博碩士論文 86341008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.138.101.219
姓名 陳朝鈺(Chao-Yuh Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用變壓吸附相關程序探討二氧化碳 回收與再生利用之研究
(Study of Carbon Dioxide Recovery and Utilization by Pressure Swing Adsorption Related Process )
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 因工業快速地發展,使能源之消耗特別是石油消耗劇增,空氣污染也日益嚴重,過量二氧化碳氣體排放所引發的溫室效應,已經成為嚴重的國際污染問題。二氧化碳的排放主要來自於石化工業的燃燒,由於世界性公約的限定,未來二氧化碳排放量勢必得較目前降低。減緩二氧化碳排放量是首要工作,而將回收後的二氧化碳再生利用則是後續所需開發的工作,本論文為利用變壓吸附相關程序探討二氧化碳回收與再生利用的研究,文中共分成三部分進行探討。
第一部份為藉由實驗探討兩種不同的雙塔式真空變壓吸附程序,並由脫附步驟得到濃縮的二氧化碳氣體。就脫附步驟中的二氧化碳產物濃度而言,六步驟程序可得到較四步驟程序為高的二氧化碳產物濃度,在脫附步驟中的二氧化碳產物濃度會隨檢測時間的增加而上升,二氧化碳濃度最高可達將近90%,二氧化碳的回收率則介於90%到95%之間。
第二部分首先利用實驗與模擬結果驗證程式的可行性,再利用模擬方式進行雙塔和三塔程序的探討,依據模擬結果可知,三塔程序在濃縮二氧化碳的效果上,確實比雙塔程序佳,但是在雙塔程序中可以得到較高的二氧化碳回收率。在三塔程序的結果中可知,當壓力超過1.5大氣壓後,脫附步驟中的二氧化碳濃度不再增加,此外,在最佳操作條件下,二氧化碳濃度可以濃縮至約63%,此時二氧化碳回收率為67%。
依據勒沙特列原理(Le Châtelier principle),平衡控制的反應可藉由選擇性移出某些反應產物以增加反應物的轉化率,此觀念被應用在變壓吸附反應器中,變壓吸附反應器為結合反應與吸附的程序,此外,變壓吸附反應器還有省能與低操作溫度的優點。第三部份為利用兩種三步驟單塔變壓吸附反應器程序探討二氧化碳的再生利用,以逆水氣反應(reverse water gas shift)為探討的反應,藉由探討各種操作變數(例如步驟時間、塔長與進料壓力等)對轉化率的影響,尋找較佳的操作條件。由模擬的結果可知,二氧化碳的轉化率最高可達至約70%,此外,增加沖洗氣體量可以有效降低沖洗步驟時間。
摘要(英) Because of the fast industry development, energy consumption, especial petroleum consumption, is increasing rapidly and air pollution becomes more and more serious. Greenhouse effect due to excess carbon dioxide emission becomes an international pollution problem. Carbon dioxide released into the atmosphere is mainly attributed to fossil fuel combustion. The amount of carbon dioxide emission has to be cut down in the future due to global treaty. Though mitigation of the release of carbon dioxide is important, reuse of carbon dioxide is the following work that has to be done. Carbon dioxide recovery and utilization by pressure swing adsorption (PSA) related processes are explored in this study. This study is divided into three parts.
The first part of this study is to employ dual-bed vacuum swing adsorption (VSA) processes for CO2 removal from flue gas and concentrates CO2 in desorption stream experimentally. The CO2 product concentration in desorption step in the six-step process is higher than that in the four-step process. The outlet CO2 concentration in desorption step increases with detection time. The highest CO2 concentration can be near 90%. The recovery of CO2 is between 90% and 95%.
In the second part, the VSA simulation program is convinced of its feasibility by the comparison of experimental results and simulation results. Both dual-bed and three-bed processes are explored by simulation. The effect on concentrating carbon dioxide is better in the three-bed process than in the dual-bed process, but carbon dioxide recovery is higher in the dual-bed process. Increasing feed pressure is not always advantageous to concentrate carbon dioxide in the three-bed VSA process. Carbon dioxide concentration in desorption stream does not change when feed pressure is over 1.5 atm. In the optimum operation condition, 63% carbon dioxide can be attained, and carbon dioxide recovery is 67% in the three-bed process.
