博碩士論文 87322016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.118.119.77
姓名 黃心華(Xing-Hua Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 剛性鋪面邊、角破損部分深維修時材料與斷面之研究及補強式維修工法之研發
(Development of Reinforced Repairing Method and Research of Repair Material and Repair Area for Conducting Partial-Depth Repair of Damage to the Corner and Edge of Concrete Paving Slab)
相關論文
★ 水泥製程於資源再利用之研究★ 焚化底渣水洗前處理及應用之探討
★ 鈦鐵礦氯化爐碴應用於道路基底層及礦尾渣水洗前處理之研究★ 水洗礦尾渣造粒後之粒料特性探討
★ 水洗礦尾渣取代水泥製品中細粒料之可行性研究★ 陶瓷業無機性污泥資源化用於人工細粒料及自充填混凝土之研究
★ 磚製品中摻配鈦砂之較佳配比研究★ 單維電化學傳輸陽離子技術抑制混凝土ASR之研究
★ 不同醇類製備聚丙烯酸酯應用於水泥基材的行為研究★ 人工粒料作為路基材料及CLSM對RC構件和金屬腐蝕之影響研究
★ 經高溫製程產生含矽再生粒料之鹼質活性研究★ 改質人工粒料的應用策略基礎研究
★ 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究★ 鎂鋁氧化物及類水滑石對氯離子吸附行為之研究
★ 以CFB副產石灰作為水淬爐石粉激發劑之可行性探討★ 加速鋰離子傳輸技術中不同電極間距對離子傳輸行為的影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 剛性鋪面對於重載交通具有較佳的耐受力,在建造的過程中,只要能維持良好的施工品質控管,剛性鋪面將可展現使用壽年長、養護維修成本低等特性。
國內每年花在剛性鋪面的維修經費極多,但維修後發生再破壞的現象層卻出不窮,並造成主管人員極大之困擾。但持平而論,國內早期建造完工之剛性鋪面多已接近使用大限,應予全面翻修或進行加鋪作業來恢復鋪面之服務水準;但對於其他完工年代較晚、仍具使用壽命且結構尚屬健全之剛性鋪面而言,及時、適當的對於初期的破損進行部分深維修,不僅可以防止破損加大、加劇,亦可減少日後維修的支出與延長鋪面使用的年限。
本研究對於維修材料之基本性質、維修材料與混凝土之間的黏結相容性、耐久特性進行試驗,並透過有限元素法對於維修斷面的形狀、尺寸處理與維修材料之搭配進行分析。為了研發新式補強工法,並將之應用於部分深維修中,本研究亦對於植筋基本參數進行試驗,並透過有限元素法對於新工法之施做模式與成效進行模擬。同時,本研究選擇泰山收費站剛性鋪面路段進行現地維修試做,讓新研發之維修工法經歷現場之長期考驗。
由研究結果可知,水泥系材料與混凝土之間具有較佳的相容性,亦可使維修區域內的應力維持在相對較小的狀態;而特殊(聚合物系)維修材料較不適宜使用在溫度變化較為明顯的區域。由植筋試驗亦可得知,當植筋深度達到8㎝時,其抗拉拔成效已幾乎不會受到外界循環的影響而造成折減。針對角隅維修斷面而言,方形維修斷面不適合與環氧樹脂搭配進行維修,且對於較小的破損可採用三角形或球形的斷面。對於邊緣破損而言,維修斷面之寬度建議維持在10~15㎝之間,斷面之長/寬比值則盡可能保持在2以下。
本研究亦將相關之文獻與規範整理成「剛性鋪面部分深維修工程施工手冊」,並將新研發之維修工法撰寫成「剛性鋪面部分深破損之植筋補強工法設計圖說」,期能提供日後研究的參考,並對於維修實務人員有所助益。
摘要(英) Under excellent quality control during construction period, concrete pavement will have higher capacity for traffic load, lower maintenance cost, and longer service life.
Although considerable expenses spent to maintain the concrete pavement, many repaired cases repeatedly failed. Thus, concrete pavement rehabilitation becomes a difficult task for engineers. Regarding the concrete pavements constructed during early stage, it is nearly out of their service life and should be fully replaced or completely overlaid by topping material. Nonetheless, for other pavements which are still having sound structures, properly perform partial-depth repair for dealing with the initial failures will not only prevent the damage area from expansion, but also reduce the cost from further rehabilitation in the future and extend the service life of the pavement.
