參考文獻 |
Chapter 1
[1.1] L. D. Hutcheson, P. Haugen, and A. Husain, “Optical interconnects replace hardwire”, IEEE Spectrum, vol. 24, pp. 30-35, 1987.
[1.2] T. V. Higgins, “Quantum detectors sense light directly”, Laser Focus World, pp. 93-100, 1994.
[1.3] P. Bhattacharya, Semiconductor optoelectronic devices, Intl. Eds. Prentic Hall, New Jersey, 1994.
[1.4] P. R. Berger, “MSM photodiode”, IEEE Potential, vol. 15, pp. 25-29, 1996.
[1.5] J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications”, IEEE J. Quantum Electron., vol. 27, pp. 737-752, 1991.
[1.6] P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar and I. Adesida, “A comparative study of integrated photoreceivers using MSM/HEMT and PIN/HEMT technologies”, IEEE Photon. Technol. Lett., vol. 10, pp. 582-584, 1998.
[1.7] M. S. Doong, D. S. Liu, and C. T. Lee, “Monolithic photoreceiver constructed with InGaP/GaAs/InGaP MSM photodetectors and conventional GaAs MESFETS”, Solid-State Electron., vol. 44, pp. 1235-1238, 2000.
[1.8] J. Burm, K. I. Litvin, D. W. Woodard, W. J. Schaff, P. Mandeville, M. A. Jaspan, M. M. Gitin, and L. F. Eastman, “High-frequency, high-efficiency MSM photodetectors”, IEEE J. Quantum Electron., vol. 31, pp. 1504-1509, 1995.
[1.9] M. O. Watanabe and Y. Ohba, “Interface properties for GaAs/InGaAlP heterojunctions by the capacitance-voltage profiling technique”, Appl. Phys. Lett., vol. 50, pp. 906-908, 1987.
[1.10] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, H. S. Tsai, J. S. Weiner, H. C. Kuo, C. H. Lin, Y. K. Chen and W. E. Mayo, “In0.5(AlxGa1-x)0.5P HEMT’s for high-efficiency low-voltage power amplifiers: design, fabrication, and device results”, IEEE Trans. Microwave Theory and Technol., vol. 47, pp. 1404-1412, 1999.
[1.11] J. R. Lothian, J. M. Kuo, F. Ren and S. J. Pearton, “Plasma and wet chemical etching of In0.5Ga0.5P”, J. Electron. Mater., vol. 21, pp. 441-445, 1992.
[1.12] H. Y. Lee, I. J. Lin, H. M. Shieh and C. T. Lee, “Investigation of double-delta-doped InAlGaP/GaAs/InGaAs field effect transistors”, Solid-State Electron., vol. 46, pp.1075-1078, 2002.
[1.13] Y. S. Lin, W. C. Hsu and C. S. Yang, “Low-leakage current and high-breakdown voltage GaAs-based heterostructure field-effect transistor with In0.5(Al0.66Ga0.34)0.5P Schottky layer”, Appl. Phys. Lett., vol. 75, pp. 3551-3553, 1999.
Chapter 2
[2.1] J. H. Burroughes, “H-MESFET compatible GaAs/AlGaAs MSM photodetector”, IEEE Photon. Technol. Lett., vol. 3, pp. 660-662, 1991.
[2.2] C. D. Tasi, H. P. Shiao, C. T. Lee and Y. K. Tu, “High performances and reliability of novel GaAs MSM photodetectors with InGaP buffer and capping layers”, IEEE Photon. Technol. Lett., vol. 9, pp. 660-662 , 1997.
[2.3] D. J. Mowbray, O. P. Kowalski, M. S. Skolnick and J. P. R. David, “Electronic band structure of AlGaInP grown by solid-source molecular-beam epitaxy”, Appl. Phys. Lett., vol. 65, pp. 213-215, 1994.
[2.4] S. P. Najda, A. H. Kean, M. D. Dawson and G. Duggan, “Optical measurements of electronic bandstructure in AlGaInP alloys grown by gas source molecular beam epitaxy”, J. Appl. Phys., vol. 77 pp. 3412-3415, 1995.
[2.5] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian H. S Tsai, J. S. Weiner, H. C. Kuo, C. H. Lin, Y. K. Chen and W. E. Mayo, “In0.5(AlxGa1-x)0.5P HEMT’s for high-efficiency low-voltage power amplifiers: design, fabrication, and device results”, IEEE Trans. on Microwave Theory and Technol., vol. 47, pp. 1404-1412, 1999.