Based on Le Châtelier principle, the conversion of reactants to products can increase when some products are removed selectively from the reaction zone. This concept is used in pressure swing adsorption reactor (PSAR). PSAR is a combination of reaction and adsorption process. In addition, PSAR can save energy with lower process operating temperature. The third part in this study explores the carbon dioxide utilization by two kinds of single-bed PSAR processes. Reverse water gas shift reaction is considered here. The change of operation parameters, such as step time, bed length, and feed pressure, etc., is explored to find the optimum operation condition. According to the simulation results, carbon dioxide conversion can be near 70% at the optimum condition. Increasing purge gas volume is also an effective method to reduce step time of the purge step in processes.
關鍵字(中) ★ 二氧化碳
★ 變壓吸附
★ 再生利用
★ 溫室效應
關鍵字(英) ★ pressure swing adsorption
★ greenhouse effect
★ carbon dioxide
★ utilization
論文目次 目錄
中文摘要 i
英文摘要 iii
目錄 v
圖目錄 vii
表目錄 x
1 緒論 1
1.1 溫室效應的介紹與聯合國氣候變化綱要公約之發展現況 1
1.2 變壓吸附原理之介紹 16
1.3 變壓吸附程序之文獻回顧 36
1.4 變壓吸附反應器之簡介 41
1.5 變壓吸附反應器之文獻回顧 42
1.6 研究動機與目的 45
2 雙塔式真空變壓吸附程序之實驗 47
2.1 前言 47
2.2 實驗裝置 49
2.3 步驟程序 53
2.4 結果與討論 58
2.4.1 雙塔四步驟之真空變壓吸附程序 60
2.4.2 雙塔六步驟之真空變壓吸附程序 66
2.4.3 活性碳吸附劑之雙塔六步驟程序 72
2.5 結論 75
3 真空變壓吸附程序回收二氧化碳氣體之模擬 78
3.1 前言 78
3.2 研究方法 78
3.2.1 基本假設 78
3.2.2 統制方程式 79
3.2.3 吸附平衡關係式 84
3.2.4 起始條件與邊界條件 91
3.2.5 求解的方法 92
3.3 雙塔程序實驗與模擬之比較 97
3.3.1 四步驟真空變壓吸附程序之結果討論 100
3.3.2 六步驟真空變壓吸附程序之結果討論 103
3.4 三塔程序之模擬探討 107
3.4.1 程序描述 107
3.4.2 A程序模擬之結果討論 112
3.4.3 B程序模擬之結果討論 124
3.5 結論 140
4 變壓吸附反應器探討二氧化碳再生利用之研究 142
4.1 前言 142
4.2 研究方法 143
4.3 結果與討論 151
4.3.1 程序A之模擬結果 154
4.3.2 程序B之模擬結果 164
4.4 結論 193
5 總結 194
符號說明 197
參考文獻 198
A 流速之估算方法 207
圖目錄
1.1 溫室效應 3
1.2 陸地地區大氣溫度變化圖 6
1.3 過去兩萬年來全球平均溫度變化圖 7
1.4 Skarstrom 循環的操作步驟 23
1.5 產氣步驟時吸附塔的濃度分佈 23
2.1 雙塔式真空變壓吸附實驗裝置圖 51
2.2 四步驟程序圖 56
2.3 六步驟程序圖 57
2.4 進料濃度之空塔測試實驗 59
