博碩士論文 86346002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.222.20.30
姓名 張順欽(Shuenn-Chin Chang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 台北市空氣品質近十年來變動型態及其顯現的意義
(The implication of Taipei City air quality variation patterns from the last ten years)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文首度利用1994年至2003年環保署設置於台北市五個自動空氣品質監測站的監測數據,研究目標是評估這10年來空氣污染管制在台北市的成效,探討二次污染物及大陸沙塵的影響。本文首先藉由車輛污染源排放減量,檢討對臭氧生成的影響,然後以低光化強度日子的PM10及PM2.5對於一氧化碳(CO)或氣膠元素碳(EC)濃度比值,推估高光化強度日子的原生污染物濃度,再據以推估不同光化強度日子二次氣膠的生成,最後分析大陸沙塵傳輸影響台北市空氣品質的衝擊。
從1994年至2003年台北市原生空氣污染物濃度顯著地下降,驗證了空氣污染管制成效。每日最大小時臭氧濃度(O3, max)在前驅物濃度減量後大於120 ppb的日數略有減少,但每日最大八小時臭氧移動平均濃度(O3, 8hr)大於60 ppb的日數則增加了一倍。雖然星期日交通量減少,原生污染物濃度顯著降低,但對於降低O3, max幫助有限。本文以O3, max濃度區分光化強度,當O3, max大於80 ppb為光化強度高的日子;O3, max小於60 ppb為光化強度低的日子。這是為了後續探討在不同光化強度下,NOX與揮發性有機物(VOCs)相互間複雜的關係。從NOX/NMHC比例的分析結果顯示台北市O3濃度生成受到揮發性有機物的限制(VOCs limited),較大幅度的VOCs減量與較小幅度的NOX減量,才有助於控制高濃度O3的生成。
當光化強度高,二次氣膠的生成是可預期的。本文推估二次氣膠生成的尖峰值約落後O3尖峰值2至3小時,這個落後時間可能是都市大氣中氣體前驅物從核凝到氣膠生成所需要的時間。在光化強度最高的日子(當O3, max大於120 ppb時),二次氣膠濃度平均約佔PM10的 37%,其中約有86至96%是二次PM2.5,顯示光化學反應生成的二次氣膠大多分布在細粒徑。再者,本文所探討的這段期間所推估的二次氣膠佔PM10比例逐漸增加,顯示控制前驅污染物以減少二次氣膠生成,對於台北市都會區將愈來愈重要。
環保署北部微粒超級測站提供台北都會區PM2.5及其成分濃度,包括PM2.5 氣膠硫酸鹽(SO42–)、氣膠硝酸鹽(NO3–)、氣膠有機碳(OC)及EC等的連續監測數值。2002年PM2.5濃度遠高於美國環保署PM2.5空氣品質標準,其中有機物為最主要成分。在光化強度高的日子(O3, max大於80 ppb),PM2.5 NO3–及OC,呈現明顯的日夜濃度變動,顯示二次氣膠的生成,因此控制本地污染源排放前驅污染物將有助於降低這些氣膠成分濃度。但是SO42–由於日夜濃度變化不大,顯示這種氣膠成分分布區域廣泛要降低氣膠SO42–濃度需要對更大地理尺度做污染源控制。
分析台北市五個空氣品質監測站1994至2003年間181個PM10濃度大於97 ?g m-3事件日,顯示屬於本地污染累積或二次光化學污染的日數逐年下降,然而,受到大陸沙塵或長程傳輸影響的日數卻自1994年7.1%增加到1999年以後超過40%。顯示大陸沙塵或污染長程傳輸對於台北市空氣品質的影響愈來愈重大。
本文以環保署空氣品質長期監測數據,評估台北市空氣品質近十年來變化趨勢和污染管制對空氣品質改善的成效、建議台北市需降低本地VOCs排放以減少光化學污染物的生成、驗證二次氣膠的重要性,預期未來台北市空氣品質受到外來污染長程傳輸的影響會更加顯著。
摘要(英) In this study, data collected from Taiwan Environmental Protection Administration’s (TEPA) five air quality monitoring stations in Taipei City from the year 1994 to 2003 are firstly analyzed. The objective of this study is to evaluate the effectiveness of air pollution control measures in Taipei City, and to assess the impact of secondary pollutants and dust storms. First, the effect of the reduction of vehicle emissions on ozone formation is evaluated. Then, the proportions of PM10 and PM2.5 to carbon monoxide and PM2.5 to elemental carbon during days of low photochemical activity are used to determine the amount of primary pollutants during days of high photochemical activity for estimating the formation of secondary aerosols under different photochemical activities. Finally, the analysis is conducted on the impact of particulate matter transported from dust storms in China on air quality in Taipei City.
