博碩士論文 86345007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.218.73.233
姓名 石明于(Ming-Yu Shih)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 小波影像處理與切面影像之模型重建
(Wavelet-based Image Processing and Cross-section Model Reconstruction)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 從一連串的平行切面影像重建出物體或人體器官的3D表面模型是醫學及工業上的一項重要應用;例如,偵測、診斷、模擬、及訓練等。在本論文的研究中,我們提出了三項相關技術:影像雜訊去除 (image denoising)、邊線偵測 (edge detection)、及模型重建 (model reconstruction) 來達成自動化重建表面模型的目的。首先,我們提出一個關聯隱藏馬可夫樹模式 (contextual hidden Markov tree model) 來分析影像小波係數間的關係,再配合經驗貝氏估計法 (empirical Bayesian estimation) 去除影像中的高斯雜訊。隱藏馬可夫樹模式 (hidden Markov tree model) 是作用在小波係數上的一個新穎統計模式。雖然,隱藏馬可夫樹模式可以完全描述小波係數樹狀結構的持續性 (persistence property),但並不能將同層小波係數間的群聚性 (clustering property) 描述得很好。而我們提出的關聯隱藏馬可夫樹模式則是透過對於每個小波係數增加延伸係數 (extended coefficient) 來加強隱藏馬可夫樹模式的群聚性,而且不改變小波樹狀結構的特性。在實驗中,我們所提的關聯隱藏馬可夫樹模式作ㄧ維信號及二維影像雜訊去除,其結果幾乎都比原來的隱藏馬可夫樹模式所作的結果好;而且,對於相同雜訊去除的結果,我們的模式都比隱藏馬可夫樹模式需要更少的迴圈次數來估計參數。
其次,我們提出一個兩階段邊線偵測的方法來擷取物體輪廓。對一張影像而言,坡度影像 (gradient image) 是用來描述相鄰點間的差異。傳統的邊線偵測方法只依賴坡度影像的資訊來擷取邊線,其結果容易產生雜訊及斷線。在本研究中,我們提出了關聯濾波邊線偵測器 (contextual-filtered edge detector) 及多重解析度邊線追蹤器 (multiscale edge tracker) 的兩階段邊線偵測法來解決上述問題。邊線偵測器偵測出大部份的邊線,而追蹤器則進一步精煉出邊線結果;如此能減少雜訊及模糊的影響。而且,我們所擷取出來的邊線幾乎都是單一像素寬度的邊線,非常適合後續的直接應用。在實驗中,我們以六個小波基底函數 (wavelet basis function),並以品質及量化的比較 (qualitative and quantitative comparisons) 方式分析我們的方法與其他方法的差異。實驗結果顯示,我們所提的方法都比其他以小波為基礎的邊線偵測器及Canny偵測器更能擷取出適當的邊線結果。
最後,我們提出一個多樣性的表面模型重建方法來從一連串的平行輪廓中重建出物體表面模型。如同大部份類似目的的方法,我們所提的方法也僅考慮兩層相鄰切片影像中物體輪廓的對應及三角化而已,而整個物體的表面模型則可經由整合所有三角網格的結果來獲得。然而,我們所提的方法比其他方法使用了更多的準則 (criterion) 及規則 (rule) 來獲得更合理及較少扭曲現象的模型。我們的方法包含了七個步驟:(i) 首先找出相鄰兩層間輪廓配對的候選者;(ii) 從候選配對輪廓中找尋特徵點 (feature point) 加以配對連結;(iii) 使用區域性追蹤法來找尋相似輪廓段落;(iv) 找尋出交錯線段並三角化該片段;(v) 找尋兩層輪廓間最近點並連結;(vi) 擷取出裂縫多邊形;最後,(vii) 我們提出一個多目標動態規畫演算法 (multi-objective dynamic programming) 將相似輪廓段落及裂縫多邊形編織成幾個三角網格,並與之前的片斷網格整合成一個完整的三角網格。比較我們的方法與其他方法,我們的方法有下列優點:(1) 每一層切片影像允許有多個及巢狀的輪廓;(2) 我們有一個合理的資料結構來描述切片影像中輪廓的關係以幫助後續的表面模型重建;(3) 我們提出的方法可多方面的考量以構建合理且較少扭曲的模型;(4) 對於複雜的模型,我們也能夠合適地重建出來。
摘要(英) Reconstructing 3-D surface models from a series of parallel planar cross sections of objects or bodies is important for medical and industrial applications, such as detection, diagnosis, simulation, and training. In this study, we propose three techniques: image denoising, edge detection, and model reconstruction to achieve the purpose of automatic surface model reconstruction. Firstly, we propose a wavelet-based image denoising method using the proposed contextual hidden Markov tree (CHMT) model to remove noise from images corrupted with Gaussian noise. The hidden Markov tree (HMT) model is a novel statistical model for image processing on wavelet domain. The HMT model captures the persistence property of wavelet coefficients, but lacks the clustering property of