The tests for basic engineering properties of repair materials, the evaluation of bonding compatibility of repairing interface between repair materials and original concrete were presented in this study. In addition, 3D finite element models studied how the changes of shape and size of repair area influence the stress distributions on the repaired interface when applying various repair materials. To develop a reinforced repairing method for enhancing the performance of partial-depth repair for corner and side damages of concrete pavement, this investigation also studied the fundamental parameters influencing the performance for anchorage, and simulated the behavior of the repairs conducted by reinforced repairing method. Furthermore, a field practice was conducted in Taishan section of national highway no. 1 to proof the feasibility of the reinforced repairing method.
The results indicate that the cement based materials offered better compatibility with original concrete than the resin based materials, and the stresses in the repaired area were relatively lower when using the cement based materials as repair materials. Besides, resin based repair materials were not suitable for the areas with significant changes in temperature. The durability tests also reveal that the fastening performance of the anchor was not affected by the cycling when the depth of anchor embedment reached 8 cm. For corner damages, epoxy mortar is not suitable in square repair areas; moreover, triangular or spherical repair areas are recommended for small repairs. For edge damages, width of repair area should maintain 10~15 cm, and the length/width ratio of the repair area should possibly approach 2.
Finally, the results of lab tests, the technique reports, the published papers and the airport maintenance specifications were summarized to compose “Guidelines for conducting partial-depth repair in concrete pavement” and “Illustrations of procedures for performing reinforced repairing method in partial-depth repairs of concrete pavement” to improve the effectiveness of concrete pavement rehabilitation.
關鍵字(中) ★ 工法
★ 植筋
★ 有限元素
★ 維修
★ 剛性鋪面
關鍵字(英) ★ rigid pavement
★ anchor
★ finite element
★ repair
論文目次 目錄…………………………………………………………………………….…...…I
圖目錄…………………………………………………………………………...…VIII
表目錄………………………………………………………………………………XV
第一章 緒論…………………………………………………………………..……1
1-1 研究背景…………………………………………………………………….……2
1-2 補強式維修工法之研發架構……………………………………………….……2
1-3 研究內容…………………………………………………………………….……2
第二章 文獻回顧……………………………………………………...…………..4
2-1 接縫式剛性鋪面邊、角位置常見之破損型態與肇因……………….…….……4
2-2 剛性鋪面邊、角破損部分深維修工程之相關議題探討…………….………….5
2-2-1 國內剛性鋪面維修問題……………………………………………….………6
2-2-1-1特殊背景限制……………………………………………………….………..6
2-2-1-2 環境因素…………………………………………………………….……….7
2-2-1-3 機具設備不良……………………………………………………….……….7
2-2-1-4 維修材料品質……………………………………………………….………7
2-2-2 部分深維修的角色……………………………………………………….…....8
2-2-3 剛性鋪面邊、角破損部分深維修流程之分析討論………………….………9
2-2-3-1 部分深維修之適用範圍……………………………………………….…….9
2-2-3-2 材料………………………………………………………………………....11
2-2-3-3 標定維修範圍………………………………………………………………19
2-2-3-4 維修斷面與接縫處理………………………………………………………22
2-2-3-5 維修斷面清潔………………………………………………………………30
2-2-3-6 襯縫處理……………………………………………………………………32
2-2-3-7 維修材料之澆置……………………………………………………………33
2-2-3-8 填縫…………………………………………………………………………42
2-2-3-9 開放交通……………………………………………….………………….42