2.5 四步驟程序之穩態測試結果圖 61
2.6 不同進料壓力下,四步驟程序中逆向減壓步驟二氧化碳濃度對檢測時間之變化曲線圖。 62
2.7 不同進料壓力下,四步驟程序中同向減壓步驟二氧化碳濃度對檢測時間之變化曲線圖 64
2.8 四步驟程序中,二氧化碳回收率對進料壓力之變化曲線圖 65
2.9 六步驟程序之穩態測試結果圖 67
2.10 不同進料壓力下,六步驟程序中逆向減壓步驟二氧化碳濃度對檢測時間之變化曲線圖 68
2.11 不同進料壓力下,六步驟程序中同向減壓步驟二氧化碳濃度對檢測時間之變化曲線圖 69
2.12 六步驟程序中,二氧化碳回收率對進料壓力之變化曲線圖 71
2.13 六步驟程序之穩態測試結果圖 73
2.14 不同進料壓力下,六步驟程序中逆向減壓步驟二氧化碳濃度對檢測時間之變化曲線圖 74
2.15 不同進料壓力下,六步驟程序中同向減壓步驟二氧化碳濃度對檢測時間之變化曲線圖 76
2.16 六步驟程序中,二氧化碳回收率對進料壓力之變化曲線圖 77
3.1 真空泵抽氣速率曲線圖 94
3.2 電腦程式之求解流程圖 96
3.3 在溫度77.35K下,13X沸石對氮氣的吸附等溫線 98
3.4 同向減壓時間對二氧化碳濃度與回收率的影響(四步驟程序) 102
3.5 持續進料時間對二氧化碳濃度與回收率的影響(六步驟程序) 104
3.6 同向減壓時間對二氧化碳濃度與回收率的影響(六步驟程序) 106
3.7 A程序步驟流程圖 108
3.8 B程序步驟流程圖 110
3.9 排氣端二氧化碳濃度與回收率對第一步驟時間變化曲線圖(A程序) 113
3.10 兩個產氣端二氧化碳濃度對第一步驟時間變化曲線圖(A程序) 114
3.11 排氣端二氧化碳濃度與回收率對第二步驟時間變化曲線圖(A程序) 116
3.12 兩個產氣端二氧化碳濃度對第一步驟時間變化曲線圖(A程序) 117
3.13 排氣端二氧化碳濃度與回收率對進料壓力變化曲線圖(A程序) 119
3.14 兩個產氣端二氧化碳濃度對進料壓力變化曲線圖(A程序) 120
3.15 排氣端二氧化碳濃度與回收率對第二步驟時間變化曲線圖(A程序) 122
3.16 兩個產氣端二氧化碳濃度對第二步驟時間變化曲線圖(A程序) 123
3.17 排氣端二氧化碳濃度與回收率對第一步驟時間變化曲線圖(B程序) 126
3.18 兩個產氣端二氧化碳濃度對第一步驟時間變化曲線圖(B程序) 127
3.19 排氣端二氧化碳濃度與回收率對第二步驟時間變化曲線圖(B程序) 129
3.20 兩個產氣端二氧化碳濃度對第二步驟時間變化曲線圖(B程序) 130
3.21 排氣端二氧化碳濃度與回收率對進料壓力變化曲線圖(B程序) 132
3.22 兩個產氣端二氧化碳濃度對進料壓力變化曲線圖(B程序) 133
3.23 排氣端二氧化碳濃度與回收率對回沖壓力變化曲線圖(B程序) 135
3.24 兩個產氣端二氧化碳濃度對回沖壓力變化曲線圖(B程序) 136
3.25 排氣端二氧化碳濃度與回收率對第二步驟時間變化曲線圖(B程序) 138
3.26 兩個產氣端二氧化碳濃度對第二步驟時間變化曲線圖(B程序) 139
4.1 程序A之三步驟變壓吸附反應器循環步驟 145
4.2 程序B之三步驟變壓吸附反應器循環步驟 145
4.3 溫度為548K時,5A沸石對水之吸附等溫線 147
4.4 水的貫流曲線圖 153
4.5 第一步驟時間對二氧化碳轉化率之變化曲線圖 155
4.6 第二步驟時間對二氧化碳轉化率之變化曲線圖 156
4.7 第三步驟時間對二氧化碳轉化率之變化曲線圖 158
4.8 進料濃度對二氧化碳轉化率之變化曲線圖 159
4.9 進料之二氧化碳濃度對二氧化碳轉化率之變化曲線圖 160
4.10 塔長對二氧化碳轉化率之變化曲線圖 162
4.11 進料壓力對二氧化碳轉化率之變化曲線圖 163
4.12 第一步驟時間對二氧化碳轉化率之變化曲線圖 165
4.13 第二步驟時間對二氧化碳轉化率之變化曲線圖 166
4.14 第三步驟時間對二氧化碳轉化率之變化曲線圖 168
4.15 進料濃度對二氧化碳轉化率之變化曲線圖 169
4.16 進料之二氧化碳濃度對二氧化碳轉化率之變化曲線圖 170
4.17 進料壓力對二氧化碳轉化率之變化曲線圖 172
4.18 固定流速下,進料壓力對二氧化碳轉化率之變化曲線圖 173
4.19 反應器內壓力隨時間變化之曲線圖 174
4.20 各步驟結束時反應器內溫度變化之曲線圖 175
4.21 第一步驟時間結束反應器內濃度變化之曲線圖 176