wavelet coefficients within a wavelet scale. The proposed CHMT model enhances the clustering property of the HMT model by adding extended coefficients associated with wavelet coefficients without changing the wavelet tree structure. In experiments, the proposed CHMT model produced almost better results than the HMT model produced for image denoising. Furthermore, the CHMT model needs fewer iterations of training than the HMT model needs to get the same denoised results.
Secondly, a two-stage edge extraction approach is proposed to extract object contours. A gradient image describes the differences of neighboring pixels in the original image. Traditional edge detectors only depending on the gradient information will result in noised and broken edges. Here we propose the two-stage edge extraction approach with contextual-filtered edge detector and multiscale edge tracker to solve the problems. The edge detector detects most edges and the tracker refines the results as well as reduces the noised or blurred influence; moreover, the extracted results are nearly thinned edges which are suitable for further applications. Based on six wavelet basis functions, qualitative and quantitative comparisons with other methods show that the proposed approach extracts better edges than the other wavelet-based edge detectors and Canny detector extract.
Finally, a versatile method for surface model reconstruction from serial planar contours is proposed. Like most similar-purposed methods, the proposed method tiles triangles between contours on every two adjacent slice images, then the surface model is constructed by aggregating all tiled triangles; however, the proposed method uses more criteria and rules than the other methods use to construct reasonable and less-distorted models. The proposed method consists of seven stages: (i) contour-pair candidates are first found between two adjacent slices; (ii) feature points on the contour pairs are extracted to link; (iii) similar contour segments are extracted by a tracking algorithm; (iv) cross lines are found to tile partial triangles; (v) near points are found to link; (vi) cleft polygons are extracted; at last, (vii) the proposed multi-objective dynamic programming algorithm is used to construct the triangulated strips formed by the extracted similar contour segments and cleft polygons. Comparing with other similar-purposed methods, the proposed method has the advantages: (i) more than one (cross) contour are allowed in a slice image; (ii) reasonable data structure describing the relationship among contours on a slice image is proposed for helping the surface reconstruction; (iii) the proposed method is versatile to construct reasonable and less-distorted models; (iv) complex models can be properly reconstructed.
