參考文獻 |
1. P.J. Blatz and W.L. Ko, Application of finite elastic theory to the deformation of rubbery materials. Trans.Soc. Rheol., 6, 223-251 (1962).
2. J.K. Knowles and E. Sternberg, On the ellipticity of non-linear elastostatics for a special material. J. Elasticity, 5, 341-361 (1975).
3. C.O. Horgan, Remarks on ellipticity for the generalized Blatz-Ko constitutive model for compressible nonlinearly elastic solid. J. Elasticity, 42, 165-176 (1996).
4. M.F. Beatty and D.O. Stalnacker, The Poisson function of finite elasticity. ASME J. Appl. Mech., 53, 807-813 (1986).
5. M. Cheref, M. Zidi and C. Oddou, Analytical modelling of vascular prostheses mechanics. Intra and extracorporeal cardiovascular fluid dynamics. Comput. Mech. Pub., 1, 191-202 (1998).
6. M. Zidi, Finite torsional and anti-plane shear of a compressible hyperelastic and transversely isotropic tube. Int. J. Engrg. Sci., 38, 1481-1496 (2000).
7. R. Abeyaratne and C.O. Horgan, The pressurized hollow sphere problem in finite elastostatics for a class of compressible elastic materials, Int. J. Solids Structures, 20, 715-723 (1984).
8. D.-T. Chung, C.O. Horgan and R. Abeyaratne, The finite deformation of internally pressurized hollow cylinders and spheres for a class of compressible elastic materials, Int. J. Solids Structures, 22, 1557-1570 (1986).
9. R. Abeyaratne and C.O. Horgan, Initiation of localized plane deformations at a circular cavity in an infinite compressible nonlinear elastic medium. J. Elasticity, 15, 243-256 (1985).
10. C.O.Horgan and R.Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J.Elasticity, 16, 189-200 (1986).
11. S.Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material. Int. J. Non-Linear Mech., 30, 899-914 (1995).
12. H.C. Lei (李顯智) and H.W. Chang, Void formation and growth in a class of compressible solids. J. Engrg. Math., 30, 693-706 (1996).
13.李顯智,唐又新,孔洞承受的極限壓力,中華民國力學學會期刊, 33, 205-212 (1997).
14. A. Mioduchowski and J.B. Haddow, Combined torsional and telescopic shear of a compressible hyperelastic tube. J. Appl. Mech., 46, 223-226 (1979)s.
15. M. Zidi, Circular shearing and torsion of a compressible hyperelastic and prestressed tube. Int. J. Non-Linear Mech., 35, 201-209 (2000).
16. M. Zidi, Torsion and telescopic shearing of a compressible hyperelastic tube. Mech. Res. Comm., 26, 245-252 (1999).
17. M. Destrade and G. Saccomandi, Finite amplitude elastic waves propagating in compressible solids. Phys. Rev. E, 72, 016620 (2005).
18. H.A. Erbay and V.H. Tuzel, Dynamic extension of a compressible nonlinearly elastic membrane tube. IMA J. Appl. Math., 70, 25-38 (2005).
19. E.R. Ferreira and Ph. Boulanger, Finite-amplitude damped inhomogeneous waves in a deformed Blatz-Ko material. Math. Mech. Solids, 10, 377-387 (2005).
20. E.R. Ferreira and Ph. Boulanger, Superposition of transverse and longitudinal finite-amplitude waves in a deformed Blatz-Ko material. Math. Mech. Solids, 12, 543-558 (2007).
21. F. Peyraut, Orientation preserving and Newton-Raphson convergence in the case of an hyperelastic sphere subjected to an hydrostatic pressure. Comput. Methods Appl. Mech. Engrg., 192, 1107-1117 (2003).
22. F. Peyraut, Loading restrictions for the Blatz-Ko hyperelastic model---application to a finite element analysis. Int. J. Non-Linear Mech., 39, 969-976 (2003).
23. P.A. Du Bois, S. Kolling and W. Fassnacht, Modelling of safety glass for crash simulation. Comp. Materials Sci., 28, 675-683 (2003).
24. Z.Q. Feng, B. Magnain and J.M. Cros, Solution of large deformation contact problems with friction between Blatz-Ko hyperelastic bodies. Int. J. Engrg. Sci., 41, 2213-2225 (2003).
25. Z.Q. Feng, B. Magnain and J.M. Cros, Solution of large deformation impact problems with friction between Blatz-Ko hyperelastic bodies. Int. J. Engrg. Sci., 44, 113-126 (2006).
26. J. B. Haddow and L. Jiang, Finite amplitude azimuthal shear waves in a compressible hyperelastic solid. J. Appl. Mech., 68, 145-152 (2001).
27. F.A.McClintock, A criterion for ductile fracture by the growth of holes. J.Appl. Mech., 35, 363-371 (1968).
28. A.Needleman, Void growth in an elastic-plastic medium. J.Appl. Mech., 39, 964-970 (1972).
29. A.L.Gurson, Continuum theory of ductile rupture by void nucleation and growth : Part Ⅰ- yield criteria and flow rules for porous ductile media. J.Energ.Matl.Tech.,Trans.ASME, 2-15 (1977).