2-3 維修材料與舊有混土間之相容性……………………………………….……..48
2-4 植筋工法之介紹………………………………………………………….……..52
2-4-1 植筋工法之特性……………………………………………………….……..53
2-4-2 植筋膠的種類………………………………………………………….……..54
2-4-3 鋼筋之握裹特性與植筋之拉拔破壞…………………….………….……….55
2-4-4 鋼筋握裹與植筋之相關文獻…………………...…………………….…….60
2-5 有限元素法應用於鋪面之分析………………………………………………...65
2-6 剛性鋪面分析模型之組成要素……………………………………………….66
2-6-1 剛性鋪面底層之型式..……………………………………………………….66
2-6-2 剛性鋪面傳力機制之模擬…………………………………..……………….69
2-6-2-1 傳力筋之模擬………………………………………………………………69
2-6-2-2 剛性鋪面之骨材互鎖效應模擬..…………………………………………..71
2-6-2-3 外界影響之加載模擬………………………………………………….…...72
2-6-3 國內、外剛性鋪面三維有限元素分析之發展趨勢….………………….…..74
第三章 研究流程與方法……………………………………………………….75
3-1 維修材料基本性質與相容性試驗……………………………………………...75
3-1-1 試驗材料……………………………………………………………………...75
3-1-1-1 混凝土………………………………………………………………………75
3-1-1-2維修材料…………………………………………………………………….75
3-1-2 維修材料試驗之相關設備……………………………………………………77
3-1-3 維修材料相關試驗流程………………………………………………………82
3-1-4 維修材料相關試驗方法……………………………………………………...84
3-1-4-1維修材料基本性質試驗…………………………………………………….84
3-1-4-2 維修界面相容性試驗………………………………………………………84
3-2 植筋試驗………………………………………………………………………...86
3-2-1 試驗流程……………………………………………………………………...86
3-2-1-1 鋼筋埋入維修材料及鋼筋植入混凝土之拉拔試驗……………………..86
3-2-1-2 植筋膠與混凝土黏結之劈張試驗流程…………………………………..88
3-2-2 試驗材料…………………………………………………………………….88
3-2-2-1 混凝土植筋底材…………………………………………………………..88
3-2-2-3 維修材料(供鋼筋埋入)………………………………………………..89
3-2-2-4 鋼筋………………………………………………………………………..91
3-2-2-5 植筋膠……………………………………………………………………..91
3-2-3 植筋相關試驗設備………………………………………………………..92
3-2-4 植筋相關試驗方法………………………………………………………….93
3-2-4-1 確認混凝土及維修材料之抗壓強度………………………………………93
3-2-4-2 試體之製作與拉拔試驗操作………………………………………………93
3-2-4-3 鑽孔植筋操作步驟………………………………………………………..94
3-2-4-5 植筋膠與混凝土之黏結劈張試體………………………………………..96
3-3 有限元素分析模型之建構與驗證……………………………………………...97
3-3-1 分析流程……………………………………………………………………...97
3-3-2 元素簡介…………………………………………………………………….98
3-3-3 界面設定…………………………………………………………………...101
3-3-4 板塊垂直向之元素層數劃分……………………………………………...101
3-3-5 ANSYS單板分析模型建構……………………………………….…….…103
3-3-6 ANSYS單板分析模型驗證……………………………………………..…103
3-3-6-1 輪荷載驗證…………………………………………….………………….103
3-3-6-2 溫度荷載驗證…………………………………………….……………….107
3-3-7 ANSYS多板分析模型建構與驗證………………………………….………109
3-3-7-1 ANSYS多板分析模型建構……………………………………….…….…109
3-3-7-2 ANSYS多板分析模型驗證…………………………………………….…109
3-3-8 ANSYS破損分析模型建立…………………………………………….……111
3-3-8-1 角隅破損模型之構建…………………………………………………..…111
3-3-8-2 邊緣破損模型之建構…………………………………………….……….114
3-3-9 外界影響因素…………………………………………….…………………114
3-3-10 應力評判準則…………………………………………….………………..115
3-3-10-1 第一主應力…………………………………………….………………...115
3-3-10-2 等效應力…………………………………………….…………………...116
3-3-10-3 低應力面積比例…………………………………………….…………...116
第四章 維修材料相關試驗結果與分析…………………………………...118
4-1 初、終凝時間…………………………………………….……………………118
4-2 溫度變化…………………………………………….…………………………118
4-3 熱膨脹係數…………………………………………….………………………119
4-4 熱傳導係數…………………………………………….………………………124
4-5 維修材料之強度. …………………………………………….………………..126
4-6 彈性模數與柏松比…………………………………………….………………128
4-7 體積變化評估…………………………………………….……………………129
4-8 維修介面相容性試驗…………………………………………….……………131
4-8-1 劈張試驗…………………………………………….………………………131
4-8-2 剪力試驗…………………………………………….………………………131
4-9 維修試體非破壞性檢測…………………………………………….…………132
4-9-1 目視觀查…………………………………………….………………………132
4-9-2 超音波檢測…………………………………………….……………………133
4-10 維修材料特性之綜合討論…………………………………………….……..135
第五章 植筋相關試驗結果與分析…………………………………………139
5-1 確認混凝土與維修材料之實際強度………………………………………..139
5-2 竹節鋼筋埋入維修材料之抗拉拔行為……………………………………...139
5-2-1 竹節鋼筋埋入維修材料之拉拔試驗……………………………………….139
5-2-2 竹節鋼筋埋入維修材料之拉拔破壞模式………………………………….143
