博碩士論文 88226001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:107 、訪客IP:18.190.156.214
姓名 李欣縈(Hsin-Ying Lee)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 磷化銦鋁鎵蕭特基接觸及其應用於金屬-半導體-金屬光檢測器之研究
(Investigation of InAlGaP Schottky contact and Applications in Metal-Semiconductor-Metal Photodetectors)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ P型氮化鎵歐姆接觸製作研究
★ 應用聚對位苯基乙烯高分子材料製作有機發光二極體★ 氮離子佈植於氮化鎵之特性研究
★ 磷化銦鋁鎵/砷化鎵/砷化銦鎵對稱型平面摻雜場效電晶體研究★ 1550 nm 直調式光纖有線電視長距離傳輸系統
★ 以保角映射法為基礎之等效波導理論:理想光波導之設計與分析★ 銦鋅氧化膜基本特性及其與氮化鎵接觸應用之研究
★ 氮化鎵藍色發光二極體透明電極之製作與研究★ 透明導電膜與氮化鎵接觸特性研究
★ 連續時間電流式濾波與振盪電路設計與合成★ 氮化鋁鎵/氮化鎵異質接面金屬-半導體-金屬光檢測器之研究
★ 陣列波導光柵波長多工器設計與分析★ 室溫沈積高穩定性之氮化矽薄膜及其光激發光譜研究
★ 雙向混合DWDM系統架構在80-km LEAF上傳送CATV和OC-48信號★ N型氮化鎵MOS元件之製作與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究鈦/鉑/金與磷化銦鋁鎵表面接觸之蕭特基特性,再將寬能隙的磷化銦鋁鎵覆蓋層及緩衝層加入砷化鎵金屬-半導體-金屬光檢測器結構中,研究元件特性之改善。最後利用光電化學氧化法於砷化鎵/磷化銦鋁鎵及磷化銦鋁鎵/砷化鎵/磷化銦鋁鎵金屬-半導體-金屬光檢測器之指叉狀電極間各別成長砷化鎵及磷化銦鋁鎵氧化層作為表面鈍化層,減少表面的缺陷,以提升元件特性。
於鈦/鉑/金與磷化銦鋁鎵表面接觸之蕭特基特性研究中,先利用不同化學溶液氧化物蝕刻緩衝液(BOE,Buffered Oxide Etch,係 HF與NH4F以1:6之比例混合而成的腐蝕劑)、稀釋的鹽酸和稀釋的氨水各別處理磷化銦鋁鎵表面後,研究金屬與磷化銦鋁鎵接觸之蕭特基特性。研究中發現利用稀釋的氨水處理磷化銦鋁鎵表面可獲得最佳的蕭特基特性,理想因子及蕭特基位障分別為1.10及1.08eV,並且其崩潰電壓可高達-58V。另一方面利用在稀釋氨水不同時間(10秒、30秒、60秒和90秒)各別處理磷化銦鋁鎵表面,其表面分別利用穿透式電子顯微鏡及原子力顯微鏡觀察,研究其表面變化與蕭特基特性之關係,其中以稀釋氨水處理磷化銦鋁鎵表面30秒可獲最佳的蕭特基特性。
在光檢測器方面,藉由利用寬能隙材料磷化銦鋁鎵為砷化鎵金屬-半導體-金屬光檢測器結構中的覆蓋層及緩衝層,可以有效降低元件暗電流及低頻內部增益,其暗電流於-10V偏壓下只有70pA。於此研究中,直接利用金屬-半導體-金屬光檢測器元件結構計算其理想因子及蕭特基位障。於元件的光特性方面,利用不同瓦數波長為841nm的半導體雷射照射,其光響應度為0.28A/W,另外亦量測該金屬-半導體-金屬光檢測器之光響應度與不同波長之關係。
最後,研究利用光電化學氧化法於砷化鎵/磷化銦鋁及磷化銦鋁鎵/砷化鎵/磷化銦鋁鎵金屬-半導體-金屬光檢測器之指叉狀電極間各別成長砷化鎵及磷化銦鋁鎵氧化層作為表面鈍化層,減少表面的缺陷,量測結果顯示,經氧化後之光檢測器,可以明顯降低暗電流及提升元件的崩潰電壓。
摘要(英) In this dissertation, we investigate the Schottky performance of the material of InAlGaP in contact with the Schottky Ti/Pt/Au metals. We use different chemical solutions to treat the InAlGaP surface to improve the Schottky diode performance. We also employ wide bandgap In0.5(Al0.66Ga0.34)0.5P (referred to as InAlGaP, hereafter), lattice-matched to GaAs, for the capping layers and buffer layer in the GaAs MSM-PDs, to improve the performance of the MSM-PDs. We also use the photoelectrochemical oxidation method to directly grow the oxide film of GaAs and InAlGaP between the interdigital electrodes of MSM-PDs for a passivation layer. This reduces surface defects and improves the performance of the passivated MSM-PDs.