30. U.Stigh, Effects of interacting cavities on damage parameter. J.Appl. Mech, 53, 485-490 (1986).
31. H.S.Hou and R.Abeyarante, Cavitation in elastic and elastic-plastic solids, J.Mech.Phys.Solids, 40, 571-592 (1992).
32. A.N.Gent,Cavitation in rubber: a cautionary tale. Rubber Chem.Tech., 63, G49-G53 (1990).
33. C.O.Horgan and D.A.Polignone,Cavitation in nonlinearly elastic solids: a review. Appl.Mech.Rev., 48, 471-485 (1995).
34. J.M.Ball, Discontinous equilibrium solutions and cavitation in nonlinear elasticity. Phil.Trans.R.Soc.Lond, A306, 557-610 (1982).
35. C.A.Stuart, Radially symmetric cavitation for hyperelastic materials, Ann.Inst.Henri Poincare-Analyse non lineare, 2, 33-66 (1985).
36. F.Meynard, Existence and nonexistence results on the radially symmetric cavitation problem. Quart.Appl.Math. 50, 201-226 (1992).
37.S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive parameters on formation of a spherical void in a compressible non-linear elastic material. J.Appl.Mech. 61, 395-401 (1994).
38.X.-C. Shang and C.-J. Cheng, Exact solution for cavitated bifurcation for compressible hyperelastic materials. Int.J.Engrg.Sci., 39 1101-1117 (2001).
39. G.B. Whitham, Linear and Nonlinear Waves. Weily, New York (1974).
40. H.C. Lei and H.W. Chang, A list of hodograph transformations and exactly linearizable systems. Int. J. Non-Linear Mech., 31, 117-127 (1996).
41. H.C. Lei, Linearity of the steady state of a nonlinear anisotropic diffusion process. J. Chinese Inst. Engineers, 18, 461-470 (1995).
42. H.C. Lei, Study of a hodograph transformation and its applications. J. Inst. Chinese Engineers, 25, 707-714 (2002).
43. J. Weiss, M. Tabor and G. Carnevale, The Painleve property for partial differential equations. J. Math. Phys., 24, 522-526 (1983).
44. A.A. Alexeyev, Some notes on singular manifold method – several manifolds and constraints. J. Phys. A- Math. Gen., 33, 1873-1894 (2000).
45. L.V. Ovsiannikov, Group Analysis of Differential Equations (W.F. Ames, trans.). Academic Press, New York (1982).
46. P.J. Olver, Applications of Lie Groups to Differential Equations. Springer-Verlag, New York (1986).
47. H.C. Lei, Group splitting and linearization mapping of a solvable nonlinear wave equation. Int. J. Non-Linear Mech., 33, 461-471 (1998).
48. L.V. Ovsiannikov, Group Analysis of Differential Equations (W. F. Ames, trans.). Academic Press, New York (1982).
49. N.H. Ibragimov, Tramsformation groups applied to mathematical physics. Reidel, Boston( 1985).
50. G.W. Bluman and S. Kumei , Symmetries and Differential Equations. Springer-Verlag , New York (1989).
51. P.J. Olver, Applications of Lie Groups to Differential Equations. Springer-Verlag, New York (1986).
52. J.M. Hill, Some Partial Solutions of Finite Elasticity. (1972) Ph.D. Thesis, University of Queensland, Brisbane, Australia.
53. J.M. Hill, On static similarity deformations for isotropic materials. Q. Appl. Math., 40, 287-291 (1982).
54. K.A. Ames and W.F. Ames, On group analysis of the von Karman equations. Int. J. Nonlinear Anal.: Theory, Meth. Appl., 6845-853 (1982).
55. K.A. Ames and W.F. Ames, Analysis of the von Karman equations by group methods. Int. J. Non-linear Mech., 20, 201-209 (1985).
56. D. Levi and C. Rogers, Group invariance of a neo-Hookean system: incorporation of stretch change. J. Elasticity, 24, 295-300 (1990).
57. H.C. Lei and J.A. Blume, Lie group and invariant solution of the plane-strain equation of motion of a neo-Hookean solid. Int.J. Non-Linear Mech , 31, 465-482 (1996).
58. H.C. Lei (李顯智) and M.J. Hung, Linearity of waves in some systems of non-linear elastodynamics . Int.J. Non-Linear Mech., 32, 353-360 (1997).
59. C.O. Horgan and J.G. Murphy, Lie group analysis and plane strain bending of cylindrical sectors for compressible nonlinearly elastic materials. IMA J. Appl. Math.,70, 80-91 (2005).
60. C.O. Horgan and J.G. Murphy, A Lie group analysis of the axisymmetric equations of finite elastostatics for compressible materials. Math. Mech. Solids, 10, 311-333 (2005).
61. W.A. Strauss, Nonlinear wave equations. American Mathematical Society, Rhode Island, 1989.
62. S. Klainerman and A. Majda, Formation of singularities for wave equations including the nonlinear vibrating string. Communication on Pare and Applied Mathematics, 33, 241-263 (1980)
63. C. H. Hsu, and S. S. Lin and T. Makino, Smooth solutions to a class of quasilinear wave equations. J. Diff. Eq., 224, 229-257 (2006).
64. J. Kevorkian, Partial Differential Equations: Analytical Solution Techniques. Wadsworth & Brooks/Cole, Belmont, California, 1990. |