The concentrations of primary pollutants in Taipei City significantly decreased from the year 1994 to 2003 that goes in parallel with the government’s efforts to control air pollution over the same period. The number of days with the daily maximum hourly ozone concentration (O3, max) exceeds 120 ppb has steadily decreased since the start from the study. However, the number of days with the daily maximum 8-hour average ozone concentration (O3, 8hr) exceeds 60 ppb has doubled. Reduced Sunday traffic volumes have resulted in significantly decreased concentrations of primary pollutants, but the measure has only limited effect on reducing O3, max concentrations. The days are classified into days with low or high photochemical activity from daily O3, max less than 60 ppb or greater than 80 ppb. This follows from the complex interrelationship between NOX and VOCs concentrations under different photochemical activities. The results obtained from examinations of the NOX/NMHC ratios indicates that ozone pollution in Taipei City during high photochemical activity is VOC-limited, and reveal that a greater reduction in VOCs and a lesser reduction in NOX offers the most effective control of high ozone concentrations.
The production of secondary aerosols can be expected under strong photochemical activity. The results show that the maximum concentration of secondary aerosols occurred 2 to 3 hours after the time of maximum ozone concentration. This lag time may be an approximation of the time needed for aerosol formation after nucleation from gas precursors in the urban atmosphere. Under the highest photochemical activity when O3, max exceeds 120 ppb, secondary aerosols are estimated to contribute 37% of the PM10 concentration on average with about 86 to 96% of secondary PM2.5. This indicates that secondary aerosols formed from photochemical reactions are distributed mostly in the fine mode. Moreover, the estimated proportion of secondary aerosol of the total PM10 is increasing over the study period indicates that the abatement of secondary aerosols through reduction of precursor emissions is of increasing importance in the metropolis of Taipei.
TEPA’s aerosol supersite in Taipei County provided continuous monitoring data of PM2.5 mass and its compositions in terms of SO42–, NO3–, OC, and EC concentrations for this study. Results show that PM2.5 mass concentration in 2002 is far above the United States Environmental Protection Agency’s air quality standard for PM2.5 with major component of organic matters. For days with high photochemical activity (O3, max over 80 ppb), significant diurnal variations of NO3– and OC indicating the formation of secondary aerosols and the control of local precursor emissions are needed. The diurnal variation of SO42– is significantly lower than that of NO3–, OC, and EC showing weak correlation with local emissions, which indicates its uniform distribution in regional scale. This finding suggests that source controls on a larger geographic scale are needed to reduce SO42– concentrations.
Analyses of 181 PM10 episodes with concentrations greater than 97 ?g m–3 observed at the TEPA five stations in Taipei City from 1994 to 2003 demonstrate that the percentage of days affected by local pollution accumulation or photochemical pollution are decreasing, but the percentage of days impacted by yellow dusts or long-range transport from China are increasing from 7.1% in 1994 to more than 40% after 1999. This indicates that the impact of yellow dusts or long-range transport from China on air quality in Taipei City has become more significant.
In summary, long-term air quality data from TEPA are used in this study for assessing the air quality trends over the last decade and the performance of air pollution control measures implemented in Taipei City, proposing a reduction on local VOCs emissions for lowering the formation of photochemical pollutants, and demonstrating the significance of secondary aerosols. The air quality of Taipei City may be impacted significantly by long-range transport from China in the future.
