以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:73 、訪客IP:3.147.28.111
姓名 林國珍(Kuo-Jen Lin) 查詢紙本館藏 畢業系所 資訊工程學系 論文名稱 多層無線通訊網路上之資源管理策略
(Strategies for Resources Management in Multi-tierWireless Communication Networks)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 為了提供無線通訊激烈增加的需求,多層無線通訊網路之資源管理成為重要的研究課題。多層的無線通訊網路是由多個細胞(cell)及行動通訊者重疊涵蓋相同服務區域所組成。此種重疊的特性,可以讓通訊負載透過多層細胞通道的分享及行動通訊者的中繼協助來提昇系統的效能。在本篇論文中,我們提出兩種通道分享(channel-sharing)策略稱為垂直通道分享策略(vertical channel-sharing)及垂直水平通道分享策略(vertical-horizontal channel-sharing)來有效利用雙層細胞間可用的通道,透過分析及模擬結果顯示需求遺失機率(call loss probability)有了大幅的改善。這雙層細胞為涵蓋大範圍的巨細胞(macrocell)與涵蓋小範圍的微細胞(microcell)重疊涵蓋區域所組成。
在連結導向服務的雙層無線網路中,資料傳輸需考慮到重找路徑問題(rerouting problem)。為了提供無間隙的換手(seamless handoff)和無延遲的傳輸,我們提出一種交叉型的雙層無線網路新架構。在這架構下,可以減少硬體佈線的成本。同時我們提出慵懶型預留(lazy reservation)及積極型預留(aggressive reservation)來減低預留連結(connection reservation)的佔用數。模擬結果顯示我們的方法減少了許多連結數及降低需求中斷機率。
在WCDMA的系統中,軟換手(soft handoff)用於使用者處於細胞邊界時維持收訊品質的機制。一般的作法是使用MRC(maximal ratio combining)的方法將各個處於active set的細胞做組合,但是此方法相當耗用資源,於是有GSC(generalized selection combining)的方法出現,採用active set中最大的K個細胞做組合,但是收訊品質降低。在本篇論文中,我們提出ASC(adaptive selection combining)的方法同時考慮通道的使用及品質的維持,彈性交換使用MRC及GSC,調整細胞的組合,來達到高通道使用率極高品質的維持。模擬結果顯示,需求阻斷率(call blocking probability)比MRC高而品質比GSC高與MRC相當。
最後我們寬頻尋徑(broadband routing)的方法運用於WCDMA網路及Ad Hoc網路的結合環境中,利用IEEE 802.11的較高頻寬做為中繼網路,讓較低訊號雜訊比的使用者可以藉由Ad Hoc網路並使用多個下傳路徑來改進傳輸速率,充分使用細胞內的資源,模擬結果顯示,所提的線條式路徑(linear-path routing) 、樹狀路徑(tree-based routing) 及區域廣播路徑(local-broadcast routing)均相當優於傳統下傳的結果。摘要(英) To support the drastically increased demand for wireless communications, the resource management of multi-tier wireless communication networks becomes an important issue. A multi-tier wireless communication networks is characterized by multiple cells and some mobile hosts overlapping in the service area. This overlapping property provides an advantage that traffic loads can be shared by channels of multiple tiers or supports high data rates by forwarding data with mobile hosts to increase the performance of the system. In this dissertation, we propose several strategies in multi-tier wireless communication networks to increase resource utilization. Two channel-sharing strategies namely vertical channel-sharing and vertical-horizontal channel-sharing are proposed to better utilize channels for two-tier cellular networks. The call loss probability of new calls and call dropping probability of handoff calls are developed through analyses and simulations. The results justify the advantage of our strategies over existing strategies.