關鍵字(中) ★ 小波轉換
★ 隱藏馬可夫模式
★ 表面模型重建
★ 雜訊去除
★ 邊線偵測
★ 影像處理
關鍵字(英) ★ hidden Markov model
★ surface model reconstruction
★ edge detection
★ image processing
★ noise removal
★ wavelet transformation
論文目次 中文摘要 i
Abstract iii
誌謝 v
Contents vi
List of Figures ix
List of Tables xiv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Overview of the study 4
1.2.1 Wavelet-based image denoising using contextual hidden Markov tree model 4
1.2.2 A wavelet-based multiresolution edge detection and tracking 11
1.2.3 Versatile surface reconstruction from serial planar contours 14
1.3 Organization of dissertation 20
Chapter 2 Related Work 21
2.1 Wavelet-based statistical models and image denoising 21
2.2 Edge detection 27
2.3 Surface model reconstruction between two parallel slices 32
Chapter 3 Wavelet-based Image Denoising Using Contextual Hidden Markov Tree Model 37
3.1 Preliminaries 37
3.1.1 Wavelet transform for images 37
3.1.2 The HMT model 39
3.2 The proposed CHMT model 41
3.2.1 Contextual HMT model 43
3.2.2 Parameter training using EM algorithm 44
3.2.3 Denoising 51
3.3 Experiments 54
Chapter 4 A Wavelet-based Multiresolution Edge Detection and Tracking 73
4.1 The generation of multiresolution shift-invariant gradient images 73
4.1.1 Generation of shift-invariant gradient images 74
4.1.2 Generation of multiresolution gradient images 75
4.2 Edge detection 76
4.3 Edge tracking 78
4.3.1 Extraction of starting points 78
4.3.2 Multiscale local maximum searching 79
4.4 Experiments 81
Chapter 5 Versatile Surface Reconstruction from Serial Planar Contours 95
5.1 Correspondence of contours 95
5.1.1 The correspondence rule 96
5.1.2 Feature point searching and matching 97
5.1.3 Extracting similar segments 101
5.1.4 Finding cross lines 103
5.1.5 Connecting near points 104
5.1.6 Extracting cleft polygons 104
5.2 Tiling triangles 105
5.2.1 Multi-objective dynamic programming algorithm 105
5.2.2 Strip triangulation 107
5.2.3 Cleft polygon triangulation 108
5.3 Experiments 109
Chapter 6 Conclusions and Future Work 117
6.1 Conclusions 117
6.2 Future work 120
References 122
參考文獻 [1] Achim, A., A. Bezerianos, and P. Tsakalides, “Novel Bayesian multiscale method for speckle removal in medical ultrasound images,” IEEE Trans. Medical Imaging, Vol.20, No.8, pp.772-783, 2001.
[2] Achim, A., A. Bezerianos, and P. Tsakalides, “Ultrasound image denoising via maximum a posteriori estimation of wavelet coefficients,” in Proc. 23-rd Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Oct.25-28, 2001, pp.2553-2556.
[3] Arsenault, H. J. and G. April, “Properties of speckle integrated with a finite aperture and logarithmically transformed,” J. Opt. Soc. Amer., Vol.66, pp.1160-1163, 1976.
[4] Aydin, T., Y. Yemez, E. Anarim, and B. Sankur, “Multidirectional and multiscale edge detection via M-band wavelet transform,” IEEE Trans. Image Processing, Vol.5, No.9, pp.1370-1377, 1996.
[5] Bajaj, C. L., E. J. Coyle, and K.-N. Lin, “Arbitrary topology shape reconstruction from planar cross sections,” Graphical Models and Image Processing, Vol.58, No.6, pp.524-543, 1996.
[6] Barequet, G. and M. Sharir, “Piecewise-linear interpolation between polygonal slices,” Computer Vision and Image Understanding, Vol.63, No.2, pp.251-272, 1996.
[7] Barequet, G. and B. Wolfers, “Optimizing a strip separating two polygons,” Graphical Models and Image Processing, Vol.60, No.3, pp.214-221, 1998.
[8] Barequet, G., D. Shapiro, and A. Tal, “Multilevel sensitive reconstruction of polyhedral surfaces from parallel slices,” The Visual Computer, Vol.16, No.2, pp.116-133, 2000.
[9] Barequet, G., M. T. Goodrich, A. Levi-Steiner, and D. Steiner, “Contour interpolation by straight skeletons,” Graphical Models, Vol.66, No.4, pp.245-260, 2004.
[10] Batnitzky, S., H. I. Price, P. N. Cook, L. T. Cook, and S. J. Dwyer III, “Three-dimensional computer reconstruction from surface contours for head CT examinations,” J. Comput. Assisted Tomography, Vol.5, pp.60-67, 1981.
[11] Beltrán, J. R., J. García-Lucía, and J. Navarro, “Edge detection and classification using Mallat’s wavelet,” in IEEE Proc. 1st Int. Conf. Image Processing, Austin, Texas, Nov.13-16, 1994, pp.293-297.
