參考文獻 |
Chapter 1
[1] H. Kromer, “Theory of a Wide-Gap Emitter for Transistors,” Proc. IRE, 45, pp. 1535, 1957.
[2] R.L. Anderson, “Germanium-Gallium Arsenide Heterojunctions,“ IBM J. Res. and Develop., vol. 4, pp. 283, 1960.
[3] R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, “Electron Mobilities in Modulation-Doped Semiconductor Heterojunction Super-lattices,” Appl. Phys. Lett. vol.33, pp.665, 1978.
[4] T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, “A New Field-Effect Transistor with Selectively Doped GaAs/n-AlGaAs Heterojunctions,” Japan. J. Appl. Phys., vol. 19, pp L225, 1980.
[5] R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, “Electron Mobilities in Modulation-Doped Semiconductor Heterojunction Super-lattices,” Appl. Phys. Lett. vol.33, pp.665, 1978.
[6] D. Delagebeaudeuf, P. Delescluse, P. Etienne, M. Laviron, J. Chaplart and NT Linh, “Two-dimensional Electron Gas MESFET Structure,” Elecrtron. Lett., vol. 16, pp.667, 1980.
[7] D. Delagebeaudeuf, J. Chevrier, M. Laviron, and P. Delescuse, “A New Relationship Between the Fukui Coefficient and Optimal Current Value for Low Noise Operation of Field-Effect Transistors,” IEEE Electron Device Lett., vol. 6, pp.444, 1985.
[8] J. J. Rosenberg, M. Benlamri, P. D. Kirchner, J. M. Woodal and G. D. Pettit, “Pseudomorphic InGaAs/GaAs Single Quantum Well High Electron Mobility Transistor,“ IEEE Electron Device Lett., vol. 6, pp. 491, 1985.
[9] T. Henderson, M. I. Aksun, C. K. Peng, H. Morkoc, P. C. Chao, P. M. Smith, K. H. G. Duh and L. F. Fester, “Microwave Performance of a Quarter-Micrometer Gate Low-Noise Pseudomorphic InGaAs/AlGaAs MODFET,” IEEE Trans. Electron Devices, vol. 7, pp. 649, 1986.
[10] M. T. Yang, and Y. J. Chan, “Device Linearity Comparisons Between Doped-channel and Modulation-doped Designs in Pseudomorphic Al0.3Ga0.7As/In0.2Ga0.8As Heterostructures,” IEEE Trans. Electron Devices, vol. 43, pp. 1174, 1996.
[11] M. T. Yang, “Studies of AlGaAs/InGaAs Doped-Channel Heterostructure FETs for Microwave Circuit Applications,“ Ph.D Dissertation, National Central University, 1995.
[12] Y. S. Lin, S. S. Lu, T. P. Sun, “High-Linearity High Current-Drivability GaInP/GaAs MISFET Using GaInP Airbridge Gate Structure,” IEEE Electron Device Lett., vol. 16, pp. 518, 1995.
[13] D. V. Lang, R. A. Logan, and M. Jaros, “Trapping Characteristics and a Donor-Complex (DX) Model for the Persistent-Photoconductivity Trapping Center in Te-Doped AlxGa1-xAs,” Phys. Rev. B, vol. 19, no. 2, pp. 1015, 1979.
[14] H. Kroemer, “Heterostructure Bipolar Transistors: What should we build?,” J. Vac. Sci. Technol. B1, pp.126, 1983.
[15] M. O. Watanabe and Y. Ohba, “Interface Properties for GaAs/InGaAlP Heterojunctions by the Capacitance-Voltage Profiling Technique,” Appl. Phys. Lett., vol. 50, pp. 906, 1987.
[16] J. R. Lothian, J. M. Kuo, W. S. Hobson, E. Lane, F. Ren, and S. J. Pearton, “Wet and Dry Etching Characteristics of Al0.5In0.5P,” J. Vac. Sci. Technol., B10 (3), pp.1061, 1992.
[17] J. R. Lothian, J. M. Kuo, W. S. Hobson, E. Lane, F. Ren, and S. J. Pearton, “Plasma and Wet Chemical Etching of In0.5Ga0.5P,” J. Electronic Materials, vol. 21, no. 4, pp.441, 1992.
Chapter 2
[18] P. Fay, S. Agarwala, C. Scafidi, and I. Adesida, “Reactive Ion Etching-Induced Damage in InAlAs/InGaAs Heterostructure Field-Effect Transistors Processed in HBr Plasma,” J. Vac. Sci. Technol. B12 (6), pp. 3322, 1994.