4.22 第二步驟時間結束反應器內濃度變化之曲線圖 177
4.23 第三步驟時間結束反應器內濃度變化之曲線圖 178
4.24 反應器內壓力隨時間變化之曲線圖 179
4.25 各步驟結束時反應器內溫度變化之曲線圖 180
4.26 第一步驟時間結束反應器內濃度變化之曲線圖 181
4.27 第二步驟時間結束反應器內濃度變化之曲線圖 182
4.28 第三步驟時間結束反應器內濃度變化之曲線圖 183
4.29 沖洗氣體流速對二氧化碳轉化率之變化曲線圖 185
4.30 第一步驟時間對二氧化碳轉化率之變化曲線圖 186
4.31 第二步驟時間對二氧化碳轉化率之變化曲線圖 187
4.32 第三步驟時間對二氧化碳轉化率之變化曲線圖 188
4.33 進料濃度對二氧化碳轉化率之變化曲線圖 189
4.34 進料之二氧化碳濃度對二氧化碳轉化率之變化曲線圖 190
4.35 進料壓力對二氧化碳轉化率之變化曲線圖 191
4.36 塔長對二氧化碳轉化率之變化曲線圖 192
表目錄
1.1 地球大氣中之溫室氣體濃度、濃度成長率及lifetime 8
1.2 變壓吸附法與低溫蒸餾法製造氧氣之比較 22
1.3 多塔PSA、快速PSA與基本雙塔PSA之比較 30
2.1 實驗裝置之規格說明 52
2.2 吸附劑與吸附床之特性。 54
2.3 吸附劑再生條件 54
2.4 吸附塔及吸附劑特性 73
3.1 吸附塔及吸附劑特性 99
3.2 氣體熱容量(理想氣體狀態)計算式之常數 100
4.1 變壓吸附反應器及塔內吸附劑與觸媒之特性 146
4.2 操作條件 147
參考文獻 Alpay, E., C. N. Kenney, and D. M. Scott, Simulation of Rapid Pressure Swing Adsorption and Reaction Processes, Chemical Engineering Science, 48(18), 3173 (1993).
Alpay, E., D. Chatsiriweeh, I., S. Kershenbaum, C. P. Hull, and N. F. Kirkby, Combined Reaction and Separation in Pressure Swing Processes, Chemical Engineering Science, 49, 5845 (1994).
Baker, R. W., Future Directions of Membrane Gas Separation Technology, Industrial and Engineering Chemistry Research, 41, 1393 (2002).
Barg, C., A. R. Secchi, J. O. Trierweiler, and J. M. P. Ferreira, Simulation of an Industrial PSA Unit, Latin American Applied Research, 31, 469 (2001).
Batta, L. B., to Union Carbide Corporation, U.S. Patent 3,636,679 (1972).
Beh, C. C. K. and P. A. Webley, A Practical Method for the Dynamic Determination of the Product Oxygen Concentration in Pressure-Swing Adsorption Systems, Industrial and Engineering Chemistry Research, 42, 5287 (2003).
Beh, C. C. K. and P. A. Webley, A Method for the Determination of Composition Profiles in Industrial Air Separation, Pressure Swing Adsorption Systems, Adsorption Science and Technology, 21(1), 35 (2003).
Berlin, N. H., to Esso Research and Engineering Company, U.S. Patent 3,280,536 (1966).
