博碩士論文 87343009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.116.85.108
姓名 程永能(Yung-Neng Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 有限元分析在金屬複合板、異向導電膜和等通道彎角擠製之應用
(The parameters study in metal composite plate, anisotropic conductive film and equal channel angular extrusion by finite element analysis)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用經過長期使用與驗證的有限元專業軟體ABAQUS、ANSYS和MARC分析三個製程上的問題。其一為三層金屬複合板外型修整對降低殘留應力之效果,其應力來源是由於複合三明治金屬板中的材料具有不同的線膨脹係數,當材料由高溫冷卻到室溫時,因外層金屬線膨脹係數較中間層大,中間層承受撕裂張應力而造成其破壞。經分析發現以週邊全斜切角度60°之效果最好,其最大應力為無任何切角時最大應力之20.11%。另外,週邊切斜邊角度60°後順著斜角在複合板角上再加切半徑3 mm圓角時,其最大應力並不小於週邊切斜邊角度60°的最大應力。其二為異向導電膜(Anisotropic Conductive Film, ACF)結合成型過程起始壓縮量對導電性之影響,ACF結合成型後導電顆粒與導電襯墊的接觸面積是決定導電性的最重要因素。我們分析不同的顆粒起始壓縮量,就導電性能穩定而言,起始壓縮量應大於40%則ACF的導電性能比較穩定。此外,樹脂球鍍鎳的導電顆粒比較容易順應外力而變形,且變形後有回彈的力量確保導電顆粒能與導電電極緊密的接合,這是樹脂球鍍鎳層導電顆粒取代鎳導電顆粒的主要原因。其三為等通道彎角擠製(Equal Channel Angular Extrusion, ECAE)製程參數分析,我們探討擠製的角度、內外二邊轉角圓弧的大小和摩擦係數等ECAE模具上影響擠錠應變大小及分佈狀態的參數,也針對兩道次的ECAE進行模擬。分析結果顯示,若欲應變分布均勻則模具角度及摩擦係數宜大;外圓半徑及內圓半徑宜小。在二個道次方面,第一道與第二道間擠錠旋轉180˚的效果會比第一道與第二道間不旋轉的效果好。
摘要(英) This thesis utilized ABAQUS, ANSYS and MARC, which have been commercialized and verified for a long time, to study the mechanic issues in three manufacturing processes for metal composite plate, anisotropic conductive film (ACF) and equal channel angular extrusion (ECAE), respectively. The first issue is how to reduce the concentrated residual stress after quenching of a three-layer composite. Residual stresses exist in a three-layer laminated composite plate. When the middle layer possesses a smaller thermal expansion coefficient than the outer layers, concentrated tensile stress is created on the edges, especially at the corners of a rectangular composite plate, which attempts to peel the plate apart into two halves. Results show that full chamfering is much more effective than other cases. The higher the chamfering angle, the better the effect, while chamfering plus corner round-up does not yield further benefit. The second issue is the influence on the conductivity for an ACF by controlling the initial deformation of the conductive ball. The fillers are compressed and maintain a certain elastic capability while conducting between electrodes. Thus the extent of contact area and the shape of the fillers are important factors in determining conductivity. Results show that changing the thickness of a coated nickel layer does not clearly affect the conductivity of ACF, and the initial deformation should be greater than 40% for the stability of conductivity. The third issue is the die parameters analysis of ECAE. We have studied the parameters that affect the magnitude and distribution of the strain within the workpiece, including the die angle, the outer and inner fillet radii of the die, and the friction condition between the die and workpiece. The results reveal that larger die angle and friction coefficient with smaller outer and inner fillet radii of the die are essential for more homogenous distribution of the strain within the workpiece. In the two-pass analysis, the extrusion effect for the case of the workpiece being rotated 180˚ between two passes should be better than the counterpart without rotation.