[12] Beltrán, J. R., F. Beltran and A. Estopañan, “Multiresolution edge detection and classification: noise characterization,” in Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, San Diego, CA, Oct.11-14, 1998, pp.4476-4481.
[13] Bergholm, F., “Edge focusing,” IEEE Trans. Pattern anal. Machine Intell., Vol.PAMI-9, pp.627-641, 1987.
[14] Bilmes, J., A Gentle Tutorial of The EM Algorithm and Its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models, Technical Report TR-97-021, International Computer Science Institute, Berkeley CA, April 1998.
[15] Black, M., G. Sapiro, D. Marimont, and D. Heeger, “Robust anisotropic diffusion,” IEEE Trans. Image Processing, Vol.7, pp.421-432, 1998.
[16] Boissonnat, J. D., “Shape reconstruction from planar cross sections,” Computer Vision, Graphics, and Image Processing, Vol.44, pp.1-29, 1988.
[17] Boissonnat, J. D. and B. Geiger, Three-dimensional Reconstruction of Complex Shapes Based on The Delaunay Triangulation, Technical Report 1697, Inria-Sophia Antipolis, 1992.
[18] Borran, M. J. and R. D. Nowak, “Wavelet-based denoising using hidden Markov models,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, May 7-11, 2001, pp.3925-3928.
[19] Bouman, C. and M. Shapiro, “A multiscale random field model for Bayesian image segmentation,” IEEE Trans. Image Processing, Vol.3, No.2, pp.162-177, 1994.
[20] Busch, C., “Wavelet based texture segmentation of multi-modal tomographic images,” Comput. & Graphics, Vol.21, No.3, pp.347-358, 1997.
[21] Canny, J., “A computational approach to edge detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.8, No.6, pp.679-698, 1986.
[22] Chang, S. G., B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Trans. Image Processing, Vol.9, No.9, pp.1522-1531, 2000.
[23] Chang, S. G., B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Processing, Vol.9, No.9, pp.1532-1546, 2000.
[24] Chang, T. and C.-C. J. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Processing, Vol.2, No.4, pp.429-440, 1993.
[25] Cheng, S. W. and T. K. Dey, “Improved construction of Delaunay based contour surfaces,” in Proc. the 5th ACM Symp. on Solid Modeling and Applications, Ann Arbor, MI, 1999, pp.322-323.
[26] Chickanosky, V. and G. Mirchandani, “Wreath products for edge detection,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Seattle, WA, May 12-15, 1998, Vol.5, pp.2953-2956.
[27] Chipman, H. A., E. D. Kolaczyk, and R. E. McCulloch, “Adaptive Bayesian wavelet shrinkage,” J. Ameri. Stat. Assoc., Vol.440, No.92, pp.1413-1421, 1997.
[28] Choi, H. and R. G. Baraniuk, “Multiscale image segmentation using wavelet-domain hidden Markov models,” IEEE Trans. Image Processing, Vol.10, No.9, pp.1309-1321, 2001.
[29] Christiansen, H. N. and T. W. Sederberg, “Conversion of complex contour line definitions into polygonal element mosaics,” SIGGRAPH Computer Graphics, Vol.13, pp.187-192, 1978.
[30] Chun, S. L., P. C. Chung, and C. F. Chen, “Unsupervised texture segmentation via wavelet transform,” Pattern Recognition, Vol.30, No.5, pp.729-742, 1997.
[31] Coifman, R. R. and D. L. Donoho, “Translation-invariant de-noising,” Lecture Notes in Statistics: Wavelet and Statistics, 1995, pp.125-150.
[32] Cook, L. T., P. N. Cook, K. R. Lee, S. Batnitzky, B. Y. S. Wong, S. L. Fritz, J. Ophir, S. J. Dwyer III, L. R. Bigongiari, and A. W. Templeton, “An algorithm for volume estimation based on polyhedral approximation,” IEEE Trans. Biomed. Eng., Vol.27, pp.493-500, 1980.
[33] Cormen, T. H., C. E. Leiserson, and R. L. Rivest, eds., Introduction to Algorithms, McGraw-Hill Book Company, 1996.
