參考文獻 |
[1] Achim, A., A. Bezerianos, and P. Tsakalides, “Novel Bayesian multiscale method for speckle removal in medical ultrasound images,” IEEE Trans. Medical Imaging, Vol.20, No.8, pp.772-783, 2001.
[2] Achim, A., A. Bezerianos, and P. Tsakalides, “Ultrasound image denoising via maximum a posteriori estimation of wavelet coefficients,” in Proc. 23-rd Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Oct.25-28, 2001, pp.2553-2556.
[3] Arsenault, H. J. and G. April, “Properties of speckle integrated with a finite aperture and logarithmically transformed,” J. Opt. Soc. Amer., Vol.66, pp.1160-1163, 1976.
[4] Aydin, T., Y. Yemez, E. Anarim, and B. Sankur, “Multidirectional and multiscale edge detection via M-band wavelet transform,” IEEE Trans. Image Processing, Vol.5, No.9, pp.1370-1377, 1996.
[5] Bajaj, C. L., E. J. Coyle, and K.-N. Lin, “Arbitrary topology shape reconstruction from planar cross sections,” Graphical Models and Image Processing, Vol.58, No.6, pp.524-543, 1996.
[6] Barequet, G. and M. Sharir, “Piecewise-linear interpolation between polygonal slices,” Computer Vision and Image Understanding, Vol.63, No.2, pp.251-272, 1996.
[7] Barequet, G. and B. Wolfers, “Optimizing a strip separating two polygons,” Graphical Models and Image Processing, Vol.60, No.3, pp.214-221, 1998.
[8] Barequet, G., D. Shapiro, and A. Tal, “Multilevel sensitive reconstruction of polyhedral surfaces from parallel slices,” The Visual Computer, Vol.16, No.2, pp.116-133, 2000.
[9] Barequet, G., M. T. Goodrich, A. Levi-Steiner, and D. Steiner, “Contour interpolation by straight skeletons,” Graphical Models, Vol.66, No.4, pp.245-260, 2004.
[10] Batnitzky, S., H. I. Price, P. N. Cook, L. T. Cook, and S. J. Dwyer III, “Three-dimensional computer reconstruction from surface contours for head CT examinations,” J. Comput. Assisted Tomography, Vol.5, pp.60-67, 1981.
[11] Beltrán, J. R., J. García-Lucía, and J. Navarro, “Edge detection and classification using Mallat’s wavelet,” in IEEE Proc. 1st Int. Conf. Image Processing, Austin, Texas, Nov.13-16, 1994, pp.293-297.
[12] Beltrán, J. R., F. Beltran and A. Estopañan, “Multiresolution edge detection and classification: noise characterization,” in Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, San Diego, CA, Oct.11-14, 1998, pp.4476-4481.
[13] Bergholm, F., “Edge focusing,” IEEE Trans. Pattern anal. Machine Intell., Vol.PAMI-9, pp.627-641, 1987.
[14] Bilmes, J., A Gentle Tutorial of The EM Algorithm and Its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models, Technical Report TR-97-021, International Computer Science Institute, Berkeley CA, April 1998.
[15] Black, M., G. Sapiro, D. Marimont, and D. Heeger, “Robust anisotropic diffusion,” IEEE Trans. Image Processing, Vol.7, pp.421-432, 1998.
[16] Boissonnat, J. D., “Shape reconstruction from planar cross sections,” Computer Vision, Graphics, and Image Processing, Vol.44, pp.1-29, 1988.
[17] Boissonnat, J. D. and B. Geiger, Three-dimensional Reconstruction of Complex Shapes Based on The Delaunay Triangulation, Technical Report 1697, Inria-Sophia Antipolis, 1992.
[18] Borran, M. J. and R. D. Nowak, “Wavelet-based denoising using hidden Markov models,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, May 7-11, 2001, pp.3925-3928.
[19] Bouman, C. and M. Shapiro, “A multiscale random field model for Bayesian image segmentation,” IEEE Trans. Image Processing, Vol.3, No.2, pp.162-177, 1994.
[20] Busch, C., “Wavelet based texture segmentation of multi-modal tomographic images,” Comput. & Graphics, Vol.21, No.3, pp.347-358, 1997.
[21] Canny, J., “A computational approach to edge detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.8, No.6, pp.679-698, 1986.
[22] Chang, S. G., B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Trans. Image Processing, Vol.9, No.9, pp.1522-1531, 2000.
[23] Chang, S. G., B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Processing, Vol.9, No.9, pp.1532-1546, 2000.
[24] Chang, T. and C.-C. J. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Processing, Vol.2, No.4, pp.429-440, 1993.