關鍵字(中) ★ 有限元分析
★ 金屬複合板
★ 異向導電膜(ACF)
★ 等通道彎角擠製(ECAE)
★ 集中殘留應力
關鍵字(英) ★ Liquid crystal display (LCD)
★ Anisotropically conductive film (ACF)
★ Concentrated residual stress
★ Laminated steel composite
★ Finite element analysis (FEA)
★ Chip on glass (COG)
★ Equal channel angular extrusion (ECAE)
論文目次 摘要
總目錄-------------------------------------------------------------------------I
圖目錄-----------------------------------------------------------------------III
表目錄-------------------------------------------------------------------------X
符號說明----------------------------------------------------------------------XI
第一章 前言-------------------------------------------------------------------1
第二章 工程問題分析軟體及有限元分析簡介---------------------------------------5
2.1 軟體簡介-------------------------------------------------------------------5
2.2有限元分析簡介--------------------------------------------------------------8
第二章 修整三層金屬複合板外型以減少殘留應力--------------------------------16
3.1金屬複合板分析之背景介紹---------------------------------------------------16
3.2 金屬複合板分析之有限元模型------------------------------------------------18
3.3 金屬複合板分析之結果與討論------------------------------------------------21
3.4 金屬複合板分析之結論------------------------------------------------------36
第三章 異向導電膜(ACF)結合製程參數分析-------------------------------------38
4.1 異向導電膜分析之背景介紹--------------------------------------------------38
4.2異向導電膜分析之基本假設和有限元模型---------------------------------------41
4.3 異向導電膜分析之結果與討論------------------------------------------------44
4.4 異向導電膜分析之結論------------------------------------------------------62
第四章 等通道彎角擠製製程參數分析------------------------------------------64
5.1 等通道彎角擠製分析之背景介紹----------------------------------------------64
5.2等通道彎角擠製分析之有限元模型---------------------------------------------68
5.3 等通道彎角擠製分析之結果與討論--------------------------------------------71
5.4 等通道彎角擠製分析之結論--------------------------------------------------95
第五章 總結論--------------------------------------------------------------96
參考文獻----------------------------------------------------------------------99
附錄一-----------------------------------------------------------------------107
附錄二-----------------------------------------------------------------------112
附錄三-----------------------------------------------------------------------120
附錄四-----------------------------------------------------------------------128
參考文獻 1. S.P. Wang, S. Choudhry and T.B. Wertheimer, ”Comparison between the Static Implicit and Dynamic Explicit Methods for FEM Simulation of Sheet Forming Processes”, MARC Analysis Research Corporation, Palo Alto, CA., USA.
2. ANSYS Inc.,”Structural Nonlinearities for Revision 5.5”, An Instructions of ANSYS Revision 5.5, 1999.
3. S. Lee, H.M. Pan and J. Wolfenstine, “Thermal Effective Stress Concentration Problems in Material Composites”, Composites Science and Technology, Vol. 44, pp. 71-76, 1992.
4. S. Lee, C.Y. Wang and J. Lee, "Fracture Analysis of a Sandwich with Harden Core", International Journal of Fracture, Vol. 65, pp. 173-181, 1994.
5. Metals Handbook, Desk Edition, American Society for Metals, Metals Park, OH,
1985.
6. J.W. Eischen, C. Chung and J.H. Kim, ”Realistic Modeling of Edge Effect Stresses in Bimaterial Element”, Transaction of the ASME Journal of Electronic Packaging, Vol. 112, pp. 16-23, 1990.
7. Y.H. Pao and E. Eisele, “Interfacial Shear and Peel Stresses in Multilayered Thin Stacks Subjected to Uniform Thermal Loading”, Transaction of the ASME Journal of Electronic Packaging, Vol. 113, pp. 164-172, 1991.
8. V. Sergo, D.M. Lipkin, G.D. Portu and D.R. Clarke, ”Edge Stresses in Alumina/Zirconia Laminates”, Journal of the American Ceramics Society, Vol. 80[7], pp. 1633-1638, 1997.
9. E. Suhir, “An Approximate Analysis of Stresses in Multilayered Elastic Thin Films”, Transaction of the ASME Journal of Applied Mechanics, Vol. 55, pp. 143-148, 1988.
10. W.L. Yin, “Thermal Stresses and Free-edge Effects in Laminated Beams: a Variational Approach Using Stress Functions”, Transaction of the ASME Journal of Electronic Packaging, Vol. 113, pp. 68-75, 1991.
11. W.L. Yin, “Refined Variational Solutions of the Interfacial Thermal Stresses in a Laminated Beam”, Transaction of the ASME Journal of Electronic Packaging, Vol. 114, pp. 193-198, 1992.