First, we compare the characteristics of Au/Pt/Ti/InAlGaP/GaAs Schottky diodes with different chemical solutions treated the InAlGaP surface. The chemical solution treatements include buffered oxide etchant (BOE), diluted HCl and diluted NH4OH. Among the various surface treatments mentioned, the best Schottky performances are achieved after using NH4OH+10H2O for 30sec to treat the InAlGaP surface. The ideality factor and the Schottky barrier height are 1.10 and 1.08eV, respectively, and the highest breakdown voltage is –58V. We also investigate the characteristics of Au/Pt/Ti/InAlGaP/GaAs Schottky diodes treated with NH4OH+10H2O for various times (10sec, 30sec, 60sec and 90sec). The results of TEM (transmission electron microscopy) and AFM (atomic force microscopy) measurement are also used to analyze the degradation mechanisms of Schottky diodes treated with diluted NH4OH for various times. The best Schottky performances are achieved using NH4OH+10H2O for 30sec to treat the InAlGaP surface.
We employ the wide bandgap InAlGaP material for the capping and buffer layers in GaAs MSM-PD structure, to effectively reduce the dark current and avoid the low-frequency internal gain. The dark current of the InAlGaP/GaAs MSM-PDs is 70pA at –10V. In this study, we also investigate the possibility of evaluating the main Schottky contact parameters directlyfrom the InAlGaP/GaAs MSM-PD structure. The MSM-PDs are illuminated by different optical powers (semiconductor laser, wavelength of 841nm); the measured photoresponsivity is 0.28A/W. The spectral photoreponsivity is determined with a monochromator and a Xe lamp source.
Finally, to improve the stability of MSM-PDs, we use a photoelectrochemical oxidation method to directly grow the oxide film of GaAs and InAlGaP between the interdigital electrodes of MSM-PDs. This acts as a passivation layer to reduce surface defects. From the experimental results, we see that the process of oxide passivated can reduce the dark current and increase the breakdown voltage of MSM-PDs.
關鍵字(中) ★ 光電化學氧化法
★ 金屬-半導體-金屬光檢測器
★ 蕭特基接觸
★ 磷化銦鋁鎵
關鍵字(英) ★ photoelectrochemical oxidation method
★ InAlGaP
★ MSM photodtector
★ Schottky contact
論文目次 Abstract
List of Tables
List of Figures
Chapter 1 Introduction 1
Chapter 2 The Investigation for Various Treatments of InAlGaP Schottky Diodes 5
2-1 Introduction 5
2-2 Schottky diode structure and fabrication 6
2-3 Experimental results and discussion 6
2-4 Conclusions 9
Chapter 3 Investigation of Degradation Mechanism of Schottky Diodes 10
3-1 Introduction 10
3-2 Experimental procedure 11
3-3 Experimental results and discussion 12
3-4 Conclusions 14
Chapter 4 Metal-Semiconductor-Metal Photodetectors with InAlGaP Capping and Buffer Layers 16
4-1 Introduction 16
4-2 Experimental procedure 17
4-3 Experimental results 18
4-4 Conclusions 22
Chapter 5 Surface Passivation of GaAs MSM-PDs Using the Photoelectrochemical Oxidation Method 23
5-1 Introduction 23
5-2 Experimental procedure and results 24
5-2-1 The principles of the photoelectrochemical oxidation method 24
5-2-2 GaAs oxide and InAlGaP oxide produced using the PEC oxidation method 25
5-3 Experimental Results for MSM-PDs passivated using the PEC oxidation method 29
5-4 Conclusions 33
Chapter 6 Conclusions 35
References 37
參考文獻 Chapter 1
[1.1] L. D. Hutcheson, P. Haugen, and A. Husain, “Optical interconnects replace hardwire”, IEEE Spectrum, vol. 24, pp. 30-35, 1987.