The data transmission of connection-oriented services considers the rerouting problem in two-tier wireless networks for supporting seamless handoff and delay-sensitive transmission. We propose a new cell structure by interleaving the connections from mobile switching centers (MSCs) to microcells. This structure can effectively extend the physical area that can be covered by a MSC. Based on this structure, we show that connections can be reserved in a lazier manner. This lazy approach can reduce the number of times that a mobile subscriber switches between different MSCs due to mobility, and reduce the number of unnecessary connections reserved to support seamless handoff, and conserve network bandwidth for connection rerouting, at the cost of more vertical handoffs. In addition, such a cell structure can also reduce the hardware wiring cost.
In WCDMA cellular networks, soft handover is supported at cell boundaries to maintain communication quality. The maximal ratio combining (MRC) and generalized selection combining (GSC) [1, 2] are two possible approaches. However, soft handover is resource-intensive. We propose an adaptive selection combining (ASC) scheme to manage the cell resources that can switch flexibly between MRC and GSC so as to take care of both channel loading and communication quality. The signal-to interference and noise ratio (SINR) is kept as high as that of MRC while the blocking probability can remain at about the same level as that of GSC.
For supporting wireless broadband Internet services, an environment unified WCDMA cellular networks and ad-hoc networks is considered to enhance the broadband services and efficiently use the WCDMA resources. Three broadband routing protocols are proposed to increase the downlink transmission rates from WCDMA cellular networks and to decrease the route breakage probability. The contribution of broadband routing is twofold. First, such broadband routing service could be very attractive to highly mobile users. Second, we propose several promising multi-downlink routing protocols that are particularly suitable for WCDMA systems. Simulation results are presented to justify the effectiveness of the proposed routing protocols.關鍵字(中) ★ 需求遺失機率
★ 巨細胞
★ 微細胞
★ 重找路徑問題
★ 尋徑
★ 需求阻斷率
★ 軟換手
★ 預留連結
★ 通道分享
★ 資源管理
★ 無線通訊網路關鍵字(英) ★ call blocking probability
★ microcell
★ soft handoff
★ macrocell
★ wireless communication networks
★ routing
★ resource management
★ channel-sharing
★ call loss probability
★ rerouting
★ connection reservation論文目次 1 Introduction 1
1.1 Statement of Problems and Reviews . . 2
1.2 Channel-sharing Strategies . . 6
1.3 Connection Reservation Strategies . . 7
1.4 Adaptive Selection Combining Strategies . . 7
1.5 Broadband Routing Strategies . . 8
1.6 Organization of the Dissertation . . 9
2 System Model 11
2.1 Two-tier Cellular Networks . . 11
2.2 Cellular networks for connection-oriented services . . 11
2.3 WCDMA Cellular Networks . . 12
2.4 Unified WCDMA Cellular networks and Ad Hoc Networks . . 14
3 Channel-sharing Strategies in Two-tier Cellular Networks 17
3.1 Problem Statement of Channel Utilization . . 17
3.2 Vertical and Horizontal Channel-Sharing Strategies . . 19
3.2.1 Channel Sharing in the Vertical Direction . .20
3.2.2 Channel Sharing in the Horizontal Direction . . 21
3.3 Performance Analysis . . 23
3.3.1 Analysis Model . .23
3.3.2 Performance of Using Vertical Channel-Sharing . . 25
3.3.3 Performance of Using Vertical-Horizontal Channel-Sharing . . 29
3.3.4 Performance of Using Channel Rearrangement . . 31
3.4 Performance Comparisons . . 33
3.4.1 Numerical Results . . 33
3.4.2 Simulation Results . .35
3.5 Summary . .38
4 Connection Reservation in Two-tier Cellular Networks 39
4.1 Problem Statement of Connection Rerouting . . 39
4.2 Backgrounds and Reviews . . 41
4.3 A New Interleaving Cellular Structure . .43
4.4 Simulation Results . . 48
4.5 Summary . . 49
5 Adaptive Selection Combining in WCDMA Cellular Networks 53
5.1 Problem Statement of Channel Loading for Soft Handover . . 53
5.2 Adaptive Selection Combining (ASC) Strategies . . 54
5.3 Performance Analysis . . 56
5.4 Simulation Results . . 59
5.5 Summary . . 60
6 Broadband Routing Service for Unified WCDMA Cellular Networks and Ad
Hoc Networks 63
6.1 Problem Statement of Wireless Bandwidth for Internet . . 63
6.2 The Proposed Broadband Routing Protocols . . 65
6.2.1 Linear-Path Routing . . 66
6.2.2 Tree-Based Routing . . 67
6.2.3 Local-Broadcast Routing . .69
6.3 Simulation . .70
6.4 Summary . . 72
7 Conclusions and Future Works 77參考文獻 [1] T. Eng, N. Kong, and L. B. Milstein. Comparison of Diversity Combining Techniques for Rayleigh-Fading Channels. IEEE Trans. on Commun., 44(9):1117–1129, Sep. 1996.