5-3 竹節鋼筋植入混凝土之抗拉拔行為………………………………………….145
5-3-1 竹節鋼筋植入混凝土之拉拔試驗………………………………………….145
5-3-2 鋼筋植入混凝土之拉拔破壞模式………………………………………….152
5-3-2-1 混凝土底材強度為350 kg/cm2…………………………………………...152
5-3-2-2 混凝土底材強度為210 kg/cm2…………………………………………...154
5-4 特殊材質桿件之抗拉拔行為………………………………………………….155
5-4-1 光滑鋼筋埋入維修材料之抗拉拔行為…………………………………...155
5-4-2 光滑玻纖棒埋入維修材料之抗拉拔行為………………………………….157
5-4-3 玻纖棒植入混凝土之抗拉拔行為………………………………………….159
5-5 植筋膠與混凝土黏結之劈張試驗……………………………………….…..160
5-5-1 在室溫或乾濕冷熱循環條件下之劈張試驗………………………….…..160
5-5-2 在特定溫度條件下之劈張試驗…………………………………………...162
5-6 植筋試驗結果綜合整理…………………………………………….…….….163
第六章 剛性鋪面部分深維修之分析結果………………………………..165
6-1 部分深維修斷面受到車輪荷載之影響……………………………………….165
6-1-1 角隅維修斷面於車輪影響下之單板模型分析結果……………………….165
6-1-1-1 採用水泥系維修材料…………………………………………….……….165
6-1-1-2 採用環氧樹脂系維修材料…………………………………………….….170
6-1-2 角隅破損於車輪影響下之九版模型分析………………………………….172
6-1-3 邊緣維修斷面於車輪影響下之單板模型分析結果……………………….174
6-1-4 邊緣維修斷面於車輪影響下之單板與九板模型分析結果比較………….186
6-1-5 在車輪影響下之維修材料與斷面搭配之處理建議……………………….190
6-2 部分深維修斷面受到溫度荷載之影響……………………………………….190
6-2-1 角隅維修斷面受溫度荷載之影響分析…………………………………….190
6-2-1-1 採用水泥系維修材料……………………………………………………..190
6-2-1-2 採用環氧樹脂做為維修材料……………………………………………..192
6-2-1-3 角隅部分深破損在溫度影響下之維修建議……………………………..195
6-2-2 邊緣維修斷面受溫度荷載之影響分析…………………………………….197
6-2-2-1 維修斷面上之應力極值比較…………………………………………….197
6-2-2-2 維修斷面上之應力分佈趨勢……………………………………………201
6-2-2-3 維修材料內部之應力極值…………………………………………….….203
6-2-2-4 邊緣部分深破損在溫度影響下之維修建議……………………………..206
第七章 剛性鋪面邊、角部分深裂損植筋補強維修工法之
模擬分析…………………………………………………...…………..207
7-1 植筋模式之初步研擬與評估…………………………………………….…..207
7-1-1 直接補強法…………………………………………….…………………..210
7-1-1-1 直接補強鑽孔之技術層面探討…………………………………………210
7-1-1-2 採用直接補強後之應力數值變化情形…………………………………210
7-1-1-3 採用直接補強後之應力分佈趨勢………………………………………210
7-1-2 ㄇ字型補強法……………………………………………………………...211
7-1-2-1 ㄇ字型補強鑽孔之技術層面探討………………………………………..211
7-1-2-2 採用ㄇ字型補強後之應力數值變化情形………………………………211
7-1-2-3 採用ㄇ字型補強後應力分佈趨勢………………………………………211
7-2 實施ㄇ字型補強後之參數變換分析……………………………….………..212
7-2-1 角隅破損情形……………………………………………………………...213
7-2-1-1 不同斷面尺寸之植筋影響……………………………………………....213
7-2-1-2 植筋補強桿件E值變化之影響…………………………………………215
7-2-1-3 基礎強弱之影響…………………………………………….…………….217
7-2-1-4 胎壓改變的影響…………………………………………….…………….219
7-2-2 邊緣破損情形…………………………………………….………………….221
7-2-2-1 不同斷面尺寸之植筋影響…………………………………………….…..221
7-2-2-2 植筋補強桿件E值變化之影響…………………………………………..224
7-2-2-3 基礎強弱之影響…………………………………………….…………….227
7-2-2-4 胎壓改變的影響…………………………………………….…………….232
7-2-3 補強分析結果統整…………………………………………….……………236
7-3 植筋補強設計圖說之研擬…………………………………………….………237
第八章 現地試做過程介紹………………………………………………....240
8-1 維修工程施做概述…………………………………………………………...240
8-2 進場維修時段…………………………………………….…………………..240
8-3 交通封閉範圍…………………………………………….…………………..240
8-4 使用材料及工法…………………………………………….………………..240
8-5 維修位置及尺寸說明…………………………………………….…………..243
8-6 其他說明…………………………………………….…………………………249
8-7 維修成效監測說明…………………………………………………………….249
第九章 研究結果綜合討論……………...………………………………...252
9-1 維修材料性質之相關討論……………………………………………….……252
9-2 有限元素分析之相關討論……………………………………………….……254
9-3 部分深維修之討論……………………………………………….……………255
第十章 結論與建議……………………………………………………………257
10-1 結論………..…………………..……………….……………………………..257
10-2 建議………………..………………..………….……………………………..259
參考文獻……….………………………………….……………………………...260
附錄A…………………………………………..…………………………….……268
附錄B…………………………………………….…..……………………………299
參考文獻 “Innovative materials Development and Testing Volume 5: Partial Depth Spal Repair in Jointed Concrete Pavement,” SHRP-H-356, Strategic Highway Research Program, Washington, D.C. (1993).