[25] Cheng, S. W. and T. K. Dey, “Improved construction of Delaunay based contour surfaces,” in Proc. the 5th ACM Symp. on Solid Modeling and Applications, Ann Arbor, MI, 1999, pp.322-323.
[26] Chickanosky, V. and G. Mirchandani, “Wreath products for edge detection,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Seattle, WA, May 12-15, 1998, Vol.5, pp.2953-2956.
[27] Chipman, H. A., E. D. Kolaczyk, and R. E. McCulloch, “Adaptive Bayesian wavelet shrinkage,” J. Ameri. Stat. Assoc., Vol.440, No.92, pp.1413-1421, 1997.
[28] Choi, H. and R. G. Baraniuk, “Multiscale image segmentation using wavelet-domain hidden Markov models,” IEEE Trans. Image Processing, Vol.10, No.9, pp.1309-1321, 2001.
[29] Christiansen, H. N. and T. W. Sederberg, “Conversion of complex contour line definitions into polygonal element mosaics,” SIGGRAPH Computer Graphics, Vol.13, pp.187-192, 1978.
[30] Chun, S. L., P. C. Chung, and C. F. Chen, “Unsupervised texture segmentation via wavelet transform,” Pattern Recognition, Vol.30, No.5, pp.729-742, 1997.
[31] Coifman, R. R. and D. L. Donoho, “Translation-invariant de-noising,” Lecture Notes in Statistics: Wavelet and Statistics, 1995, pp.125-150.
[32] Cook, L. T., P. N. Cook, K. R. Lee, S. Batnitzky, B. Y. S. Wong, S. L. Fritz, J. Ophir, S. J. Dwyer III, L. R. Bigongiari, and A. W. Templeton, “An algorithm for volume estimation based on polyhedral approximation,” IEEE Trans. Biomed. Eng., Vol.27, pp.493-500, 1980.
[33] Cormen, T. H., C. E. Leiserson, and R. L. Rivest, eds., Introduction to Algorithms, McGraw-Hill Book Company, 1996.
[34] Crouse, M. S. and R. G. Baraniuk, “Contextual hidden Markov models for wavelet-domain signal processing,” in Proc. 31st Asilomar Conf. Signals, System, and Computers, 1997, pp.95-100.
[35] Crouse, M. S., R. D. Nowak, and R. G. Baraniuk, “Wavelet-based statistical signal processing using hidden Markov models,” IEEE Trans. Signal Processing, Vol.46, No.4, pp.886-902, 1998.
[36] Donoho, D. and I. Johnstone, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika, Vol.81, No.3, pp.425-455, 1994.
[37] Ekoule, A. B., F. C. Peyrin, and C. L. Odet, “A triangulation algorithm from arbitrary shaped multiple planar contours,” ACM Trans. Graphics, Vol.10, No.2, pp.182-199, 1991.
[38] Falcão, A. X., J. K. Udupa, and F. K. Miyazawa, “An ultra-fast user-steered image segmentation paradigm: live wire on the fly,” IEEE Trans. Medical Imaging, Vol.19, No.1, pp.55-62, 2000.
[39] Fan, G. and X.-G. Xia, “Wavelet-based statistical image processing using hidden Markov tree model,” in Proc. the 2000 Conf. on Information Sciences and Systems, 2000, pp.TA5-31-TA5-36.
[40] Fan, G. and X.-G. Xia, “Improved hidden Markov models in the wavelet-domain,” IEEE Trans. Signal Processing, Vol.49, No.1, pp.115-120, 2001.
[41] Fan, G. and X.-G. Xia, “Image denoising using local contextual hidden Markov model in the wavelet domain,” IEEE Signal Processing Letter, Vol.8, No.5, pp.125-128, 2001.
[42] Feng, L., C. Y. Suen, Y. Y. Tang, L. H. Yang, “Edge extraction of images by reconstruction using wavelet decomposition details at different resolution levels,” Int. Journal Pattern Recognition and Artificial Intelligence, Vol.14, No.6, pp.779-793, 2000.
[43] Fuchs, H., Z. M. Kedem, and S. P. Uselton, “Optimal surface reconstruction from planar contours,” Commun. ACM, Vol.20, pp.693-702, 1977.
[44] Fukuda, S. and H. Hirosawa, “A wavelet-based texture feature set applied to classification of multifrequency polarimetric SAR images,” IEEE Trans. Geoscience and Remote Sensing, Vol.37, No.5, pp.2282-2286, 1999.
[45] Ganapathy, S. and T. G. Dennehy, “A new general triangulation method for planar contours,” SIGGRAPH Computer Graphics, Vol.16, pp.69-85, 1982.
[46] Heijden, F., “Edge and line feature extraction based on covariance models,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.17, No.1, pp.16-33, 1995.