[34] Crouse, M. S. and R. G. Baraniuk, “Contextual hidden Markov models for wavelet-domain signal processing,” in Proc. 31st Asilomar Conf. Signals, System, and Computers, 1997, pp.95-100.
[35] Crouse, M. S., R. D. Nowak, and R. G. Baraniuk, “Wavelet-based statistical signal processing using hidden Markov models,” IEEE Trans. Signal Processing, Vol.46, No.4, pp.886-902, 1998.
[36] Donoho, D. and I. Johnstone, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika, Vol.81, No.3, pp.425-455, 1994.
[37] Ekoule, A. B., F. C. Peyrin, and C. L. Odet, “A triangulation algorithm from arbitrary shaped multiple planar contours,” ACM Trans. Graphics, Vol.10, No.2, pp.182-199, 1991.
[38] Falcão, A. X., J. K. Udupa, and F. K. Miyazawa, “An ultra-fast user-steered image segmentation paradigm: live wire on the fly,” IEEE Trans. Medical Imaging, Vol.19, No.1, pp.55-62, 2000.
[39] Fan, G. and X.-G. Xia, “Wavelet-based statistical image processing using hidden Markov tree model,” in Proc. the 2000 Conf. on Information Sciences and Systems, 2000, pp.TA5-31-TA5-36.
[40] Fan, G. and X.-G. Xia, “Improved hidden Markov models in the wavelet-domain,” IEEE Trans. Signal Processing, Vol.49, No.1, pp.115-120, 2001.
[41] Fan, G. and X.-G. Xia, “Image denoising using local contextual hidden Markov model in the wavelet domain,” IEEE Signal Processing Letter, Vol.8, No.5, pp.125-128, 2001.
[42] Feng, L., C. Y. Suen, Y. Y. Tang, L. H. Yang, “Edge extraction of images by reconstruction using wavelet decomposition details at different resolution levels,” Int. Journal Pattern Recognition and Artificial Intelligence, Vol.14, No.6, pp.779-793, 2000.
[43] Fuchs, H., Z. M. Kedem, and S. P. Uselton, “Optimal surface reconstruction from planar contours,” Commun. ACM, Vol.20, pp.693-702, 1977.
[44] Fukuda, S. and H. Hirosawa, “A wavelet-based texture feature set applied to classification of multifrequency polarimetric SAR images,” IEEE Trans. Geoscience and Remote Sensing, Vol.37, No.5, pp.2282-2286, 1999.
[45] Ganapathy, S. and T. G. Dennehy, “A new general triangulation method for planar contours,” SIGGRAPH Computer Graphics, Vol.16, pp.69-85, 1982.
[46] Heijden, F., “Edge and line feature extraction based on covariance models,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.17, No.1, pp.16-33, 1995.
[47] Hohne, K. H., B. Pflesser, A. Pommert, M. Riemer, T. Schiemann, R. Schubent, and U. Tiede, “A ‘virtual body’ model for surgical education and rehearsal,” IEEE Computer, Vol.29, pp.25-31, 1996.
[48] Hsieh, J.-W., M.-T. Ko, H.-Y. Mark Liao, and K.-C. Fan, “A new wavelet-based edge detector via constrained optimization,” Image and Vision Computing, Vol.15, No.7, pp.511-528, 1997.
[49] Kehtarnavaz, N. and R. J. P. de Figueiredo, “A Framework for surface reconstruction from 3D contours,” Computer Vision, Graphics, and Image Processing, Vol.42, pp.32-47, 1988.
[50] Kehtarnavaz, N., L. R. Simar, and R. J. P. de Figueiredo, “A syntactic / semantic technique for surface reconstruction from cross-sectional contours,” Computer Vision, Graphics, and Image Processing, Vol.42, pp.399-409, 1988.
[51] Keppel, E., “Approximating complex surfaces by triangulation of contour lines,” IBM J. Res. Dev., Vol.19, pp.2-11, 1975.
[52] Kim, H., W. Kim, and C. C. Li, “A performance study of two wavelet-based edge detectors,” in Proc. 11th Int. Conf. on Pattern Recognition, The Hague, Aug.30-Nov.3, 1992, pp.302-306.