關鍵字(中) ★ 大陸沙塵
★ 二次氣膠
★ 揮發性有機物為限制因子
★ 臭氧生成削減
★ 空氣品質監測
關鍵字(英) ★ ozone formation reduction
★ yellow dusts
★ secondary aerosol
★ VOC-limited
★ air quality monitoring
論文目次 目 錄
摘 要 I
ABSTRACT III
誌 謝 VII
圖目錄 XIII
表目錄 XIX
第一章 前言 1
1.1 研究動機 1
1.2 研究內容 2
1.3 研究目的 4
第二章、文獻回顧 7
2.1 空氣品質特性分析 7
2.2 空氣污染物週循環分析 9
2.3 二次氣膠的形成與影響 10
2.4 主成分分析方法與應用 13
2.5 大陸沙塵的發生與影響 13
第三章、研究方法 17
3.1 研究架構與流程 17
3.2研究區域與數據來源 19
3.3 監測儀器原理 20
3.3.1 空氣品質監測網管理 20
3.3.2 指標空氣污染物監測儀器原理 21
3.3.3 微粒超級測站監測儀器 23
3.4 數據處理 24
3.4.1 台北市的空氣品質計算方式 24
3.4.2 有效值的定義 26
3.5 數據分析方法 27
3.5.1 EQQ plots 27
3.5.2 光化強度分級 27
3.5.3二次氣膠推估模式 29
3.5.4主成分分析 35
第四章、結果與討論 37
4.1從空氣品質長期變動趨勢評估台北市空氣污染管制績效 37
4.1.1 交通量及氣象 37
4.1.2 1994年至2003年污染物逐時濃度日夜變化 40
4.1.3 1994年至2003年污染物濃度變化特徵分析 45
4.1.4 討論 57
4.2 由台北市1994年至2003年機動車輛污染源排放減量評估臭氧濃度的變化 63
4.2.1 台北市機動車輛排放特性 63
4.2.2 臭氧超過空氣品質標準情形 65
4.2.3 機動車輛排放減量對於臭氧濃度變化的影響 66
4.2.4 台北市境外臭氧傳輸的影響 83
4.2.5 台北市臭氧控制策略研析 93
4.3光化強度與二次氣膠推估 99
4.3.1不同光化強度分級氣膠日夜濃度變化 99
4.3.2光化學反應產生的二次氣膠增量推估 102
4.3.3 二次氣膠佔PM10比例的年變化評估 104
4.3.4二次氣膠對PM2.5的增量推估 107
4.3.5 討論 109
4.4臭氧事件日二次氣膠連續監測特性 113
4.4.1 PM2.5氣膠質量、成分及臭氧濃度統計 113
4.4.2氣膠質量與成分濃度日夜變化 114
4.4.3不同光化強度下PM2.5質量與成分全日逐時變化 118
4.4.4高光化強度下推估二次氣膠的生成 120
4.4.5氣膠質量與成分變化的影響因子 133
4.5大陸沙塵對台北市空氣品質的影響 139
4.5.1 大陸沙塵影響台北市空氣品質的特徵 139
4.5.2大陸沙塵影響台北市空氣品質的研判方法 141
4.5.3 大陸沙塵影響台北市空氣品質的類型 149
4.5.4 大陸沙塵影響台北市空氣品質的衝擊 151
4.5.5主成分分析方法應用在大陸沙塵影響台北市空氣品質的限制 158
4.5.6歷年大陸沙塵影響台北市空氣品質的重要性變化 159
第五章、結論與建議 161
5.1 結論 161
5.2 建議 164
參考文獻 167
參考文獻 參考文獻
Altshuler, S.L., Arcado, T.D., Lawson, D.R., 1995. Weekday vs weekend ambient ozone concentrations: Discussion and hypothesis with focus on Northern California. Journal of Air and Waste Management Association 45, 967-972.
Ansari, A.S., Pandis, S.N., 1998. Response of inorganic PM to precursor concentrations. Environmental Science & Technology 32, 2706-2714.
Ashbaugh, L.L., Myrup, L.O., Flocchin, R.G., 1984. A principal component analysis of sulfur concentrations in the western United States. Atmospheric Environment 18, 783-791.
Brönnimann, S., Neu, U., 1997. Weekend-weekday differences of near-surface ozone concentrations in Switzerland for different meteorological conditions. Atmospheric Environment 31, 1127-1135.