12. S. Lee, J. Wadsworth and O.D. Sherby, “Impact Properties of a Laminated Composite Based on Ultrahigh Carbon Steel and Hadfield Manganese Steel”, Res. Mechanica, Vol. 31, pp. 232-248, 1990.
13. S. Lee, “Tensile and Impact Behavior of Laminated Composites Based on Ultra High Carbon Steel”, Ph.D. Dissertation, Stanford University, Stanford, CA. USA., 1988.
14. Hibbitt, Karlsson & Sorensen Inc., ABAQUS Manual Version 5.8, 1999.
15. ANSYS Inc., ANSYS Operation Guide, 4th Edition. 1998.
16. 饒瑞年, “異方性導電膜應用於COG製程之分析”, 碩士論文, 國立中央大學, 2000.
17. 王永辰, “以非等向性導電膜做覆晶接合的介面應力分析”, 碩士論文, 國立中央大學, 2000.
18. M.J. Yim and K.W. Paik, ”Design and Understanding of Anisotropic Conductive Films (ACF’s) for LCD Packaging”, IEEE Transactions on Components Packaging and Manufacturing Technology-Part A, Vol. 21, No.2, pp. 226-234, June 1988.
19. R. Dudek, S. Meinel, A. Schubert, B. Michel, L. Dorfmüller, P.M. Knoll and J. Baumbach, "Flow Characterization and Thermo-mechanical Response of Anisotropic Conductive Films", IEEE Transactions on Components and Packaging Technology, Vol. 22, No. 2, pp. 177-185, 1999.
20. R. Joshi, "Chip on Glass-interconnect for Row/Column Driver Packaging", Microelectronics Journal, Vol. 29, No. 6, pp. 343-349, 1998.
21. H. Nishida, K. Sakamoto, Hideki Ogawa and Hiromi Ogawa, ”Micropitch Connection Using Anisotropic Conductive Materials for Driver IC Attachment to a Liquid Crystal Display”, IBM Journal of Research and Development, Vol. 42, pp. 517-524, 1998.
22. 黃仁亮, “製程參數對COG製程之影響分析”, 碩士論文, 中華大學, 2001.
23. F.G. Shi, M. Abdullah, S. Chungpaiboonpatana and K. Okuyama, ”Electrical Conduction of Anisotropic Conductive Adhesives: Effect of Size Distribution of Conducting Filler Particles”, Materials Science in Semiconductor Processing, Vol. 2, pp. 263-269, 1999.
24. M.J. Yim, K.W. Paik, T.S. Kim and Y.K. Kim, ”Anisotropic Conductive Film (ACF) Interconnection for Display Packaging Application”, Electronic Component and Technology Conference, 48th IEEE, pp. 1036-1041, 1998.
25. M.J. Yim and K.W. Paik, ”The Contact Resistance and Reliability of Anisotropically Conductive Film (ACF)”, IEEE Transactions on Advanced Packaging, Vol. 22, pp. 166-172, 1999.
26. A. Schubert, R. Dudek, R. Doring and B. Mickel, “Reliability Investigation of Flip Chip in FCOB and FCOG Applications by FEA”, 1998 IEEE/CPMT Electronics Packaging Technology Conference, Proceedings 2nd, pp. 49-56, 1998.
27. M. Yamaguchi, F. Asai, F. Eriguchi and Y. Hotta, “Development of Novel Anisotropic Conductive Film (ACF)”, Electronic Component and Technology Conference, Proceedings 49th, pp. 360-364, 1999.
28. S.P. Timoshenko and J.N. Goodier, “Pressure between Two Spherical Bodies in Contact”, Theory of Elasticity, 3rd, New York: McGraw-Hill, pp. 409-414, 1970.
29. V.M. Segal, USSR Patent No. 575892, 1977.
30. M.V. Markushev, M. Yu. Murashkin, P.B. Prangnell, A. Gholinia and O.A. Maiorova, “Structure and Mechanical Behavior of an Al-Mg Alloy after Equal Channel Angular Extrusion”, NanoStructured Materials, Vol. 12, pp. 839-842, 1999.
31. W.H. Huang, L. Chang, P.W. Kao and C.P. Chang, “Effect of Die Angle on the Deformation Texture of Copper Processed by Equal Channel Angular Extrusion”, Materials Science and Engineering A, Vol. 307, pp. 113-118, 2001.