Bird, R. B., W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, John Wiley & Sons Inc., New York, 510 (1960).
Byrne, M. E., and P. C. Wankat, Pressure Effects in Adsorbers and Adsorptive Reactors, Separation Science and Technology, 35(3), 323 (2000).
Carvill, B. T., J. R. Hufton, M. Anand, and S. Sicar, Sorption-Enhanced Reaction Process, AIChE Journal, 42(10), 2765 (1996).
Chahbani, M. H. and D. Tondeur, Mass Transfer Kinetics in Pressure Swing Adsorption, Separation and Purification Technology, 20, 185 (2000).
Chatsiriweeh, D., E. Alpay, L. S. Kershenbaum, C. P. Hull, and N. F. Kirkby, Enhancement of Catalytic Reaction by Pressure Swing Adsorption, Catalysis Today, 20, 351 (1994).
Chen, C. Y., K. C. Lee, and C. T. Chou, Concentration and Recovery of Carbon Dioxide from Flue Gas by Vacuum Swing Adsorption, Journal of the Chinese Institute of Chemical Engineers, 34(1), 135 (2003).
Choi, W. K., T. I. Kwon, Y. K. Yeo, H. Lee, H. K. Song, and B. K. Na, Optimal Operation of the Pressure Swing Adsorption (PSA) Process for CO2 Recovery, Korean Journal of Chemical Engineering, 20(4), 617 (2003).
Chou, C. T. and C. Y. Chen, Carbon Dioxide Recovery by Vacuum Swing Adsorption, Separation and Purification Technology, 39, 51 (2004).
Chou, R. T., C. L. Wu, and A. S. T. Chiang, A Complementary Pressure Swing Adsorption Process Configuration for Air Separation, Separations Technology, 4, 93 (1994).
Chue, K. T., J. N. Kim, Y. J. Yoo, S. H. Cho, and R. T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Industrial and Engineering Chemistry Research, 34(2), 591 (1995).
Collins, J. J., to Union Carbide Corporation, U.S. Patent 4,026,680 (1977).
Diagne, D., M. Goto, and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes: Application to Carbon Dioxide Removal and Enrichment”, Journal of Chemical Engineering of Japan, 27(1), 85 (1994).
Diagne, D., M. Goto, and T. Hirose, “Numerical Analysis of a Dual Refluxed PSA Process During Simultaneous Removal and Concentration of Carbon Dioxide Dilute Gas from Air”, Journal of Chemical Technology and Biotechnology, 65(1), 29 (1996).
Diagne, D., M. Goto, and T. Hirose, “Parametric Studies on CO2 Separation and Recovery by a Dual Reflux PSA Process Consisting of Both Rectifying and Stripping Sections ”, Industrial and Engineering Chemistry Research, 34, 3083 (1995).
Doong, S. J. and R. T. Yang, Bulk Separation of Multicomponent
Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models, AIChE Journal, 32, 397 (1986).
Doong, S. J. and R. T. Yang, Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption, AIChE Journal, 33, 1045 (1987).
Ebner A. D. and J. A. Ritter, Equilibrium Theory Analysis of Rectifying PSA for Heavy Component Production, AIChE Journal, 48(8), 1679 (2002).
Esteves, I. A. A. C. and J. P. B. Mota, Simulation of a New Hybrid Membrane/Pressure Swing Adsorption Process for Gas separation, Desalination, 148, 275 (2002).
Farooq, S. and D. M. Ruthven, A Comparison of linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process, Chemical Engineering Science, 45, 107 (1990).
Gomes, V. G. and M. M. Hassan, Coalseam Methane Recovery by Vacuum Swing Adsorption, Separation and Purification Technology, 24, 189 (2001).
Gomes, V. G. and Kevin W. K. Yee, Pressure Swing Adsorption for Carbon Dioxide Sequestration from Exhaust Gases, Separation and Purification Technology, 28, 161 (2002).
Guerin de Montgareuil, P. and D. Domine, to Societe L' Air Liquide, Paris, U.S. Patent 3,155,468 (1964).
Halmann, M. M. and M. Steinberg, Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology, Boca Raton, Florida : Lewis Publishers (1999).