Buhr, M.P., Trainer, M., Parrish, D.D. Sievers, R.E., Fehsenfeld, F.C., 1992. Assessment of pollutant emission inventories by principal component analysis of ambient air measurements. Geophysical Research Letters 19, 1009-1012.
Buhr, M., Parrish, D., Elliot, J., Holloway, J., Carpenter, J., Goldan, P., Kuster, W., Trainer, M., Montzka, S., McKeen, S., Fehsenfeld, F., 1995. Evaluation of ozone precursor source types using principal component analysis of ambient air measurements in rural Alabama. Journal of Geophysical Research 100, 22853-22860.
Carmichael, G.R., Uno, I., Phadnis, M.J., Zhang, Y., Sunwoo, Y., 1998. Tropospheric ozone production and transport in springtime in east Asia. Journal of Geophysical Research 103, 10649-10672.
Carslaw, D.C., 2005. Evidence of an increasing NO2/NOX emissions ratio from road traffic emissions. Atmospheric Environment 39, 4793-4802.
Castro, L.M., Pio, C.A., Harrison, R.M., Smith, D.J.T., 1999. Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmospheric Environment 33, 2771-2781.
Chan, C.C., 2002. The health effects of Chinese sand storm in Taiwan. (in Chinese) EPA-90-FA11-03-A232.
Chang, K.H., Jeng, F.T., Tsai, Y.L., Lin, P.L., 2000. Modeling of long-range transport on Taiwan's acid deposition under different weather conditions. Atmospheric Environment 34, 3281-3295.
Cheung, V.T.F., Wang, T., 2001. Observational study of ozone pollution at a rural site in the Yangtze Delta of China. Atmospheric Environment 35, 4947-4958.
Chou, C.K., Liu, S.C., Lin, C.Y., Shiu, C.J., Chang, K.H., 2006. The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies. Atmospheric Environment 40, 3898–3908.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Egami, R.T., Solomon, P.A., Thuillier, R.H., 1998. Spatial and temporal variations of particulate precursor gases and photochemical reaction products during SJVAQS/AUSPEX ozone episodes. Atmos. nviron. 32 (16), 2835-2844.
Chun, Y., Boo, K.O., Kim, J., Park, S.U., Lee, M., 2001. Synopsis, transport, and physical characteristics of Asian dust in Korea. Journal of Geophysical Research 106, 18461-18469.
Claeys, M., Wang, W., Ion, A.C., Kourtchev, I., Gelencsér, A., Maenhaut, W., 2004a. Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmospheric Environment 38, 4093-4098.
Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M.O., Artaxo, P., Maenhaut, W., 2004b. Formation of secondary organic aerosols through photooxidation of isoprene. Science 303, 1173-1176.
Clapp, L.J., Jenkin, M.E., 2001. Analysis of the relationship between ambient levels of O3, NO2, and NO as a function of NOX in the UK. Atmospheric Environment 35, 6391-6405.
Cleveland, W.S., McRae, J.E., 1978. Weekday-weekend ozone concentrations in the Northeast United States. Environmental Science and Technology 12, 558-563.
Connell, D.P., Withum, J.A., Winter, S.E., Statnick, R.M., Bilonick, R.A., 2005. The Steubenville Comprehensive Air Monitoring Program (SCAMP): Overview and statistical considerations. Journal of the Air & Waste Management Association 55, 467-480.
Dentener, F.J., Carmichael. G.R., Zhang. Y., Lelieveld, J., Crutzen, P.J., 1996. Role of mineral aerosol as a reactive surface in the global troposphere. Journal of Geophysical Research 101, 22869-22889.
Diem, J.E., 2000. Comparisons of weekday-weekend ozone: Importance of biogenic volatile organic compound emissions in the semi-arid southwest USA. Atmospheric Environment 34, 3445-3451.
Duce, R.A., Unni, C.K., Ray, B.J., Prospero, J.M., Merrill, J.T., 1980. Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: Temporal variability. Science 209, 1522-1524.
Dupont, E., Menut, L., Carissimo, B., Pelon, J., Flamant, P., 1999. Comparison between the atmospheric boundary layer in Paris and its rural suburbs during the ECLAP experiment. Atmospheric Environment 33, 979-994.