[53] Kinebuchi, K., D. D. Muresan, and T. W. Parks, “Image interpolation using wavelet-based hidden Markov trees,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, May 7-11, 2001, pp.1957-1960.
[54] Li, X., and M. T. Orchard, “Spatially adaptive image denoising under overcomplete expansion,” in Proc. IEEE Int. Conf. Image Proc., Vancouver, BC, Nov.10-13, 2000, pp.300-303.
[55] Liu, J. and P. Moulin, “Image denoising based on scale-space mixture modeling of wavelet coefficients,” in Proc. IEEE Int. Conf. Image Proc., 1999, pp.386-390.
[56] Lürig, C., R. Grosso, T. Ertl, “Combining wavelet transform and graph theory for feature extraction and visualization,” in Proc. 8th EG Workshop on Visualization in Scientific Computing, Boulogne-sur-Mer, France, Apr.28-30, 1997, pp.137-144.
[57] Malfait, M. and D. Roose, “Wavelet-based image denoising using a Markov random field a priori model,” IEEE Trans. Image Processing, Vol.6, no.4, pp.549-565, 1997.
[58] Mallat, S. G., “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.11, No.7, pp.674-693, 1989.
[59] Mallat, S. and S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.14, No.7, pp.710-732, 1992.
[60] Meyers, D., S. Skinner, and K. Sloan, “Surfaces from contours,” ACM Trans. Graphics, Vol.11, pp.228-258, 1992.
[61] Mihcak, M. K., I. Kozintsev, and K. Ramchandran, “Low-complexity image denoising based on statistical modeling of wavelet coefficients,” IEEE Signal Processing Letters, Vol.6, No.12, pp.300-303, 1999.
[62] Moon, P. and G. De Jager, “An heuristic graph searching algorithm to find the boundary of apple images,” in Proc. IEEE Conf. Communications and Signal Processing, University of Cape Town, South African, Sep.11, 1992, pp.233-238.
[63] Morsy, K. A. and Y. Kanayama, “A new straight edge detection algorithm using direction-controlled edge tracking and random hitting,” in Proc. IEEE Int. Symp. Computational Intelligence in Robotics and Automation, Monterey, California, July 10-11, 1997, pp.398-405.
[64] Moulin, P. and J. Liu, “Analysis of multiresolution image denoising schemes using generalized-Gaussian and complexity priors,” IEEE Trans. Information Theory, Vol.45, No.4, pp.909-919, 1999.
[65] Oliva, J.-M., M. Perrin, S. Coquillart, “3D reconstruction of complex polyhedral shapes from contours using a simplified generalized Voronoi diagram,” Comput. Graph. Forum, Vol.15, pp.C397-408, 1996.
[66] Pal, N. R. and Pal, S. K., “A review on image segmentation techniques,” Pattern Recognition, Vol.26, No.9, pp.1277-1294, 1993.
[67] Pesquet, J.-C., H. Krim, D. Leporini, and E. Hamman, “Bayesian approach to best basis selection,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Atlanta, GA, May 7-10, 1996, 2634-2637.
[68] Rabiner, L., “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. of the IEEE, Vol.77, No.2, pp.257-285, 1989.
[69] Romberg, J. K., H. Choi, and R. G. Baraniuk, “Bayesian tree-structured image modeling using wavelet-domain hidden Markov models,” IEEE Trans. Image Processing, Vol.10, No.7, pp.1056-1068, 2001.
[70] Rosenthaler, L., F. Heitger, O, Kubler, and R. von der Heydt, “Detection of general edges and keypoints,” in Proc. 2nd European Conf. on Computer Vision, G. Sandini, Ed., 1992, pp.78-86.
[71] Rothwell, C. A., J. L. Mundy, W. hoffman, and v. D. Nguyen, “Driving vision by topology,” in Proc. Int. Symp. Comput. Vision, Coral Gables, FL, Nov. 1995, pp.395-400.