Han, C. and D. P. Harrison, Simultaneous Shift Reaction and Carbon Dioxide Separation for the Direct Production of Hydrogen, Chemical Engineering Science, 49, 5875 (1994).
Hassan, M. M., D. M. Ruthven, and N. S. Raghavan, Air Separation by Pressure Swing Adsorption on A Carbon Molecular Sieve, Chemical Engineering Science, 41, 1333 (1986).
Hassan, M. M. and N. S. Raghavan, Pressure Swing Adsorption Air Separation on a Carbon Molecular Seive-II. Investigation of a Modified Cycle with Pressure Equalization and No Purge, Chemical Engineering Science, 42, 2037 (1987).
Huang, W. C. and C. T. Chou, Comparison of Radial- and Axial-Flow Rapid Pressure Swing Adsorption Processes, Industrial and Engineering Chemistry Research, 42, 1998 (2003).
Hufton, J. R., S. Mayorga, and S. Sicar, Sorption-Enhanced Reaction Process for Hydrogen Production, AIChE Journal, 45(2), 248 (1999).
Hwang, K. S. and W. K. Lee, “The Adsorption and Desorption Breakthrough Behavior of Carbon Monoxide and Carbon Dioxide on Activated Carbon. Effect of Total Pressure and Pressure-Dependent Mass Transfer Coefficient”, Seperation Science and Technology, 29(14), 1857 (1994).
Izumi, J., “Hydrogen Sulifide Removal with Pressure Swing Adsorption from Process Off-Gas” in Fundamentals of Adsorption (Ed. M Suzuki), Kodansha, Tokyo, 293 (1992a).
Izumi, J., “Process Off-Gas Treatment with Pressure Swing Adsorption”, Proceedings of Symposium on Adsorption Processes, Chung-Li, Taiwan, 71 (1992b).
Jain, S., A. S. Moharir, P. Li, and G. Wozny, Heuristic Design of Pressure Swing Adsorption: a Preliminary Study, Separation and Purification Technology, 33, 25 (2003).
Jasra, R.V., N. V. Choudary, and S. G. T. Bhat, Review: Separation of Gases by Pressure Swing Adsorption, Separation Science and Technology, 26 (7), 885 (1991).
Joo, O. S., K. D. Jung, I. Moon, A. Y. Rozovskii, G. I. Lin, S. H. Han, and S. J. Uhm, Carbon Dioxide Hydrogenation to Form Methanol via a Reverse-Water-Gas-Shift Reaction (the CAMERE Process), Industrial and Engineering Chemistry Research, 38, 1808 (1999).
Keller II, G. E. and R. L. Jones, A New Process for Adsorption Separation of Gas Stream in Adsorption and Ion Exchange with Synthetic Zeolites, ACS Symposium Series, 135, 275 (1980).
Keller II, G. E., R. A. Anderson, and C. M. Yon, Adsorption, in Handbook of Separation Process Technology (R.W. Rousseau, ed.), Willy, New York (1987).
Kikkinides, E. S. and R. T. Yang, Simultaneous SO2/NOx Removal and SO2 Recovery from Flue Gas by Pressure Swing Adsorption, Industrial and Engineering Chemistry Research, 30(8), 1981 (1991).
Kikkinides, E. S., R. T. Yang, and S. H. Cho, Concentration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption, Industrial and Engineering Chemistry Research, 32(11), 2714 (1993).
Kikkinides, E. S. and R. T. Yang, Gas Seperation and Purification by Polymeric Adsorbents: Flue Gas Desulfurization and SO2 Recovery with Styrenic Polymers, Industrial and Engineering Chemistry Research, 32(10), 2365 (1993).
Kikkinides E. S., V. I. Sikavitsas, and R. T. Yang, Natural Gas Desulfurization by Adsorption: Feasibility and Multiplicity of Cyclic Steady States, Industrial and Engineering Chemistry Research, 34, 255 (1995).
Kim, J. N., K. T. Chue, K. I. Kim, S. H. Cho, and J. K. Kim, Non-Isothermal Adsorpiton of Nitrogen-Carbon Dioxide Mixture in a Fixed Bed of Zeolite-X , Journal of Chemical Engineering of Japan, 27(1), 45 (1994).