[19] A. J. Bariya, H. Shan, C. W. Frank, S. A. Self, and J. P. McVittie, “The Etching of CHF3 Plasma Polymer in Fluorine-Containing Discharges,” J. Vac. Sci. Technol. B9 (1), pp. 1, 1991.
[20] E. Kay, Methods and Materials in Microelectronic Technology, Plenum, New York, 1984.
[21] G. Franz, C. Hoyler, and J. Kaindl, “Reactive Ion Etching GaAs and AlAs: Kinetics and Process Monitoring,” J. Vac. Sci. Technol. B14 (1), vol. 14, pp. 126, 1996.
[22] M. R. Stephen, J. C. Jerome, D. W. William, Handbook of Plasma Processing Technology, Noyes Publications, 1990.
[23] M. Tokushima, H. Hida, and T. Maeda, “Enhanced Selectivity in GaAs/AlGaAs Selective Dry Etching in BCl3+ CF4 Plasma by Adsorbed CxFy for Precise Control of HJFET Threshold,” Inst. Phys. Conf. Ser. No. 145, pp. 285, 1995.
[24] W. H. Guggina, A.A. Ketterson, E. Andideh, J. Hughes, I.Adesita, S. Caracci, and J. Kolodzey, “Characterization of GaAs/AlGaAs Selective Reactive Ion Etching in SiCl4 /SiF4 Plasmas,” J. Vac. Sci. Technol. B8 (6), pp. 1956, 1990.
[25] C. B. Prater and Y. E. Strausser, “TappingModeTM Atomic Force Microscopy Applications to Semiconductors,” Digital Instruments, AN2-5/94.
[26] G. S. Oehrlein, Y. Zhang, D. Vender, and O. Jourbert, “Fluorocarbon High Density Plasmas II: Silicon Dioxide and Silicon Etching Using CF4 and CHF3,” J. Vac. Sci. Technol. A12 (2), pp. 333, 1994.
Chapter 3
[27] J. Dickmann, M. Berg, A Geyer, H. Daembkes, F. Scholz, and M. Moser, “(Al0.7Ga0.3)0.5In0.5P/In0.15Ga0.85As/GaAs Heterostructure Field Effect Transistors with Very Thin Highly p-Doped Surface Layer,” IEEE Trans. Electron Devices, vol. 42, pp. 2, 1995.
[28] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, H. S. Tsai, J. S. Weiner, H. C. Kuo, C. H. Lin, Y. K. Chen and W. E. Mayo, “In0.5(AlxGa1−x)0.5P HEMT’s for High-Efficiency Low-Voltage Power Amplifiers: Deign, Fabrication, and Device Results,” IEEE Trans. Electron Devices, vol. 47, pp. 1404, 1999.
[29] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, J. S. Weiner, J. Lin, W. E. Mayo, and Y. K. Chen, “Single- and Double-Heterojunction Pseudomorphic In0.5(Al0.3Ga0.7)0.5P/In0.2Ga0.8As High Electron Mobility Transistors Grown by Gas Source Molecular Beam Epitaxy," IEEE Electron Device Lett., vol. 18, pp. 550, 1997.
[30] Y. J. Chan, M. T. Yang, “Device Linearity Improvement by Al0.3Ga0.7As/ n+-In0.2Ga0.8As Heterostructure Doped-Channel FETs,” IEEE Electron Device Lett., vol. 16, pp. 33, 1995.
[31] F. T. Chien, S. C. Chiol, and Y. J. Chan, “Microwave Power Performance Comparison Between Single and Dual Doped-Channel Design in AlGaAs/InGaAs HFET’s,” IEEE Electron Device Lett., vol. 21, pp. 60, 2000.
[32] Vishay Telefunken, Physics of Optoelectronic Devices: Light-EmittingDiodes, http://home.hetnet.nl/~pasopd/pdfs/led_physics.pdf.
[33] S. J. Chang, C. S. Chang, Y. K. Su, P. T. Chang, Y. R. Wu, K. H. Huang, and T. P. Chen, “AlGaInP Yellow-Green Light-Emitting Diodes with a Tensile Strain Barrier Cladding Layer,” IEEE Photon. Technol. Lett., vol.9 , pp. 1199, 1997.
[34] P. Raisch, R. Winterhoff, W. Wagner, M. Kessler, H. Schweizer, T. Riedl, R. Wirth, A. Hangleiter, and F. Scholz, “Investigations on the Performance of Multiquantum Barriers in Short Wavelength (630 nm) AlGaInP Laser Diodes,” Appl. Phys. Lett., vol. 74, pp. 2158, 1999.