[1.2] T. V. Higgins, “Quantum detectors sense light directly”, Laser Focus World, pp. 93-100, 1994.
[1.3] P. Bhattacharya, Semiconductor optoelectronic devices, Intl. Eds. Prentic Hall, New Jersey, 1994.
[1.4] P. R. Berger, “MSM photodiode”, IEEE Potential, vol. 15, pp. 25-29, 1996.
[1.5] J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications”, IEEE J. Quantum Electron., vol. 27, pp. 737-752, 1991.
[1.6] P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar and I. Adesida, “A comparative study of integrated photoreceivers using MSM/HEMT and PIN/HEMT technologies”, IEEE Photon. Technol. Lett., vol. 10, pp. 582-584, 1998.
[1.7] M. S. Doong, D. S. Liu, and C. T. Lee, “Monolithic photoreceiver constructed with InGaP/GaAs/InGaP MSM photodetectors and conventional GaAs MESFETS”, Solid-State Electron., vol. 44, pp. 1235-1238, 2000.
[1.8] J. Burm, K. I. Litvin, D. W. Woodard, W. J. Schaff, P. Mandeville, M. A. Jaspan, M. M. Gitin, and L. F. Eastman, “High-frequency, high-efficiency MSM photodetectors”, IEEE J. Quantum Electron., vol. 31, pp. 1504-1509, 1995.
[1.9] M. O. Watanabe and Y. Ohba, “Interface properties for GaAs/InGaAlP heterojunctions by the capacitance-voltage profiling technique”, Appl. Phys. Lett., vol. 50, pp. 906-908, 1987.
[1.10] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, H. S. Tsai, J. S. Weiner, H. C. Kuo, C. H. Lin, Y. K. Chen and W. E. Mayo, “In0.5(AlxGa1-x)0.5P HEMT’s for high-efficiency low-voltage power amplifiers: design, fabrication, and device results”, IEEE Trans. Microwave Theory and Technol., vol. 47, pp. 1404-1412, 1999.
[1.11] J. R. Lothian, J. M. Kuo, F. Ren and S. J. Pearton, “Plasma and wet chemical etching of In0.5Ga0.5P”, J. Electron. Mater., vol. 21, pp. 441-445, 1992.
[1.12] H. Y. Lee, I. J. Lin, H. M. Shieh and C. T. Lee, “Investigation of double-delta-doped InAlGaP/GaAs/InGaAs field effect transistors”, Solid-State Electron., vol. 46, pp.1075-1078, 2002.
[1.13] Y. S. Lin, W. C. Hsu and C. S. Yang, “Low-leakage current and high-breakdown voltage GaAs-based heterostructure field-effect transistor with In0.5(Al0.66Ga0.34)0.5P Schottky layer”, Appl. Phys. Lett., vol. 75, pp. 3551-3553, 1999.
Chapter 2
[2.1] J. H. Burroughes, “H-MESFET compatible GaAs/AlGaAs MSM photodetector”, IEEE Photon. Technol. Lett., vol. 3, pp. 660-662, 1991.
[2.2] C. D. Tasi, H. P. Shiao, C. T. Lee and Y. K. Tu, “High performances and reliability of novel GaAs MSM photodetectors with InGaP buffer and capping layers”, IEEE Photon. Technol. Lett., vol. 9, pp. 660-662 , 1997.
[2.3] D. J. Mowbray, O. P. Kowalski, M. S. Skolnick and J. P. R. David, “Electronic band structure of AlGaInP grown by solid-source molecular-beam epitaxy”, Appl. Phys. Lett., vol. 65, pp. 213-215, 1994.
[2.4] S. P. Najda, A. H. Kean, M. D. Dawson and G. Duggan, “Optical measurements of electronic bandstructure in AlGaInP alloys grown by gas source molecular beam epitaxy”, J. Appl. Phys., vol. 77 pp. 3412-3415, 1995.