Yu, T., “Concrete Rehabilitation—Users Manual,” Strategic Highway Research Report No. SHRP-C-412, National Research Council, Washington, D.C., 1994.
北二高剛性路面建造講習,國道新建工程局訓練教材,民國七十九年九月修定。
張貴祿,「剛性鋪面評估與維修智慧型諮詢系統之研究-評估系統雛形之建立」,碩士論文,淡江大學土木工程研究所,台北 (1999)。
Federal Aviation Administration, “Guideline and Procedures for Maintenance of Airport Pavements,” Advisory Circular AC 150/5380-6 (1982).
李釗、黃書猛、許書王、夏桂華,「機場鋪面維修問題之探討」,國軍第十一屆軍事工程研討會論文集,第171-179頁(1999)。
江曉嵐,「剛性鋪面邊、角破損最佳維修斷面之分析研究」,碩士論文,國立中央大學土木工程研究所,中壢(2000)。
“Distress Identification Manual for the Long-Term Pavement Performance Project,” SHRP-P-338, Strategic Highway Research Program, National Research Council, Washington D.C. (1993).
劉同敏,「剛性鋪面診斷維修專家系統之建立」,碩士論文,國立中央大學土木工程研究所,中壢 (1996)。
周家蓓,「剛性鋪面之破壞檢測及維修對策概述」,當代混凝土鋪面設計講習會,台北(2000)。
李釗,「剛性鋪面邊、角裂損補強式維修工法之研發與現地試作–期末報告」,交通部台灣區國道高速公路局委託研究報告,台北(2002)。
夏桂華,「機場剛性鋪面維修技術手冊研析」,碩士論文,國立中央大學土木工程研究所,中壢(2000)。
Darter, M. I., Barenberg, E. J., and Yrjanson, W. A., “Joint Repair Methods for Portland Cement Concrete Pavements,” National Cooperative Highway Research Program Report 281, Transportation Research Board, National Research Council, Washington, D.C. (1985).
1999 Concrete Repair Manual, ACI International, Farmington Hills, MI (1999).
“Techniques for Pavement Rehabilitation-A Training Course, Fifth Edition,” FHWA-HI-93-056, Federal Highway Administration, Washington, D.C. (1993).
Patel, A. J., Mojab, C. A. G., and Romine, A. R., “Materials and Procedures for Rapid Repair of Partial-Depth Spalls in Concrete Pavements — Manual of Practice,” Strategic Highway Research Report No. SHRP-H-349. National Research Council, Washington, D.C., 1993.
“Concrete Paving Technology—Guidelines for Partial-Depth Spall Repair,” TB-003.02P, American Concrete Pavement Association, Skokie, IL (1998).
「中正國際機場跑滑道機坪及四周道路面破損等零星修繕-中正國際航空站跑滑道停機坪及一般道路損壞檢修-施工規範」,中正國際航空站,民國85年10月~86年6月。
「中正機場跑滑道道面整修工程-施工特定條款」,中正航空站,民國82年1月。
「停機坪西南側道面翻修工程-施工說明書」,台北國際航空站,民國81年6月。
「台北機場停機坪擴建工程-施工規範」,台北航空站,民國84年12月。
McGhee, K. H., “Design, Construction, and Maintenance of PCC Pavement Joints,” NCHRP Synthesis of Highway Practice 211, Transportation Research Board, National Research Council, Washington, D.C. (1995).
“Joint and Crack Sealing and Repair for Concrete Pavements,” Concrete Paving Technology, American Concrete Pavement Association (1993).
蘇志昌,「砂漿材料應用於混凝土維修之成效研究」,碩士論文,國立中央大學土木工程研究所,中壢(1996)。
林睦曾,岩石熱物理學及其工程應用,重慶大學出版社,重慶(1991)。
Emmons, P. H., Concrete Repair and Maintenance Illustrated, Means, Kingston, MA (1993).