[47] Hohne, K. H., B. Pflesser, A. Pommert, M. Riemer, T. Schiemann, R. Schubent, and U. Tiede, “A ‘virtual body’ model for surgical education and rehearsal,” IEEE Computer, Vol.29, pp.25-31, 1996.
[48] Hsieh, J.-W., M.-T. Ko, H.-Y. Mark Liao, and K.-C. Fan, “A new wavelet-based edge detector via constrained optimization,” Image and Vision Computing, Vol.15, No.7, pp.511-528, 1997.
[49] Kehtarnavaz, N. and R. J. P. de Figueiredo, “A Framework for surface reconstruction from 3D contours,” Computer Vision, Graphics, and Image Processing, Vol.42, pp.32-47, 1988.
[50] Kehtarnavaz, N., L. R. Simar, and R. J. P. de Figueiredo, “A syntactic / semantic technique for surface reconstruction from cross-sectional contours,” Computer Vision, Graphics, and Image Processing, Vol.42, pp.399-409, 1988.
[51] Keppel, E., “Approximating complex surfaces by triangulation of contour lines,” IBM J. Res. Dev., Vol.19, pp.2-11, 1975.
[52] Kim, H., W. Kim, and C. C. Li, “A performance study of two wavelet-based edge detectors,” in Proc. 11th Int. Conf. on Pattern Recognition, The Hague, Aug.30-Nov.3, 1992, pp.302-306.
[53] Kinebuchi, K., D. D. Muresan, and T. W. Parks, “Image interpolation using wavelet-based hidden Markov trees,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, May 7-11, 2001, pp.1957-1960.
[54] Li, X., and M. T. Orchard, “Spatially adaptive image denoising under overcomplete expansion,” in Proc. IEEE Int. Conf. Image Proc., Vancouver, BC, Nov.10-13, 2000, pp.300-303.
[55] Liu, J. and P. Moulin, “Image denoising based on scale-space mixture modeling of wavelet coefficients,” in Proc. IEEE Int. Conf. Image Proc., 1999, pp.386-390.
[56] Lürig, C., R. Grosso, T. Ertl, “Combining wavelet transform and graph theory for feature extraction and visualization,” in Proc. 8th EG Workshop on Visualization in Scientific Computing, Boulogne-sur-Mer, France, Apr.28-30, 1997, pp.137-144.
[57] Malfait, M. and D. Roose, “Wavelet-based image denoising using a Markov random field a priori model,” IEEE Trans. Image Processing, Vol.6, no.4, pp.549-565, 1997.
[58] Mallat, S. G., “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.11, No.7, pp.674-693, 1989.
[59] Mallat, S. and S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.14, No.7, pp.710-732, 1992.
[60] Meyers, D., S. Skinner, and K. Sloan, “Surfaces from contours,” ACM Trans. Graphics, Vol.11, pp.228-258, 1992.
[61] Mihcak, M. K., I. Kozintsev, and K. Ramchandran, “Low-complexity image denoising based on statistical modeling of wavelet coefficients,” IEEE Signal Processing Letters, Vol.6, No.12, pp.300-303, 1999.
[62] Moon, P. and G. De Jager, “An heuristic graph searching algorithm to find the boundary of apple images,” in Proc. IEEE Conf. Communications and Signal Processing, University of Cape Town, South African, Sep.11, 1992, pp.233-238.
[63] Morsy, K. A. and Y. Kanayama, “A new straight edge detection algorithm using direction-controlled edge tracking and random hitting,” in Proc. IEEE Int. Symp. Computational Intelligence in Robotics and Automation, Monterey, California, July 10-11, 1997, pp.398-405.
[64] Moulin, P. and J. Liu, “Analysis of multiresolution image denoising schemes using generalized-Gaussian and complexity priors,” IEEE Trans. Information Theory, Vol.45, No.4, pp.909-919, 1999.
[65] Oliva, J.-M., M. Perrin, S. Coquillart, “3D reconstruction of complex polyhedral shapes from contours using a simplified generalized Voronoi diagram,” Comput. Graph. Forum, Vol.15, pp.C397-408, 1996.
[66] Pal, N. R. and Pal, S. K., “A review on image segmentation techniques,” Pattern Recognition, Vol.26, No.9, pp.1277-1294, 1993.
[67] Pesquet, J.-C., H. Krim, D. Leporini, and E. Hamman, “Bayesian approach to best basis selection,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Atlanta, GA, May 7-10, 1996, 2634-2637.
[68] Rabiner, L., “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. of the IEEE, Vol.77, No.2, pp.257-285, 1989.