[2.5] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian H. S Tsai, J. S. Weiner, H. C. Kuo, C. H. Lin, Y. K. Chen and W. E. Mayo, “In0.5(AlxGa1-x)0.5P HEMT’s for high-efficiency low-voltage power amplifiers: design, fabrication, and device results”, IEEE Trans. on Microwave Theory and Technol., vol. 47, pp. 1404-1412, 1999.
[2.6] Y. S. Lin, W. C. Hsu and C. S. Yang, “Low-leakage current and high-breakdown voltage GaAs-based heterostructure field-effect transistor with In0.5(Al0.66Ga0.34)0.5P Schottky layer”, Appl. Phys. Lett., vol. 75, pp. 3551-3553, 1999.
[2.7] H. C. Card and E. H. Rhoderick, “Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes”, J. Phys. D: Appl. Phys., vol. 4, pp. 1589-1601, 1971.
[2.8] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian and W. E. Mayo, “Schottky barrier heights of In0.5(AlxGa1−x)0.5P (0≤X≤1) lattice matched to GaAs”, Solid-State Electron., vol. 42, pp. 1045-1048 , 1998.
[2.9] M. S. Tyagi, Metal-Semiconductor Schottky Barrier Junctions and Their Application, New York, p. 20, 1984.
[2.10] C. T. Lee, H. P. Shiao, N. T. Yeh, C. D. Tasi, Y. T. Lyu and Y. K. Tu, “Thermal reliability and characterization of InGaP Schottky contact with Ti/Pt/Au metals”, Solid-State Electron., vol. 41, pp. 1-5, 1997.
Chapter 3
[3.1] Y. J. Chan, D. Pavlidis, M. Razeghi and F. Omnes, “Ga0.51In0.49P/GaAs HEMT’s exhibiting good electrical performance at cryogenic temperatures”, IEEE Trans. Electron. Devices, vol. 37, pp. 2141-2147, 1990.
[3.2] J. H. Burroughes, “H-MESFET compatible GaAs/AlGaAs MSM photodetector”, IEEE Photon. Technol. Lett., vol. 3, pp. 660-662, 1991.
[3.3] F. Hyuga, T. Aoki, S. Sugitani and K. Asai, “Si-implanted InGaP/GaAs metal-semiconductor field-effect transistors”, Appl. Phys. Lett., vol. 60, pp. 1963-1965, 1992.
[3.4] C. D. Tasi, H. P. Shiao, C. T. Lee and Y. K. Tu, “High performances and reliability of novel GaAs MSM photodetectors with InGaP buffer and capping layers”, IEEE Photon. Technol. Lett., vol. 9, pp. 660-662, 1997.
[3.5] C. T. Lee, “Optically induced sidegating current isolation of GaAs MESFET by multiquantum barrier”, IEEE Trans. Electron. Devices, vol. 45, pp. 2083-2085, 1998.
[3.6] M. O. Watanabe and Y. Ohba, “Interface properties for GaAs/InGaAlP heterojunctions by the capacitance-voltage profiling technique”, Appl. Phys. Lett., vol. 50, pp. 906-908, 1987.
[3.7] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, H. S. Tsai, J. S. Weiner, H. C. Kuo, C. H. Lin, Y. K. Chen and W. E. Mayo, “In0.5(AlxGa1-x)0.5P HEMT’s for high-efficiency low-voltage power amplifiers: design, fabrication, and device results”, IEEE Trans. Microwave Theory and Technol., vol. 47, pp. 1404-1412, 1999.
[3.8] J. R. Lothian, J. M. Kuo, F. Ren and S. J. Pearton, “Plasma and wet chemical etching of In0.5Ga0.5P”, J. Electron. Mater., vol. 21, pp. 441-445, 1992.
[3.9] D. J. Mowbray, O. P. Kowalski, M. S. Skolnick and J. P. R. David, “Electronic band structure of AlGaInP grown by solid-source molecular-beam epitaxy”, Appl. Phys. Lett., vol. 65, pp. 213-215, 1994.
[3.10] S. P. Najda, A. H. Kean, M. D. Dawson and G. Duggan, “Optical measurements of electronic bandstructure in AlGaInP alloys grown by gas source molecular beam epitaxy”, J. Appl. Phys., vol. 77, pp. 3412-3415, 1995.