謝宏元,「鋼筋混凝土修補材料的結構相容性與設計」,工業材料155期,第108-115頁 (1999)。
張本地,「剛性道面淺層修補之材料特性及維修成效研究」,博士論文,國立中央大學土木工程研究所,中壢(1998)。
Pareek, S. N., Ohama, Y., and Dmura, K., “Evaluation Method for Adhesion Test Results of Bonded Mortars to Concrete Substrates by Square Optimization Method,” ACI Materials Journal, Vol. 92, No. 4, pp. 355-359 (1995).
Al-Gahtani, A. S., Rasheeduzzafar, and Aliu-Mussallama, A. A., “Performance of Repair Materials Exposed to Fluctuation of Temperature,” Journal of Materials in Civil Engineering, Vol. 7, No. 1, pp. 9-18 (1995).
Harmuth, H., “Investigation of the Adherence and Fracture Behavior of Polymer Cement Concrete,” Cement and Concrete Research, Vol. 25, No. 3, pp. 491-497 (1995).
Knab, L. I., and Spring, C. B., “Evaluation of Test Method for Measuring Load Strength of Portland Cement Based Repair Materials to Concrete,” Cement, Concrete and Aggregate, Vol. 11, No. 1, pp. 3-14 (1989).
Wall, J. S., Shrive, N. G., and Gamble, B. R., “Testing of Bond between Fresh and Hardened Concrete,” Journal of Materials in Civil Engineering, ACSE, Vol. 5, No. 3, pp. 340-344 (1993).
Dixon, J. F., and Sunley, V. K., “Use of Bond Coats in Concrete Repair,” Concrete, Vol. 17, No. 4, pp. 34-35 (1983).
Voigt, G. F., Darter, M. I., and Carpenter, S. H., “Field Performance of Bonded Fiber Concrete Overlays,” Transp. Res. Rec. 1110, Transportation Research Board, National Research Council, Washington, D.C., pp. 117-128 (1987).
宋明昌,「含裂縫及損傷之鋼筋混凝土結構的貼片補強」,碩士論文,國立中央大學土木工程研究所,中壢(1996)。
何明錦、吳傳威、彭添富、蕭興台、王淑娟、鄒本駿、楊慕忠,「鋼筋混凝土建築物之修復補強技術彙編」,內政部建築研究所,第9-97頁(1999)。
陳雅頌、劉士源、王傳珂、翁博彥,「植筋之原理及其應用 」,土木技術高樓建築專輯,第32期 (2000)。
Fastening Technology Manual, Hilti Asia Limited, HK (2000).
陳清華,「混凝土結構物植筋補強之基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
陳良博,「高溫高壓蒸氣養護 TAICON 對鋼筋握裹力影響之研究」,碩士論文,國立交通大學土木工程研究所(2000)。
陳宏謀,鋼筋混凝土觀念分析,標竿出版社,台北(1993)。
Meyer, C., Design of Concrete Structures, Prentice Hall, N.J. (1996).
蘇懇憲,鋼筋混凝土(科學技術叢書),三民書局,台北,第127-167頁(1993)。
Park, R., and Paulay, T., Reinforced Concrete Structures, John Wiley & Sons, Inc., New York, (1975).
Chamberlin, S. J., “Spacing of Reinforcement in Beams,” ACI Journal, July, pp. 113-134, (1956).
Phil, M. F., and Thompson, J. N., “Development Length of High Strength Reinforcing Bars in Bond,” ACI Journal, Vol. 59, pp. 887-922 (1962).
Tschegg, E. K., Ingruber, M., Surberg, C. H., and Munger, F., “Factors Influencing Fracture Behavior of Old–New Concrete Bonds,” ACI Materials Journal, No. 97, No. 4, pp. 447-453 (2000).
“HSE 2421 Epoxy Adhesive Anchor,” Hilti Product Technical Guide, No. 4.2.4, pp. 90-97, October (1999).
Marti, P., “Verankerung von Betonstahl mit Hilti HIT_HY150 (Anchoring Concrete Reinforcement using Hilti HIT-HY150),” Report No. 93.327-1, December, pp. 13 (1993).
Gilles, C., and Pierre-Claude, A., “Pull-Out Behavior of Corrugated Steel Fibers,” Advanced Cement Based Material, Elsevier Science Inc., Vol. 4, No. 1, pp. 28-41 (1996).
Zomora, N. A., Cook, R. A., Konz, R. C., and Consolazio, G. R., “Behavior and Design of Single, Headed and Unheaded, Grouted Anchors under Tensile Load,” ACI Structural Journal, Vol. 100, No. 2, March-April, pp. 222-230 (2003).