[2] W. C. Lau, M. S. Alouini, and M. K. Simon. Optimum Spreading Bandwidth for
Selective RAKE Reception over Rayleigh Fading Channels. IEEE J. on Selected Areas in Commun., 19(6):1080–1089, Jun. 2001.
[3] Dong-Ho Kim, Hyung-Jun Kim, Dongjin Han, WonKeun Choi, and Sunshin An. Providing Seamless Handoff in Wireless ATM Networks. In Computer Communications and Networks, pages 737–741, Oct 1998.
[4] G. S. Corson, J. P. Macker, and G. H. Cirincione. Internet-Based Mobile Ad Hoc Networking. IEEE Internet Computing, pages 63–70, July 1999.
[5] U. Jonsson, F. Alriksson, T. Larsson, P. Johansson, and G. Q. Maguire Jr. MIPMANET - Mobile IP for Mobile Ad Hoc Networks. In MobiHoc 2000, pages 75–85, 2000.
[6] S. Roy and J. J. Garcia-Luna-Aceves. Node-Centric Hybrid Routing for Ad-Hoc Wireless Extensions of The Internet. In GlobeCom 2002, pages 183–187, 2002.
[7] A. S. Anpalagan and L. Katzela. Overlaid cellular system design with cell selection criteria for mobile wireless users. In IEEE Canadian Conference on Electrical and Computer Engineering, pages 24–28, 1999.
[8] M. Benveniste. Cell selection in two-tier microcellular/macrocellular systems. In GlobeCom 1995, pages 1532–1536, 1995.
[9] C. L. I, L. J. Greenstein, and R. D. Gitlin. A microcell/macrocell cellular architecture for low- and high-mobility wireless users. IEEE J. on Selected Areas in Commun., 11:885–891, Aug., 1993.
[10] D. Kim, B. W. Lim, and D. G. Jeong. An efficient paging scheme for overlaid microcell/macrocell systems. In 5th IEEE International Conference on Universal Personal Communications, pages 961–964, 1996.
[11] Y. I. Kim, K. J. Lee, and Y. O. Chin. Effect of handoff area variation on PCS system traffic. In IEEE International Conference on PersonalWireless Communications, pages 134–139, 1996.
[12] K. L. Yeung and S. Nanda. Channel management in microcell/macrocell cellular radio systems. IEEE Trans. on Vehicular Technology, 45:601–612, Nov., 1996.
[13] K. L. Yeung and S. Nanda. Optimal mobile-determined micro-macro cell selection. In IEEE VTC 1995, pages 294–299, 1995.
[14] C. W. Sung and W. S. Wong. User speed estimation and dynamic channel allocation in hierarchical cellular system. In IEEE VTC 1994, pages 91–95, 1994.
[15] S. Rappaport and L. R. Hu. Microcellular Communications Systems with Hierarchical Macrocell Overlays: Traffic Performance models and analysis. In Proceeding of IEEE, volume 82, Sep., 1994.
[16] X. Lagrange and P. Godlewski. Performance of a hierarchical cellular network with mobility-dependent hand-over strategies. In IEEE VTC 1996, volume 3, pages 1868–1872, 1996.
[17] S. A. El-Dolil, W. C. Wong, and R. Steele. Teletraffic performance of highway microcells with overlay macrocells. IEEE J. on Selected Areas in Commun., 7:71–78, Jan. 1989.