[35] S. A. Wood, C. H. Molloy, P. M. Smowton, P. Blood, D. J. Somerford, and C. C. Button, “Direct Monitoring of Thermally Activated Leakage Current in AlGaInP Laser Diodes,” Appl. Phys. Lett., vol. 75, pp. 1748, 1999.
[36] J. M. Kuo, Y. J. Chan, and Pavlidis, “Modulation-Doped Al0.52In0.48P/In0.2Ga0.8As Field-Effect Transistors,“ Appl. Phys. Lett., vol. 62, pp.1105, 1993.
[37] Y. Ohba, M. O. Watanabe, H. Kawasaki, K. Kamei, and T. Nakanisi, “Modulation-Doped In0.5Al0.5P/GaAs Field Effect Transistors,” Jpn. J. Appl. Phys., vol. 27, pp. L922, 1988.
[38] J. H. Kim, S. J. Jo, and J. I. Song, “Improved Microwave and Noise Performances of InGaP/In0.33Ga0.67As p-HEMT Grown on a Patterned GaAs Substrate,” Electron. Lett., vol.37, pp. 981, 2001.
[39] M. Takikawa and K. Joshin, “Pseudomorphic n-InGaP/InGaAs/GaAs High Electron Mobility Transistors for Low-Noise Amplifiers,” IEEE Electron Device Lett., vol. 14, pp. 406, 1993.
[40] M. O. Watanabe and Y. Ohba, “Se-related Deep Levels in InGaAlP,” J. Appl. Phys., vol. 60, pp. 1032, 1986.
[41] Z. P. Jiang, P. B. Fischer, S. Y. Chou, and M. I. Nathan, “Novel High Mobility Ga0.51In0.49P/GaAs Modulation-Doped Field-Effect Transistor Structures Grown Using a Gas Source Molecular Beam Epitaxy,” J. Appl. Phys., vol. 71, pp. 4632, 1992.
[42] S. S. Lu, C. L. Huang, and T. P. Sun, “High-Breakdown-Voltage Ga0.51In0.49P/GaAs I-HEMT and I2-HEMT with a GaInP Passivation Layer Grown Using a Gas Source Molecular Beam Epitaxy,” Solid-State Electron, vol. 38, pp.25, 1995.
[43] J. M. Kuo, H. C. Kuo, J. Y. Cheng, Y. C. Wang, Y. Lu, and W. E. Mayo, “Interface Optimization of AlInP/GaAs Multiple Quantum Wells Grown by Gas Source Molecular Beam Eitaxy,” J. Cryst. Growth, vol. 158, pp. 393-398, 1996.
[44] N. Iwata, K. Inosako, and M. Kuzuhara, “3V Operation L-Band Power Double-Doped Heterojunction FETs,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1465, 1993.
[45] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, and W. E. Mayo, ““Schottky Barrier Heights of In0.5(AlxGa1-x)0.5P (0≤ x ≤1) Lattice Matched to GaAs,” Solid-State Electron, vol. 42, pp.1045, 1998.
[46] T. H. Lim, T. J. Miller, F. Williamson, and M. I. Nathan, “Characterization of Interface Charge at Ga0.52In0.48P/GaAs Junctions Using Current–Voltage and Capacitance–Voltage Measurements,“ Appl. Phys., vol. 69, pp. 1599, 1996.
[47] S. P. Najda, A. H. Kean, M. D. Dawson, and G.. Duggan, “Optical Measurements of Electronic Bandstructure in AlGaInP Alloys Grown by Gas Source Molecular Beam Epitaxy,” J. Appl. Phys., vol. 77, pp. 3412, 1995.
[48] A. M. Goodman, “Metal-Semiconductor Barrier Height Measurement by the Differential Capacitance Method – One Carrier System,” J. Appl. Phys., vol. 34, pp.329, 1963.
[49] Y. C. Wang, Ph.D Dissertation, “Novel In0.5(AlxGa1-x)0.5P Power High Electron Mobility Transistors for Low Supply Voltage Wireless Communications,” The State University of New Jersey, 1998
[50] T. Okumura and K. N. Tu, “Electrical Characterization of Schottky Contacts of Au, Al, Gd, and Pt on n-Type and p-Type GaAs,” J. Appl. Phys., vol. 61, pp. 2955, 1987.