[72] Sarkar, S. and K. L. Boyer, “optimal infinite impulse response zero crossing based edge detectors,” Comput. Vision. Graph. Image Process.: Image Understanding, Vol.54, pp.224-243, 1991.
[73] Schumaker, L. L., “Reconstructing 3D objects from cross-sections,” in Computation of Curves and Surfaces, W, Dahmen, M. Gasca, and C.A. Micchelli, eds., Kluwer Academic, Dordrecht/Norwell, MA, 1989, pp.275-309.
[74] Şendur, L. and I. V. Selesnick, “A bivariate shrinkage function for wavelet-based denoising”, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Orlando, May13-17, 2002, pp.1261-1264.
[75] Şendur, L. and I. V. Selesnick, “Bivariate shrinkage functions for wavelet-based image denoising,” IEEE Trans. Signal Processing, Vol.50, No.11, pp.2744-2756, 2002.
[76] Şendur, L. and I. V. Selesnick, “Bivariate shrinkage with local variance estimation,” IEEE Signal Processing Letters, Vol.9, No.12, pp.438-441, 2002.
[77] Shantz, M., “Surface definition for branching contour-defined objects,” SIGGRAPH Computer Graphics, Vol.15, pp.242-270, 1981.
[78] Shapiro, J. M., “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans. Signal Processing, Vol.41, No.12, pp.3445-3462, 1993.
[79] Shin, M. C., D. B. Goldgof, K. W. Bowyer, and S. Nikiforou, “Comparison of edge detection algorithm using a structure from motion task,” IEEE Trans. Syst. Man Cybern. B, Vol.31, pp.589-601, 2001.
[80] Siddique, J. I. and K. E. Barner, “Wavelet-based multiresolution edge detection utilizing gray level edge maps,” in Proc. IEEE Int. Conf. on Image Processing, Chicago, IL, Oct.4-7, 1998, pp.550-554.
[81] Simoncelli, E. P., “Statistical models for images: compression, restoration and synthesis,” in Proc. 31st Asilomar Conf. Signals, Systems, and Computers, 1997, pp.673-678.
[82] Smith, S. M. and j. M. Brady, “SUSAN – A new approach to low level image processing,” Int. J. Comput. Vision, Vol.23, No.1. pp.45-78, 1997.
[83] Sobel,. I. E., Camera Models and Machine Perception, Stanford, CA: Stanford Univ. Press, 1970, pp.277-284.
[84] Solan, K. R. and J. Painter, “Pessimal guesses may be optimal: A counterintuitive search result,” IEEE Trans. Pattern Anal. Machine Intell., Vol.10, pp.949-955, 1988.
[85] Stollnitz, E. J., T. D. DeRose, and D. H. Salesin, Wavelets for Computer Graphics: Theory and Application, Morgan Kanfmann, San Francisco, 1996.
[86] Van der Zwet, P. M. J., and J. H. C. Reiber, “A new algorithm to detect irregular coronary boundaries: the gradient field transform,” in IEEE Proc. Computers in Cardiology, Los Alamitos, CA, Oct.11-14, 1992, pp.107-110.
[87] Wang, Y. F. and J. K. Aggarwal, “Surface reconstruction and representation of 3-D scenes,” Pattern Recognition, Vol.19, pp.197-207, 1986.
[88] Welzl, E. and B. Wolfers, “Surface reconstruction between simple polygons via angle criteria,” J. Symbolic Comput., Vol.17, pp.351-369, 1994.
[89] Wen, W. and A. Xia, “Verifying edges for visual inspection purposes,” Pattern Recognition Letters, Vol.20, pp.315-328, 1999.
[90] Xu, X. G., T. C. Chao, and A. Bozkurt, “Vip-man: an image-based whole-body adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations,” Journal of Health Physics, Vol.78, No.5, pp.476-486, 2000.
[91] Zyda, M. J., A. R. Jones, and P. G. Hogan, “Surface construction from planar contours,” Comput. & Graphics, Vol.11, pp.393-408, 1987.
指導教授 曾定章(Din-Chang Tseng) 審核日期 2005-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明