[18] Bijan Jabbari and Woldemar F. Fuhrmann. Teletraffic Modeling and Analysis of Flexible Hierarchical Cellular Networks with Speed-Sensitive Handoff Strategy. IEEE J. on Selected Areas in Commun., 15(8):1539–1548, October, 1997.
[19] S. Marano, C. Mastroianni, and R. Riccardi. Performance of Micro-Macrocellular System with Overlapping Converage and Channel Rearrangement Techniques. In Computer and Communication, pages 705–710, 1998.
[20] J. H. Yap, X. Yang, S. Ghaheri-Niri, and R. Tafazolli. Position Assisted Relaying and Handover in Hybrid Ad Hoc WCDMA Cellular System. In The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pages 2194–2198, 2002.
[21] H. Wu, C. Qiao, S. De, and O. Tonguz. Integrated Cellular and Ad Hoc Relaying Systems: iCAR. IEEE J. on Selected Areas in Commun., pages 2105–2115, Oct. 2001.
[22] C.-F. Huang, H.-W. Lee, and Y.-C. Tseng. A Two-Tier Heterogeneous Mobile Ad Hoc Network Architecture and Its Load-Balance Routing Problem. In IEEE VTC 2003 Fall.
[23] K. J. Kumar, B. S. Manoj, and C. S. R. Murthy. On the Use of Multiple Hops in Next Generation Cellular Architectures. In The 10th IEEE International Conference on Networks, pages 283–288, 2002.
[24] Eric Hsiao-KuangWu, Yi-Zhan Huang, and Jui-Hao Chiang. Dynamic Adaptive Routing for Heterogeneous Wireless Network. In Global Telecommunications Conference, pages 3608–3612, 2001.
[25] H. Luo, R. Ramjee, P. Sinha, Li (Erran) Li, and S. Lu. UCAN: A Unified Cellular and Ad-Hoc Network Architecture. In Mobicom’03, pages 353–367, 2003.
[26] Harri Holma and Antti Toskala. WCDMA for UMTS (Radio Access for Third Generation Mobile Communications). John Wiley & Sons, 2000.
[27] P. Giacomazzi., L. Musumeci, and G. Verticale. Performance of Web-Browsing Services over the WCDMA-FDD Downlink Shared Channel. In IEEE INFOCOM, volume 3, pages 3514–3518, 2001.
[28] B. Jabbari. Teletraffic aspects of evolving and next generation wireless communication networks. In IEEE Personal Communications, pages 4–9, Dec., 1996.
[29] F. Khan and D. Zeghlache. Effect of cell residence time distribution on the performance of cellular mobile networks. In IEEE VTC 1997, pages 949–953, 1997.
[30] Leonard Kleinrock. Queueing Systems Volume I: Theory. John Wiley & Sons, 1975.
[31] R. Assarut, K. Kawanishi, U. Yamamoto, Y. Onozato, and M. Matsushita. Region Division Assignment of Orthogonal Variable-Spreading-Factor Codes in W-CDMA. In IEEE VTC 2001 Fall, volume 3, pages 1884–1888, 2001.
[32] Y.-C. Tseng and C.-M. Chao. Code Placement and Replacement Strategies for Wideband CDMA OVSF Code Tree Management. IEEE Trans. on Mobile Computing,
1:293–302, Oct. 2002.
[33] X. Yang, J. H. Yap, S. Ghaheri-Niri, and R. Tafazolli. Enhanced Position Assisted Soft Handover Algorithm for UTRA. In IEEE VTC 2001 Fall, volume 2, pages 567–571, 2001.
[34] R. Stuetzle and A. Paulraj. Modeling of Forward Link Performance in IS-95 CDMA Networks. In IEEE 4th International Symposium on Spread Spectrum Technique and Applications Proceedings, volume 3, pages 1058–1062, 1996.指導教授 許健平、曾煜棋
(Jang-Ping Sheu、Yu-Chee Tseng)審核日期 2004-6-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare