback Direct Adaptive Fuzzy-Neural Controller for Uncertain Nonlinear Systems,” IEEE Trans. Syst., Man, Cybern., B, vol. 34, no. 1, pp. 334–345, 2004.
[50] R. Hassine, F. Karray, A.M. Alimi, and M. Selmi, “Approximation properties of fuzzy systems for smooth functions and their first-order derivative,” IEEE Trans. Syst., Man, Cybern., A, vol. 33, no. 2, pp. 160–168, 2003.
[51] D. Tikk, G. Biro, T.D. Gedeon, L.T. Koczy, and J.D. Yang, “Improvements and critique on Sugeno's and Yasukawa's qualitative modeling,” IEEE Trans. Fuzzy Syst., vol. 10, no. 5, pp. 596–606, 2002.
[52] S. Paul and S. Kumar, “Subsethood-product fuzzy neural inference system (SuPFuNIS),” IEEE Trans. Neural Networks, vol. 13, no. 3, pp. 578–599, 2002.
[53] R. Setiono, W.K. Leow, and J.M. Zurada, “Extraction of rules from artificial neural networks for nonlinear regression,“ IEEE Trans. Neural Networks, vol. 13, no. 3, pp. 564–577, 2002.
[54] S. Wu, M.J. Er, and Y. Gao, “A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks,” IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 578–594, 2001.
[55] H. Ishibuchi and T. Nakashima, “Effect of rule weights in fuzzy rule-based classification systems,” IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 506–515, 2001.
[56] J.-C. Duan and F.-L. Chung, “Cascaded fuzzy neural network model based on syllogistic fuzzy reasoning,” IEEE Trans. Fuzzy Syst., vol. 9, no. 2, pp. 293–306, 2001.
[57] M. Delgado, A.F. Gomez-Skarmeta, F. Martin, “A fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling,” IEEE Trans. Fuzzy Syst., vol. 5, no. 2, pp. 223–233, 1997. |