Dutkiewicz, V.A., Qureshi, S., Khan, A.R., Ferraro, V., Schwab, J., Demerjian, K., Husain, L., 2004. Sources of fine particulate sulfate in New York. Atmospheric Environment 38, 3179-3189.
Eder, B.K., 1989. A principal component analysis of SO42- precipitation concentrations over the eastern United States. Atmospheric Environment 23, 2739-2750.
Eder, B.K., Davis, J.M., Bloom.eld, P., 1993. A characterization of the spatiotemporal variability of non-urban ozone concentrations over the eastern United States. Atmospheric Environment 27A (16), 2645-2668.
Emmerson, K.M., MacKenzie, A.R., Owen, S.M., Evans, M.J., Shallcross, D.E., 2004. A Lagrangian model with simple primary and secondary aerosol scheme 1: Comparison with UK PM10 data. Atmospheric Chemistry and Physics 4, 2161-2170.
Fraser, M.P., Cass. G.R., Simoneit, B.R.T., 1999. Particulate organic compounds emitted from motor vehicle exhaust and in the urban atmosphere Atmospheric Environment 33, 2715-2724.
Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., Rau, J.A., 1986. Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles. Environmental Science and Technology 20, 580-589.
Grosjean D., 1989. Organic acids in Southern California air: Ambient concentrations, mobile source emissions in situ formation and remove process. Environment Science Technology 23, 1506-1514.
Harrison, R.M., Deacon, A.R., Jones, M.R., 1997. Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham (U.K.). Atmospheric Environment 31, 4103-4117.
Henry, R.C., Hidy G.M., 1982. Multivariate analysis of particulate sulfate and other air quality variables by principal components-PartⅡ. Salt Lake City, Utah and St. Louis, Missouri. Atmospheric Environment 16, 929-943.
Henry R.C., Hidy G.M., 1979. Multivariate analysis of particulate sulfate and other air quality variables by principal components-Part I. annual data from Los Angeles and New York. Atmospheric Environment 13, 1581-1596.
Hildemann, L.M., Markowski, G.R., Cas, G.R., 1991. Chemical composition of emissions from urban sources of fine organic aerosol. Environmental Science & Technology 25, 744-759.
Ho, K.F., Lee S.C., Chan, C.K., Yu, Jimmy C., Chow J.C., Yao, X.H., 2003. Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmospheric Environment 37, 31-39.
Hooper, R.P., Peters, N.E., 1989. Use of multivariate analysis for determining sources of solutes found in wet atmospheric deposition in the United States. Environmental Science and Technology 23, 1263-1268.
Husar, R.B., Tratt, D.M., Schichtel, B.A., Falke, S.R., Li, F., Jaffe, D., Gasso, S., Gill, T., Laulainen, N.S., Lu, F., Reheis, M.C., Chun, Y., Westphal, D., Holben, B.N., Geymard, C., McKendry, I., Kuring, N., Feldman, G.C., McClain, C., Frouin, R.J., Merrill, J., DuBois, D., Vignola, F., Murayama, T., Nickovic, S., Wilson, W.E., Sassen, K., Sugimoto, N., 2001. Asian dust event of April 1998. Journal of Geophysical Research 106, 18461-18469.
Jaques, P.A., Ambs, J.L., Grant, W.L., Sioutas, C., 2004. Field evaluation of the differential TEOM monitor for continuous PM2.5 mass concentrations. Aerosol Science and Technology 38 (S1), 49-59.
Jenkin, M.E., Davies, T.J., Stedman, J.R., 2002. The origin and day-of-week dependence of photochemical ozone episodes in the UK. Atmospheric Environment 36, 999-1012.
Karl, T.R., 1978. Day of the week variations of photochemical pollutants in the St. Louis area. Atmospheric Environment 12, 1657-1667.
Kerminen, V.M., Pirjola, L., Boy, M., Eskola, A., Teinilä, K., Laakso, L., Asmi, A., Hienola, J., Lauri, A., Vainio, V., Lehtinen, K., Kulmala, M., 2000. Interaction between SO2 and submicron atmospheric particles. Atmospheric Research 54, 41-57.