[69] Romberg, J. K., H. Choi, and R. G. Baraniuk, “Bayesian tree-structured image modeling using wavelet-domain hidden Markov models,” IEEE Trans. Image Processing, Vol.10, No.7, pp.1056-1068, 2001.
[70] Rosenthaler, L., F. Heitger, O, Kubler, and R. von der Heydt, “Detection of general edges and keypoints,” in Proc. 2nd European Conf. on Computer Vision, G. Sandini, Ed., 1992, pp.78-86.
[71] Rothwell, C. A., J. L. Mundy, W. hoffman, and v. D. Nguyen, “Driving vision by topology,” in Proc. Int. Symp. Comput. Vision, Coral Gables, FL, Nov. 1995, pp.395-400.
[72] Sarkar, S. and K. L. Boyer, “optimal infinite impulse response zero crossing based edge detectors,” Comput. Vision. Graph. Image Process.: Image Understanding, Vol.54, pp.224-243, 1991.
[73] Schumaker, L. L., “Reconstructing 3D objects from cross-sections,” in Computation of Curves and Surfaces, W, Dahmen, M. Gasca, and C.A. Micchelli, eds., Kluwer Academic, Dordrecht/Norwell, MA, 1989, pp.275-309.
[74] Şendur, L. and I. V. Selesnick, “A bivariate shrinkage function for wavelet-based denoising”, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Orlando, May13-17, 2002, pp.1261-1264.
[75] Şendur, L. and I. V. Selesnick, “Bivariate shrinkage functions for wavelet-based image denoising,” IEEE Trans. Signal Processing, Vol.50, No.11, pp.2744-2756, 2002.
[76] Şendur, L. and I. V. Selesnick, “Bivariate shrinkage with local variance estimation,” IEEE Signal Processing Letters, Vol.9, No.12, pp.438-441, 2002.
[77] Shantz, M., “Surface definition for branching contour-defined objects,” SIGGRAPH Computer Graphics, Vol.15, pp.242-270, 1981.
[78] Shapiro, J. M., “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans. Signal Processing, Vol.41, No.12, pp.3445-3462, 1993.
[79] Shin, M. C., D. B. Goldgof, K. W. Bowyer, and S. Nikiforou, “Comparison of edge detection algorithm using a structure from motion task,” IEEE Trans. Syst. Man Cybern. B, Vol.31, pp.589-601, 2001.
[80] Siddique, J. I. and K. E. Barner, “Wavelet-based multiresolution edge detection utilizing gray level edge maps,” in Proc. IEEE Int. Conf. on Image Processing, Chicago, IL, Oct.4-7, 1998, pp.550-554.
[81] Simoncelli, E. P., “Statistical models for images: compression, restoration and synthesis,” in Proc. 31st Asilomar Conf. Signals, Systems, and Computers, 1997, pp.673-678.
[82] Smith, S. M. and j. M. Brady, “SUSAN – A new approach to low level image processing,” Int. J. Comput. Vision, Vol.23, No.1. pp.45-78, 1997.
[83] Sobel,. I. E., Camera Models and Machine Perception, Stanford, CA: Stanford Univ. Press, 1970, pp.277-284.
[84] Solan, K. R. and J. Painter, “Pessimal guesses may be optimal: A counterintuitive search result,” IEEE Trans. Pattern Anal. Machine Intell., Vol.10, pp.949-955, 1988.
[85] Stollnitz, E. J., T. D. DeRose, and D. H. Salesin, Wavelets for Computer Graphics: Theory and Application, Morgan Kanfmann, San Francisco, 1996.
[86] Van der Zwet, P. M. J., and J. H. C. Reiber, “A new algorithm to detect irregular coronary boundaries: the gradient field transform,” in IEEE Proc. Computers in Cardiology, Los Alamitos, CA, Oct.11-14, 1992, pp.107-110.
[87] Wang, Y. F. and J. K. Aggarwal, “Surface reconstruction and representation of 3-D scenes,” Pattern Recognition, Vol.19, pp.197-207, 1986.
[88] Welzl, E. and B. Wolfers, “Surface reconstruction between simple polygons via angle criteria,” J. Symbolic Comput., Vol.17, pp.351-369, 1994.
[89] Wen, W. and A. Xia, “Verifying edges for visual inspection purposes,” Pattern Recognition Letters, Vol.20, pp.315-328, 1999.
[90] Xu, X. G., T. C. Chao, and A. Bozkurt, “Vip-man: an image-based whole-body adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations,” Journal of Health Physics, Vol.78, No.5, pp.476-486, 2000.
[91] Zyda, M. J., A. R. Jones, and P. G. Hogan, “Surface construction from planar contours,” Comput. & Graphics, Vol.11, pp.393-408, 1987. |