32. V.M. Segal, “Material Processing by Simple Shear”, Materials science and Engineering A, Vol. 197, pp. 157-164, 1995.
33. L.R. Cornwell, K.T. Hartwig, R.E. Goforth and S.L. Semiatin, “The Equal Channel Angular Extrusion Process for Materials Processing”, Materials Characterization, Vol. 37, pp. 295-300, 1996.
34. A. Bussiba, A.B. Artzy, A. Shtechman, S. Ifergan and M. Kupiec, “Grain Refinement of AZ31 and ZK60 Mg Alloys Towards Superplasticity Studies”, Materials Science and engineering A, Vol. 302, pp. 56-62, 2001.
35. I. Kim, W.S. Jeong, J. Kim, K.T. Park and D.H. Shin, “Deformation Structure of Pure Ti Produced by Equal Channel Angular Pressing”, Scrita Materials, Vol. 45, pp. 575-581, 2001.
36. A. Shan, I.G. Moon, H.S. Ko and J.W. Park, “Direct Observation of Shear Deformation during Equal Channel Angular Pressing of Pure Aluminum”, Scripta Materials, Vol. 41, No. 4, pp. 353-357, 1999.
37. S.L. Semiatin, P.B. Berbon and T.G. Langdon, “Deformation Heating and Its Effect on Grain Size Evolution during Equal Channel Angular Extrusion”, Scripta Materials, Vol. 44, pp. 135-140, 2001.
38. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T. G. Langdon, “Principle of Equal Channel Angular Pressing for the Processing of Ultra-fine Grained Materials”, Scripta Materials, Vol. 35, No. 2, pp. 143-146. , 1996
39. D.N. Lee, “An Upper-bound Solution of Channel Angular Deformation”, Scripta Materials, Vol. 43, pp. 115-118, 2000.
40. P.B. Prangnell, C. Harris and S.M. Roberts, ”Finite Element Modelling of Equal Channel Angular Extrusion”, Scripta Materials, Vol. 37, No. 7, pp. 983-989, 1997.
41. H.S. Kim, M.H. Seo and S.I. Hong, “On The Die Corner Gap Formation in Equal Channel Angular Pressing”, Materials science and Engineering A, Vol. 291, pp. 86-90, 2000.
42. S.L. Semiatin, D.P. Delo and E.B. Shell, “The Effect of Material Properties and Tooling Design on Deformation and Fracture during Equal Channel Angular Extrusion”, Scripta Materials, Vol. 48, pp. 1841-1851, 2000.
43. J.R. Bowen, A. Gholinia, S.M. Roberts and P.B. Prangnell, ”Analysis of the Billet Deformation Behavior in Equal Channel Angular Extrusion”, Materials science and Engineering A, Vol. 287, pp. 87-99, 2000.
44. L. Zuyan, L. Gang and Z.R Wang, “Finite Element Simulation of a New Deformation Type Occurring in Changing-channel Extrusion”, Journal of Materials Processing Technology, Vol. 102, pp. 30-32, 2000.
45. H.S. Kim, “Finite Element Analysis of Equal Channel Angular Pressing Using a Round Corner Die”, Materials science and Engineering A, Vol. 315, pp. 122-128, 2001.
46. J.Y. Suh, H.S. Kim, J.W. Park and J.Y. Chang, “Finite Element Analysis of Material Flow in Equal Channel Angular Pressing”, Scripta Materials, Vol. 44, pp. 677-681, 2001.
47. R. Srinivasan, “Computer Simulation of the Equal Channel Angular Extrusion (ECAE) Process”, Scripta Materials, Vol. 44, pp. 91-96, 2001.
48. Y. Wu and I., Baher, “An Experimental Study of Equal Channel Angular Extrusion”, Scripta Materials, Vol. 37, No. 4, pp. 437-442, 1997.
49. V.M. Segal, “Equal Channel Angular Extrusion: from Micromechanical to Structure Formation”, Materials Science and Engineering A, Vol. 271, pp. 322-333, 1999.
50. MARC Inc., MARC User Guide, 2000.
51. ASM, “Properties of Magnesium Alloys”, ASM Handbook, Vol. 2, p. 481, 1999.
指導教授 李雄(Shyong Lee) 審核日期 2002-12-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明