Kim, E., Hopke, P.K., Edgerton, E.S., 2003. Source Identification of Atlanta Aerosol by Positive Matrix Factorization. Journal of Air and Waste Management Association 53, 731-739.
Kim, B.G., Park, S.U., 2001. Transport and evolution of a winter-time yellow sand observed in Korea. Atmospheric Environment 35, 3191–3201.
Kley, D., Geiss, H., Mohnen, V.A., 1994. Tropospheric ozone at elevated sites and precursor emissions in the United States and Europe. Atmospheric Environment 28, 149-158.
Koo, B., Ansari, A.S., Pandis, S.N., 2003. Integrated approaches to modeling the organic and inorganic atmospheric aerosol components. Atmospheric Environment 37, 4757-4768.
Kousa, A., Kukkonen, J., Karppinen, A., Aarnio, P., Koskentalo, T., 2001. Statistical and diagnostic evaluation of a new-generation urban dispersion modelling system against an extensive dataset in the Helsinki area. Atmospheric Environment 35, 4617-4628.
Lee, C.S., Hsu, H.C., 1998. A case study of the Air pollution Episodes in Taiwan -- The long-range transport of dust from Mainland. International symposium/exhibition on environmental monitoring and information management, Apr. 20-21, held in Taipei.
Lee, C.T., Chuang, M.T., Chan, C.C., Cheng, T.J., Huang, S.L., 2006. Aerosol characteristics from the Taiwan aerosol supersite in the Asian yellow-dust periods of 2002. Atmospheric Environment 40, 3409-3418.
Lehman, J., Swinton, K., Bortnick, S., Hamilton, C., Baldridge E., Eder, B., Coxb, B., 2004. Spatio-temporal characterization of tropospheric ozone across the eastern United States. Atmospheric Environment 38, 4357-4369.
Lenschow, P., Abraham, H.J., Kutzner, K., Luts, M., Preuß, J.D., Reichenbächer, W., 2001. Some ideas about the sources of PM10. Atmospheric Environment 35, Supplement No.1, s23-s33.
Levy, H.II, Mahlman, J.D., Moxim, W.J., Liu, S.C., 1985. Tropospheric ozone: The role of transport. Journal of Geophysical Research 90, 3753-3772.
Liu, C.M., Huang, C.Y., Shieh, S.L., Wu, C.C., 1994. Important meteorological parameters for ozone episodes experienced in the Taipei Basin. Atmospheric Environment 28, 159-173.
Lin, C.Y., Liu, S.C., Chou, C.K., Huang, S.J., Liu, C.M., Kuo, C.H., Young, C.Y., 2005. Long-range transport of aerosols and their impact on the air quality of Taiwan. Atmospheric Environment 39, 6066-6076.
Lin, T.H., 2001. Long-range transport of yellow sand to Taiwan in Spring 2000: Observed evidence and simulation. Atmospheric Environment 35, 5873-5882.
Liu, S.C., 1977. Possible effects on tropospheric O3 and OH due to NO emissions. Geophysical Research Letters 4, 325-328.
Marcazzan, G.M., Vaccaro, S., Valli, G. Vecchi, R., 2001. Characterization of PM2.5 and PM10 particulate matter in the ambient air of Milan (Italy). Atmospheric Environment 35, 4639-4650.
Mckendry, I.G., Hacker, J.P., Stull R., Sakiyama, S., Mignacca, D., Reid, K., 2001. Long-range transport of Asian dust to the lower Fraser valley, British Columbia, Canada. Journal of Geophysical Research 106, 18361-18370.
Meng, Z., Dabdub, D., Seinfeld, J.H., 1997. Chemical coupling between atmospheric ozone and particulate matter. Science 277, 116-119.
Merrill, J. T., Uematsu, M., Bleck, R., 1989. Meteorological analysis of long rang transport of mineral aerosols over the North Pacific. Journal of Geophysical Research 94, 8584-8589.
Murao, N., Ohta, S., Furuhashi, N., Mizoguchi, I., 1990. The causes of elevated concentrations of ozone in SAPPORO. Atmospheric Environment 24A, 501-1507.
Na, K., Sawant, A.A., Song, C., Cocker III, D.R., 2004. Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California Atmospheric Environment 38, 1345-1355.