Kirkby, N. F. and J. E. P. Morgan, A Theoretical Investigation of Pressure Swing Reaction, Transactions of the Institution of Chemical Engineers, 72, Part A, 541 (1994).
Knaebel, K. S., Analysis of Complementary Pressure Swing Adsorption, Fundamentals of Adsorption (A.L. Myers and G. Belfort, eds.), New York: Engineering Foundation (1984).
Ko, D., R. Siriwardane, and L. T. Biegler, Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration, Industrial and Engineering Chemistry Research, 42, 339 (2003).
Kowler, D. E. and R. H. Kadlec, The Optimal Control of a Periodic Adsorber, AIChE Journal, 18,1027 (1972).
Lee, I. D. and R. H. Kadlec, Effects of Adsorbent and Catalyst Distributions in Pressure Swing Reactors, AICHE Symposium Series, 84, 167 (1989).
Liu, Y., J. A. Ritter, and B. K. Kaul, Simulation of Gasoline Vapor Recovery by Pressure Swing Adsorption, Separation and Purification Technology, 20, 111 (2000).
Lu, Z. P. and A. E. Rodrigues, Pressure Swing Adsorption Reactors: Simulation of Three-Step One-Bed Process, AIChE Journal, 40(7), 1118 (1994).
Marsh, W. D., F. S. Pramuk, R. C. Hoke, and C. W. Skarstrom, to Esso Research and Engineering Company, U. S. Patent 3,142,547 (1964).
McCabe W. L., J. C. Smith, and P. Harriott, Unit Operation of Chemical Engineering, Fourth Edition, McGraw-Hill, 325; 406 (1985).
McCombs, N. R., to Union Carbide Corporation, U.S, Patent 3,738,087 (1973).
Mendes, A. M. M., C. A. V. Costa, and A. E. Rodrigues, Oxygen Separation from Air by PSA: Modelling and Experimental Results Part I: Isothermal Operation, Separation and Purification Technology, 24, 173 (2001).
Nakao, S. and M. Suzuki, Mass Transfer Coefficient in Cyclic Adsorption and Desorption, Journal of Chemical Engineering of Japan, 16, 114 (1983).
Nilsson, A. Greenhouse Earth, Chichester, West Sussex, England New York: John Wiley & Sons, 1992.
Park, J. H., H. T. Beum, J. N. Kim, and S. H. Cho, Numerical Analysis on the Power Consumption of the PSA Process for Recovering CO2 from Flue Gas, Industrial and Engineering Chemistry Research, 41, 4122 (2002).
Pugsley, T. S., F. Berruti, and A, Chakma, Computer Simulation of a Novel Circulating Fluidized Bed Pressure-Temperature Swing Adsorption for Recovering Carbon Dioxide from Flue Gases, Chemical Engineering Science, 49(22), 4465 (1994).
Raghavan, N. S., D. M. Ruthven, and M. M. Hassan, Adsorption and Diffusion of Nitrogen and Oxygen in a Carbon Molecular Sieve, Chemical Engineering Science, 41, 1325 (1986).
Rajasree, R. and A. S. Moharir, Simulation Based Synthesis, Design and Optimization of Pressure Swing Adsorption (PSA) Processes, Computers and Chemical Engineering, 24, 2493 (2000).
Rege, S. U. and R. T. Yang, Propane/Propylene Separation by Pressure Swing Adsorption: Sorbent Comparison and Multiplicity of Cyclic Steady States , Chemical Engineering Science, 57, 1139 (2002).
Ruthven, D.M., Principles of Adsorption and Adsorption Processes, John Wiley & Sons Inc., New York, 208 (1984).
Shin, H. S. and K. S. Knabel, Pressure Swing Adsorption: A Theoretical Study of Diffusion-Induced Separation, AIChE Journal, 33, 654 (1987).
Sircar, S., Pressure Swing Adsorption, Industrial and Engineering Chemistry Research, 41, 1389 (2002).