[3.11] J. Dickmann, M. Berg, A. Geyer, H. Däembkes, F. Scholz and M. Moser, “(Al0.7Ga0.3)0.5In0.5P/In0.15Ga0.85As/GaAs heterostructure field effect transistors with very thin highly p-doped surface layer”, IEEE Trans. Electron. Devices, vol. 42, pp. 2-7, 1995.
[3.12] Y. S. Lin, W. C. Hsu and C. S. Yang, “Low-leakage current and high-breakdown voltage GaAs-based heterostructure field-effect transistor with In0.5(Al0.66Ga0.34)0.5P Schottky layer”, Appl. Phys. Lett., vol. 75, pp. 3551-3553, 1999.
[3.13] H. C. Card and E. H. Rhoderick, “Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes”, J. Phys. D: Appl. Phys., vol.4, pp. 1589-1601, 1971.
[3.14] M. S. Tyagi, Metal-Semiconductor Schottky Barrier Junctions and Their Application, New York, p. 20, 1984.
[3.15] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian and W. E. Mayo, “Schottky barrier heights of In0.5(AlxGa1−x)0.5P (0≤X≤1) lattice matched to GaAs”, Solid-State Electron., vol. 42, pp. 1045-1048, 1998.
Chapter 4
[4.1] J. S. Wang, C. G. Shih, W. H. Chang, J. R. Middleton, P. J. Apostolakis and M. Feng, “11 GHz bandwidth optical integrated receivers using GaAs-MESFET and MSM technology”, IEEE Photon. Technol. Lett., vol. 5, pp. 316-318, 1993.
[4.2] A. A. Ketterson, J. W. Seo, M. H. Tong, K. L. Nummila, J. J. Morikuni, K. Y. Cheng, S. M. Kang and I. Adesida, “A MODFET-based optoelectronic integrated-circuit receiver for optical interconnects”, IEEE Trans. Electron Devices, vol. 40, pp. 1406-1416, 1993.
[4.3] P. R. Berger, “MSM Photodiode”, IEEE Potentials, vol. 15, pp. 25-19, 1996.
[4.4] P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar and I. Adesida, “A comparative study of integrated photoreceivers using MSM/HEMT and PIN/HEMT technologies”, IEEE Photon. Technol. Lett., vol. 10, pp. 582-584, 1998.
[4.5] D. K. Schroder, Semiconductor Material and Device Characterization, Wiley-Interscience, New York, p. 151, 1981.
[4.6] M. Ito and O. Wada, ”Low dark current GaAs metal-semiconductor-metal (MSM) photodiodes using WSix contacts”, IEEE J. Quantum Electron., vol. 22, pp. 1073-1077, 1986.
[4.7] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, Oxford University Press, New York, pp. 98-99, 1988.
[4.8] M. Kingenstein, J. Schneider, C. Moglestue, A. Hulsmann, J. Schneider and K. Kohler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors”, Solid-State Electron., vol. 37, pp. 333-340, 1994.
[4.9] J. Burm, and L. F. Eastman, “Low-frequency gain in MSM photodiodes due to charge accumulation and image force lower”, IEEE Photo. Technol. Lett., vol. 8, pp. 113-115, 1996.
[4.10] S. M. Sze, Semiconductor Devices Physics and Technology, John Wiley, New York, p.282, 1985.
Chapter 5
[5.1] R. H. Yuang, Y. J. Chien, J. L. Shieh and J. I. Chyi, “GaAs metal-semiconductor-metal photodetectors (MSM-PD’s) with AlGaAs cap and buffer layers”, Appl. Phys. Lett., vol.69, pp. 245-247, 1996.
[5.2] J. C. Carrano, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, “Very low dark current metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN epitaxial layers”, Appl. Phys. Lett., vol. 70, pp. 1992-1994. 1997.
[5.3] St. Kollakowski, U. Schade, E. H. Böttcher and D. Bimberg, “Fully passivated AR coated InP/InGaAs MSM photodetectors”, IEEE Photo. Technol. Lett., vol. 6, pp. 1324-1326, 1994.
[5.4] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy and L. F. Eastman, “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs”, IEEE Electron Device Lett., vol. 21, pp. 268-270, 2000.