Olcese, L. E., Toselli, B.M., 2002. Some aspects of air pollution in Córdoba, Argentina, Atmospheric Environment 36, 299-306.
Park, S.S., Ondov, J.M., Harrison, D., Nair, N.P., 2005. Seasonal and shorter-term variations in particulate atmospheric nitrate in Baltimore. Atmospheric Environment 39, 2011-2020.
Parrington, J.R., Zoller, W.H., Aras, N.K., 1983. Asia dust: Seasonal transport to the Hawaiian Islands. Science 220, 195-198.
Pont, V., Fontan, J., 2001. Comparison between weekend and weekday ozone concentration in large cities in France. Atmospheric Environment 35, 1527-1535.
Pryor, S.C., Steyn, D.G., 1995. Hebdomadal and diurnal cycles in ozone time series from the Lower Fraser Valley, B.C. Atmospheric Environment 29, 1007-1019.
Rice, J., 2004. Comparison of integrated filter and automated carbon aerosol measurements at Research Triangle Park, North Carolina. Aerosol Science and Technology 38 (S2), 23-36.
Ro, C.U., Oh, K.Y., Kim, H.K., Chun, Y., Osan, J., Hoog, J., Grieken, R.V., 2001. Chemical speciation of individual atmospheric particles using low-Z electron probe X-ray microanalysis: Characterizing “Asia Dust” deposited with rainwater in Seoul, Korea. Atmospheric Environment 32, 4995-5005.
Rodríguez, S., Querol, X., Alastuey, A., Mantilla, E., 2002. Origin of high summer PM10 and TSP concentrations at rural site in Eastern Spain. Atmospheric Environment 36, 3101-3112.
Rolph, G.D., 2003. Real-time environmental applications and display system (READY) Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD.
Rupprecht and Patashnick Co., Inc., 2001a. Operating Manual, Series 8400N Ambient Particulate Nitrate Monitor. February 2001, Revision A.
Rupprecht and Patashnick Co., Inc., 2001b. Operating Manual, Series 8400S Ambient Particulate Sulfate Monitor. June 2001, Revision A.
Rupprecht and Patashnick Co., Inc., 2002a. Operatin Manual, TEOM Series 1400a Ambient Particulate Monitor. March 2002, Revision B.
Rupprecht and Patashnick Co., Inc., 2002b. Operating Manual, Series 5400 Ambient Carbon Particulate Monitor. January 2002, Revision B.
Russell, A., Milford, J., Bergin, M.S., McBride, S., McNair, L., Yang, Y., Stockwell, W.R., Croes, B., 1995. Urban ozone control and atmospheric reactivity of organic gases. Science 269, 491-495.
Russell, M., Allen, D.T., 2004. Seasonal and spatial trends in primary and secondary organic carbon concentration in southeast Texas. Atmospheric Environment 38, 3225-3239.
Saylor, R.D., Chameides, W.L., Cowling, E.B., 1998. Implications of the new ozone national ambient air quality standards for compliance in rural areas. Journal of Geophysical Research 103, 31137-31141.
Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric chemistry and physics: From air pollution to climate change. Wiley, New York, pp. 724-743.
Sharma, M., Kiran, Y.N.V.M., Shandilya, K.K., 2003. Investigations into formation of atmospheric sulfate under high PM10 concentration. Atmospheric Environment 37, 2005-2013.
Sheehan, P.E., Bowman, F.M., 2001. Estimated effects of temperature on secondary organic aerosol concentrations. Environmental Science & Technology 35, 2129-2135.
Smith, S., Stribley, F.T., Milligan, P., Barratt, B., 2001. Factors influencing measurements of PM10 during 1995-1997 in London. Atmospheric Environment 35, 4651-4662.
StatSoft, Inc., 2001. STATISTICA (data analysis software system), version 6.0 www.statsoft.com.
Stein, A.F., Lamb, D., 2003. Empirical evidence for the low- and high-NOx photochemical regimes of sulfate and nitrate formation. Atmospheric Environment 37, 3615-3625.
Strader, R.S., Lurmann, F., Pandis, S.N., 1999. Evaluation of secondary organic aerosol formation in winter. Atmospheric Environment 33, 4849-4863.