Sircar, S. and T. C. Golden, Purification of Hydrogen by Pressure Swing Adsorption, Separation Science and Technology, 35(5), 667 (2000).
Sircar, S., Applications of Gas separation by Adsorption for the Future, Adsorption Science and Technology, 19(5), 347 (2001).
Skarstrom, C.W., to Esso Research and Engineering Company, U.S. Patent 2,944,627 (1960).
Skarstrom, C.W., Heatless Fractionation of Gases over Solid Sorbents, Recent Developments in Separation Science (N. N. Li, eds.), Vol. 2, CRC Press (1972).
Smith J. M. and H. C. Van Ness, Introduction to Chemical Engineering Thermodynamics, Fourth Edition, McGraw-Hill, 109 (1987).
Takamura, Y., S. Narita, J. Aoki, S. Hironaka, and S. Uchida, Evaluation of Dual-bed Pressure Swing Adsorption for CO2 Recovery from Boiler Exhaust Gas, Separation and Purification Technology, 24, 519 (2001).
Takamura, Y., S. Narita, J. Aoki, and S. Uchida, Application of High-Pressure Swing Adsorption Process for Improvement of CO2 Recovery System from Flue Gas, The Canadian Journal of Chemical Engineering, 79, 812 (2001).
Tamura, T., to T. Tamura, Tokyo, Japan, U.S. Patent 3,797,20l (l974).
Turnock, P. H., and R. H. Kadlec, Separation of Nitrogen and Methane via Periodic Adsorption, AIChE Journal, 17, 335 (1971).
Vaporciyan, G. G. and R. H. Kadlec, Equilibrium-Limited Periodic Separating Reactors, AIChE Journal, 33(8), 1334 (1987).
Vaporciyan, G. G. and R. H. Kadlec, Periodic Separating Reactor: Experiment and Theory, AIChE Journal, 35(5), 831 (1989).
Wagner, J.L., to Union Carbide Corporation, U.S. Patent 3,430,418 (l969).
Waldron, W. E., J. R. Hufton, and S. Sicar, Production of Hydrogen by Cyclic Sorption Enhanced Reaction Process, AIChE Journal, 47(6), 1477 (2001).
Wen, C. Y. and L. T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 169 (1975).
Yagi, S., D. Kunii, and N. Wakao, Studies on Axial Effective Thermal Conductivities in Packed Beds, AIChE Journal, 6, 543 (1960).
Yang, R. T., Gas Separation by Adsorption Processes, Butterworth, Boston, 1987.
Yang, R. T. and S. J. Doong, Gas Separation by Pressure Swing Adsorption : A Pore Diffusion Model for Bulk Separation, AIChE Journal, 31, 1829 (1985).
Yoshida, M., J. A. Ritter, A. Kodama, M. Goto, and T. Hirose, Enriching Reflux and Parallel Equalization PSA Process for Concentrating Trace Components in Air, Industrial and Engineering Chemistry Research, 42, 1795 (2003).
Zhang, W. X., H. Yahiro, N. Mizuno, M. Iwamoto, and J. Izumi, Silver Ion-Exchanged Zeolites as Highly Effective Adsorbents for Removal of NOx by Pressure Swing Adsorption, Journal of Materials Science Letters, 12, 1197 (1993a).
Zhang, W. X., H. Yahiro, N. Mizuno, J. Izumi, and M. Iwamoto, Removal of Nitrogen Monoxide on Copper Ion-Exchanged Zeolites by Pressure Swing Adsorption, Langmuir, 9(9), 2337 (1993b).
中華民國行政院環境保護署施政三年行動計畫,http://www.epa.gov.tw/plan/index.html,2004。
氣候變化綱要公約網站,http://sd.erl.itri.org.tw/fccc/,2004。
楊斐喬,產業溫室氣體減量報導季刊,第7期(2000年7月)。
林佳璋,劉文宗,產業溫室氣體減量報導季刊,第15期(2002年7月)。
李光振,真空變壓吸附法濃縮二氧化碳之研究,碩士論文,1999年6月。
羅興安,雙塔式真空變壓吸附法濃縮二氧化碳之研究,碩士論文,2000年7月。
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2004-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明