[5.5] St. Kollakowski, U. Schade, E. H. Böttcher, D. Kuhl, D. Bimberg, P. Ambrée and K. Wandel, “Silicon dioxide passivation of InP/InGaAs metal-semiconductor-metal photodetectors”, J. Vac. Sci. Technol. B, vol. 14, pp. 1712-1719, 1996.
[5.6] B. Luo, J. W. Johnson, J. Kim, R. M. Mehandru, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, A. G. Baca, R. D. Briggs, R. J. Shul, C. Monier, and J. Han, “Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors”, Appl. Phys. Lett., vol. 80, pp. 1661-1664, 2002.
[5.7] B. Luo, Jihyun Kim, F. Ren, J. K. Gillespie, R. C. Fitch, J. Sewell, R, Dettmer, G. D. Via, A. Crespo,T. J. Jenkins B. P. Gila, A. H. Onstine, K. K. Allums, C. R. Abernathy, S. J. Pearton, R. Dwivedi, T. N. Fogarty and R. Wilkins, “Electrical characteristics of proton-irradiated Sc2O3 passivated AlGaN/GaN high electron mobility transistors”, Appl. Phys. Lett., vol. 82, pp. 1428-1430, 2003.
[5.8] B. Luo, J. W. Johnson, B. P. Gila, A. Onstine, C. R. Abernathy, F. Ren, S. J. Pearton, A. G. Baca, A. M. Dabiran, A. M. Wowchack and P. P. Chow, “Surface passivation of AlGaN/GaN HEMTs using MBE-grown MgO or Sc2O3”, Solid-State Electron., vol. 46, pp. 467-476, 2002.
[5.9] J. K. Gillespie, R. C. Fitch, J. Sewell, R. Dettmer, G. D. Via, A. Crespo, T. J. Jenkins, B. Luo, R. Mehandru, J. Kim, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy and S. J. Pearton, “Effects of Sc2O3 and MgO passivation layers on the output power of AlGaN/GaN HEMTs”, IEEE Electron Device Lett., vol. 23, pp. 505-507, 2002.
[5.10] C. T. Lee, H. Y. Lee and H. W. Chen, “GaN metal-oxide-semiconductor device using SiO2/Ga2O3 insulator grown by photoelectrochemical oxidation method”, IEEE Electron Device Lett., vol. 24, pp. 54-56, 2003.
[5.11] C. T. Lee, H. W. Chen and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN”, Accepted to be published in Appl. Phys. Lett. (2003).
[5.12] R. Khare, D. B. Young, G. L. Snider and E. L. Hu, “Effect of band structure on etch-stop layers in the photoelectrochemical etching of GaAs/AlGaAs semiconductor structures”, Appl. Phys. Lett., vol. 62, pp. 1809-1811, 1993.
[5.13] E. H.Chen, D. T. Mcinturff, T. P. Chin, M. R. Melloch and J. M. Woodall, “Use of annealed low-temperature grown GaAs as a selective photoetch-stop layer”, Appl. Phys. Lett., vol. 68, pp. 1678-1680, 1996.
[5.14] C. Youtsey, I. Adesida and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett., vol. 71, pp. 2151-2153, 1997.
[5.15] L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang and C. Y. Chen, “Deep ultraviolet enhanced wet chemical etching of gallium nitride”, Appl. Phys. Lett., vol. 72, pp. 939-941, 1998.
[5.16] H. O. Finkiea, Semiconductor Electrodes, Elsevier Science, The Netherlands, 1988.
[5.17] T. H. Oh, D. L. Huffaker, L. A. Graham, H. Deng and D. G. Deppe, “Steam oxidation of GaAs”, Electron. Lett., vol. 32, pp.2024-2026, 1996.
[5.18] H. J. Yoon, M. H. Choi and I. S. Park, “The study of native oxide on chemically etched GaAs (100) surfaces”, J. Electrochem. Soc., vol. 139, pp. 3229-3234, 1992.
[5.19] R. Khare, E. L. Hu, J. J. Brown and M. A. Melendes, “Micromachining in III-V semiconductors using wet photoelectrochemical etching”, J. Vac. Sci. Technol. B, vol. 11, pp. 2497-2501, 1993.
[5.20] S. M. Sze, D. J. Coleman, JR. and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures”, Solid-States Electron., vol. 14, pp. 1209-1218, 1971.
指導教授 李清庭(Ching-Ting Lee) 審核日期 2003-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明