Sunwoo, Y., Carmichael, G.R., Ueda, H., 1994. Characteristics of background surface ozone in Japan. Atmospheric Environment 28, 25-37.
Taiwan EPA, 2005. Environmental database. http://edb.epa.gov.tw/.
Tao, Z., Larson, S.M., Williams, A., Caughey, M., Wuebbles, D.J., 2005. Area, mobile, and point source contributions to ground level ozone: A summer simulation across the continental USA. Atmospheric Environment 39, 1869-1877.
Tratt, D.M., Frouin, R.J., Westphal. D.L., 2001. April 1998, Asian dust event:A southern California perspective. Journal of Geophysical Research 106, 18371-18379.
Tsuang, B.J., Chao, C.P., 1999. Application of circuit model for Taipei City PM10 simulation. Atmospheric Environment 33, 1789-1801.
Turnbull, A.B., Harrison, R.M., 2000. Major component contributions to PM10 comprsition in the UK atmosphere. Atmosphere Environment 34, 3129-3137.
Turpin, B.J., Huntzicker, J.J., 1995. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment 29, 3527-3544.
Turšič, J., Berner, A., Veber, M., Bizjak, M., Podkrajšek, B., Grgić, I., 2003. Sulfate formation on synthetic deposits under haze conditions. Atmospheric Environment 37, 3509-3516.
Vecchi, R., Valli, G., 1999. Ozone assessment in the southern part of the Alps. Atmospheric Environment 33, 97-109.
ven der Wal J.T., Janssen, L.H.J.M., 2000. Analysis of spatial and temporal variations of PM10 concentrations in the Netherlands using Kalman filtering. Atmospheric Environment 34, 3675-3687.
Vukovich, F.M., 1994. Boundary layer ozone variations in the eastern United States and their association with meteorological variations: Long-term variations. Journal of Geophysical Research 99 (D3), 16839-16850.
Vukovich, F.M., Sherwell, J., 2003. An examination of the relationship between certain meteorological parameters and surface ozone variations in the Baltimore-Washington corridor. Atmospheric Environment 37, 971-981.
Watson, J.G., Chow, J.C., Houck, J.E., 2001. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43, 1141-1151.
West J.J., Ansari, A.S., Pandis, S.N., 1999. Marginal PM2.5: Nonlinear aerosol mass response to sulfate reductions in the Eastern United States. Journal of Air and Waste Management Association 49, 1415-1424.
World Meteorological Organization (WMO), GESAMP, 1989. The atmospheric input of trace species to the world ocean, in GESAMP group of experts on scientific aspects of marine pollution, WMO Rep. Stud. 308, Geneva, Switzerland.
Xiao, H., Carmichael, G.R., Durchenwald, J., Thornton, D., Bandy, A., 1997. Long-range transport of SOX and dust in East Asia during the PEM B experiment. Journal of Geophysical Research 102, 28589-28612.
Yang, K.L., 2002. Spatial and seasonal variation of PM10 mass concentrations in Taiwan. Atmospheric Environment 36, 3403-3411.
Yang, K.L., Ting, C.C., Wang, J.L., Wingenter, O.W., Chan, C.C., 2005. Diurnal and seasonal cycles of ozone precursors observed from continuous measurement at an urban site in Taiwan. Atmospheric Environment 39, 3221-3230.
Yu, T.Y., Chang, L.F., 2001. Delineation of air quality basins utilizing multivariate statistical methods in Taiwan. Atmospheric Environment 35, 3155-3166.
Zhang, D., Iwasaka, Y., 1999. Nitrate and sulfate in individual Asian dust-storm particles in Beijing, China in spring of 1995 and 1996. Atmospheric Environment 33, 3213-3223.
Zhang, J., Wu, Y., Liu, C.L., Shen, Z.B., Yu, Z.G., Zhang, Y., 2001. Aerosol characters from the desert region of Northwest China and the Yellow Sea in spring and summer: Observations at Minqin, Qingdao, and Qianliyan in 1995–1996. Atmospheric Environment 35, 5007-5018.
指導教授 李崇德(Chung-Te Lee) 審核日期 2006-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明