[51] J. L. Freeouf, T. N. Jackson, S. E. Laux, and J. M. Woodall, “Size Dependence of ‘Effective’ Barrier Heights of Mixed Phase Contacts,” J. Vac. Sci. Technol. vol. 21, pp. 570, 1982.
[52] I. Ohdomari and K. N. Tu, “Parallel Silicide Contacts,” J. Appl. Phys., vol. 51, pp. 3735, 1980.
[53] D. K. Schoroder, “Semiconductor Material and Device Characterization,” John Wiley & Sons, Inc., pp.136, 1990.
[54] E. S. Yang, “Microelectronic Devices,” McGraw-Hill, Inc., pp.188, 1988.
[55] R. Williams, Modren GaAs Processing Methods, Norwood : Artech House, 1990
[56] A. Mesarwi and A. Ignatiev, “Oxygen-Induced Al Surface Segregation in AlGaAs and the Effect of Y Overlayers on the Oxidation of the Y / AlGaAs Interface,” J. Appl. Phys. vol. 71, pp. 1943, 1992.
Chapter 4
[57] A. Endoh, Y. Yamashita, M. Higashiwaki, K. Hikosaka, T. Mimura, S. Hiyamizu, and T. Matsui, “High fT 50-nm-Gate Lattice-Matched InAlAs/InGaAs HEMTs,” Proceedings of Intl. Conf. on Indium Phosphide and Related Materials, pp. 87, 2000.
[58] M. Nihei, N. Hara, H. Suehiro, and S. Kuroda, “0.065 ?m Gate InGaP/InGaAs/GaAs Pseudomorphic HEMT’s with Highly-Doped 11.5 nm Thick InGaP Electron Supply Layers,” Solid-State Electron., vol. 41, pp. 1647, 1997.
[59] K. L. Tan, P. H. Liu, D. C. Streit, R. Dia, A .C. Han, A. Freudenthal, J. Velebir, K. Stolt, J. Lee, M. Bidenbender, R. Lai, H. Wang, B. Allen, “A Manufacturable High Performance 0.1-?m Pseudomorphic AlGaAs/InGaAs HEMT Process for W-band MMICs,” IEEE GaAs IC Symposium Technical Digest, pp.251, 1992.
[60] H. Suehiro, T. Miyata, S. Kuroda, N. Hara, M. Takikawa, “Highly Doped InGaP/InGaAs/GaAs Pseudomorphic HEMT's with 0.35?m Gates,”IEEE Trans. Electron Devices, vol. 41, pp. 1742, 1994.
[61] Y. Awano, M. Kosugi, K. Kosemura, T. Mimura, M. Abe, “Short-Channel Effects in Subquarter-Micrometer-Gate HEMTs Simulation and Experiment,” IEEE Trans. Electron Devices, vol. 36, pp. 2260, 1989.
[62] H. Rohdin, C. Y. Su, N. Moll, A. Wakita, A. Nagy, V. Robbins, and M. Kauffman, “Semi-Analytical Analysis for Optimization of 0.1 ?m InGaAs-Channel MODFET’s with Emphasis on On-State Breakdown and Reliability,” Proceedings of Intl. Conf. on Indium Phosphide Related Materials, pp. 357, 1997,
[63] R. Menozzi, M. Borgarino, Y. Baeyens, M. Van Hove, and F. Fantini, “On the Effects of Hot Electrons on the DC and RF Characteristics of Lattice-Matched InAlAs/InGaAs/InP HEMT’s,” IEEE Microwave and Guided Wave Lett., vol. 7, pp. 3, 1997.
[64] N. Moll, M. R. Hueschen, and A. Fisher-Colbrie, “Pulsed-Doped AlGaAs/InGaAs Pseudomorphic MODFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 879, 1988.
[65] R. Anholt, S. Swirhun, “Measurement and Analysis of GaAs Parasitic Capacitances,“ IEEE Trans. Microwave Theory Tech., vol. 39 pp. 1243, 1991.
[66] G. Dambrine et al, “A New Method for Determining the FET Small-Signal Equivalent Circuit,” IEEE Trans. Microwave Theory Tech., vol. 36, pp.1511, 1988.
[67] C. K. Lin, Master Thesis, National Central University, 2001.
[68] M. Berroth and R. Bosch, “Broad-band Determination of the FET Small-Signal Equivalent Circuit,” IEEE Trans. Microwave Theory Tech., vol. 38 pp.891, 1990.
[69] P. J. Tasker and B. Hughes, “Importance of Source and Drain Resistance to the Maximum fT of Millimeter-Wave MODFETs,” IEEE Electron Device Lett., vol. 10, pp. 291, 1989. |