Fujikake, K., Nakayama, J., Sato, H., Mindess, S., and Ishibashi, T., “Chemically Bonded Anchors Subjected to Rapid Pullout Loading,” ACI Structural Journal, Vol. 100, No. 3, May-June, pp. 246-252 (2003).
Fuchs, W., Eligehausen, R., and Breen, J. E., “Concrete Capacity Design (CCD) Approach for Fastening to Concrete,” ACI Structural Journal, Vol. 92, No. 1, January-February, pp. 73-94 (1995).
Ross, C. A., Thompson, P. Y., and Tedesco, J. W., “Split-Hopkinson Pressure-Bar Tests on Concrete and Mortar in Tension and Compression,” ACI Material Journal, Vol. 86, No. 5, September-October, pp. 475-481 (1989).
Easa, S. M., Strauss, T. R., Hassan, Y., and Souleyrette, R. R., “Three-Dimensional Transportation Analysis: Planning and Design,” Journal of Transportation Engineering, ASCE, Vol. 128, No. 3, pp. 250-258 (2002).
Cho, Y. H., McCullough, B. F., and Weissmann, J., “Considerations on Finite-Element Method Application in Pavement Structural Analysis,” Transp. Res. Rec. 1539, Transportation Research Board, National Research Council, Washington, D.C., pp. 96-101 (1996).
Huang, Y. H., Pavement Analysis and Design, Prentice Hall, New Jersey (1993).
Kuo, C. M., “Three-Dimensional Finite Element Analysis of Concrete Pavement,” Ph.D. Dissertation, University of Illinois at Urbana (1994).
Vesic, A. S., and Saxena, K., “Analysis of Structural Behavior of AASHTO Road Test Rigid Pavements,” NCHRP Report No. 97, Highway Research Board (1974).
Brill, D. R., “Development of Advanced Computational Models for Airport Pavement Design,” Report DOT/FAA/AR-97/47. FAA, U.S. Department of Transportation (2000).
Ramsamooj, D. V., “Stresses in Jointed Rigid Pavement,” Journal of Transportation Engineering, ASCE, Vol. 125, No. 2, pp. 101-107 (1999).
Dere,Y., and Asgari, A., “3D Finite Element Analysis of Skewed Jointed Plain Concrete Pavement,” Proceedings of the Third National Symposium on 3D Finite Element Modeling for Pavement Analysis and Design, Amsterdam, The Netherlands, pp. 235-252 (2002).
Davids, W. G., “Effect of Dowel Looseness on Response of Jointed Concrete Pavement,” Journal of Transportation Engineering, ASCE, Vol. 126, No. 1, pp. 50-57 (2000).
Ioannides, A. M., and Korovesis, G. T., “Analysis and Design of Doweled Slab-on-Grade Pavement Systems,” Journal of Transportation Engineering, ASCE, Vol. 118, No. 6, pp. 745-768 (1992).
Shoukry, S. N., Fahmy, M., Prucz, J., and William, G., “3D Finite Element Modeling of Rigid Pavement Response to Moving Load and Nonlinear Temperature Gradient,” Proceedings of the Third National Symposium on 3D Finite Element Modeling for Pavement Analysis and Design, Amsterdam, The Netherlands, pp. 401-422 (2002).
Bonin, G., Fiordoliva, F. M., Loprencipe, G., and Ranzo, A., “3D Finite Element Modeling of Aircraft Gear Interaction with Cement Concrete Pavement,” Proceedings of the Third National Symposium on 3D Finite Element Modeling for Pavement Analysis and Design, Amsterdam, The Netherlands, pp. 385-399 (2002).
Davids, W. G., and Mahoney, J., “Experimental Verification of Rigid Pavement Joint Load Transfer Modeling with EverFE,” Transp. Res. Rec. 1684, Transportation Research Board, National Research Council, Washington, D.C., pp. 81-89, (1999).
Brill, D. R., “Field Verification of a 3D Finite Element Rigid Airport Pavement Model,” Report DOT/FAA/AR-00/33. FAA, U.S. Department of Transportation (2000).
Masad, E., Taha, R., and Muhunthan, B, “Finite Element Analysis of Temperature Effects on Plain-Jointed Concrete Pavements,” Journal of Transportation Engineering, ASCE, Vol. 122, No. 5, pp. 388-398 (1996).
Guo, H., Sherwood, J. A., and Snyder, M. B., “Component of Dowel-Bar Model for Load-Transfer Systems In PCC Pavements,” Journal of Transportation Engineering, ASCE, May/June, pp. 289-298 (1995).
Reid, M. D., Imbabi, M. S., and Coutellier, D., “Effects of Joint Geometry on Response of Asphaltic Plug Joints,” Journal of Transportation Engineering, ASCE, July/August, pp. 311-318 (1998).
Kim, J., and Buttlar, W. G., “Analysis of Reflective Crack Control System Involving Reinforcing Grid over Base-Isolating Interlayer Mixture,” Journal of Transportation Engineering, ASCE, July/August, pp. 375-384 (2002).
White, T. D., Fang, H., and Haddock, J. E., “Flexible Pavement Layer Failure,” Proceedings of the Third National Symposium on 3D Finite Element Modeling for Pavement Analysis and Design, Amsterdam, The Netherlands, pp. 125-140 (2002).
White, T.D., Zaghloul, S, M., Anderton, G. L., and Smith D. M., “Pavement Analysis For Moving Aircraft Load,” Journal of Transportation Engineering, ASCE, November/December, pp. 436-446 (1997).
周鎰鋐,「剛性鋪面受糙度與移動車體質量引發動態荷重影響分析」,碩士論文,國立成功大學土木工程研究所,台南(2003)。
Harik, I. E., Jianping, P., Southgate, H., and Allen, D., “Temperature Effects on Rigid Pavements,” Journal of Transportation Engineering, ASCE, Vol. 120, No. 1, Jenuary/February, pp. 127-143 (1994).
Thompson, M. R., Dempsey, B. J., Hill, H., and Vogel, L., “Characterizing Temperature Effects for Pavement Analysis and design,” Transp. Res. Rec. 1121, Transportation Research Board, National Research Council, Washington, D.C., pp. 14-22 (1987).
Liang, R. Y., and Niu, Y. Z., “Temperature and Curling Stress in Concrete Pavements: Analytical Solutions,” Journal of Transportation Engineering, ASCE, Vol. 124, No. 1, Jenuary/February, pp. 91-100 (1998).
Ioannides, A. M., and Donelly, J. P., “Three-Dimensional Analysis of Slab on Stress-Dependent Foundation,” Transp. Res. Rec. 1196, Transportation Research Board, National Research Council, Washington, D.C., pp. 72-84 (1988).
Chatti, K., “Dynamic Analysis of Jointed Concrete Pavements Subjected to Moving Transient Load,” Ph.D. Dissertation, Institute of Transportation Studies, University of California at Berkeley (1992).
Channakeshava, C., and Barzegar, F., “Nonlinear FE Analysis of Plain Concrete Pavement with Doweled Joints,” Journal of Transportation Engineering, ASCE, Vol. 119, No. 5, pp. 763-781 (1993).
Zaghloul, S. M., White, T. D., and Kuczek, T., “Evaluation of Heavy Load Damage Effect on Concrete Pavement Using Three-Dimensional, Nonlinear Dynamic Analysis,” Transp. Res. Rec., 1449, Transportation Research Board, National Research Council, Washington, D.C., pp. 123-133 (1994).
Darter, M. I., Hall, K. T., and Kuo, C. M., “Support under Portland Cement Concrete Pavements,” NCHRP Report 372, Transportation Research Board, National Research Council, Washington, D.C. (1995).
Kenedy, C. J., and Everhart, D., “Modeling Pavement Response to Vehicular Traffic on Ohio Test Road,” Transp. Res. Rec. 1629, Transportation Research Board, National Research Council, Washington, D.C., pp. 24-31 (1998).
ANSYS User’s Manual V5.5: Elements Reference, Swanson Analysis Systems, Inc., Canonsburg, Pa (1998).
Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt. R. J., Concepts and Applications of Finite Element Analysis, John Wiley & Sons, Inc., New York (2002).
Collins, J. A., Failure of Materials in Mechanical Design, John Wiley & Sons, Inc., New York (1993).
林昭斌,「剛性鋪面邊、角破損部分深度維修斷面尺寸分析」,碩士論文,國立中央大學土木工程研究所,中壢(2004)。
Furr, H. L., “Highway Uses of Epoxy with Concrete,” NCHRP Synthesis of Highway Practice 109, Transportation Research Board, National Research Council, Washington, D.C. (1984).
White, D., “Synthesis of Current and Projected Concrete Highway Technology,” Strategic Highway Research Report No. SHRP-C-345, National Research Council, Washington, D.C. (1993).
Miller, J. S., and Bellinger, W. Y., “Distress Identification Manual for the Long-Term Pavement Performance Program,” FHWA-RD-03-031, Turner-Fairbank Highway Research Center, Mclean, VA (2003).
Incropera, F. P., and DeWitt, D. P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Inc., New York (1996).
指導教授 李釗(Chau Lee) 審核日期 2004-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明