[2.6] Y. S. Lin, W. C. Hsu and C. S. Yang, “Low-leakage current and high-breakdown voltage GaAs-based heterostructure field-effect transistor with In0.5(Al0.66Ga0.34)0.5P Schottky layer”, Appl. Phys. Lett., vol. 75, pp. 3551-3553, 1999.
[2.7] H. C. Card and E. H. Rhoderick, “Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes”, J. Phys. D: Appl. Phys., vol. 4, pp. 1589-1601, 1971.
[2.8] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian and W. E. Mayo, “Schottky barrier heights of In0.5(AlxGa1−x)0.5P (0≤X≤1) lattice matched to GaAs”, Solid-State Electron., vol. 42, pp. 1045-1048 , 1998.
[2.9] M. S. Tyagi, Metal-Semiconductor Schottky Barrier Junctions and Their Application, New York, p. 20, 1984.
[2.10] C. T. Lee, H. P. Shiao, N. T. Yeh, C. D. Tasi, Y. T. Lyu and Y. K. Tu, “Thermal reliability and characterization of InGaP Schottky contact with Ti/Pt/Au metals”, Solid-State Electron., vol. 41, pp. 1-5, 1997.
Chapter 3
[3.1] Y. J. Chan, D. Pavlidis, M. Razeghi and F. Omnes, “Ga0.51In0.49P/GaAs HEMT’s exhibiting good electrical performance at cryogenic temperatures”, IEEE Trans. Electron. Devices, vol. 37, pp. 2141-2147, 1990.
[3.2] J. H. Burroughes, “H-MESFET compatible GaAs/AlGaAs MSM photodetector”, IEEE Photon. Technol. Lett., vol. 3, pp. 660-662, 1991.
[3.3] F. Hyuga, T. Aoki, S. Sugitani and K. Asai, “Si-implanted InGaP/GaAs metal-semiconductor field-effect transistors”, Appl. Phys. Lett., vol. 60, pp. 1963-1965, 1992.
[3.4] C. D. Tasi, H. P. Shiao, C. T. Lee and Y. K. Tu, “High performances and reliability of novel GaAs MSM photodetectors with InGaP buffer and capping layers”, IEEE Photon. Technol. Lett., vol. 9, pp. 660-662, 1997.
[3.5] C. T. Lee, “Optically induced sidegating current isolation of GaAs MESFET by multiquantum barrier”, IEEE Trans. Electron. Devices, vol. 45, pp. 2083-2085, 1998.
[3.6] M. O. Watanabe and Y. Ohba, “Interface properties for GaAs/InGaAlP heterojunctions by the capacitance-voltage profiling technique”, Appl. Phys. Lett., vol. 50, pp. 906-908, 1987.
[3.7] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, H. S. Tsai, J. S. Weiner, H. C. Kuo, C. H. Lin, Y. K. Chen and W. E. Mayo, “In0.5(AlxGa1-x)0.5P HEMT’s for high-efficiency low-voltage power amplifiers: design, fabrication, and device results”, IEEE Trans. Microwave Theory and Technol., vol. 47, pp. 1404-1412, 1999.
[3.8] J. R. Lothian, J. M. Kuo, F. Ren and S. J. Pearton, “Plasma and wet chemical etching of In0.5Ga0.5P”, J. Electron. Mater., vol. 21, pp. 441-445, 1992.
[3.9] D. J. Mowbray, O. P. Kowalski, M. S. Skolnick and J. P. R. David, “Electronic band structure of AlGaInP grown by solid-source molecular-beam epitaxy”, Appl. Phys. Lett., vol. 65, pp. 213-215, 1994.
[3.10] S. P. Najda, A. H. Kean, M. D. Dawson and G. Duggan, “Optical measurements of electronic bandstructure in AlGaInP alloys grown by gas source molecular beam epitaxy”, J. Appl. Phys., vol. 77, pp. 3412-3415, 1995.
[3.11] J. Dickmann, M. Berg, A. Geyer, H. Däembkes, F. Scholz and M. Moser, “(Al0.7Ga0.3)0.5In0.5P/In0.15Ga0.85As/GaAs heterostructure field effect transistors with very thin highly p-doped surface layer”, IEEE Trans. Electron. Devices, vol. 42, pp. 2-7, 1995.
[3.12] Y. S. Lin, W. C. Hsu and C. S. Yang, “Low-leakage current and high-breakdown voltage GaAs-based heterostructure field-effect transistor with In0.5(Al0.66Ga0.34)0.5P Schottky layer”, Appl. Phys. Lett., vol. 75, pp. 3551-3553, 1999.
[3.13] H. C. Card and E. H. Rhoderick, “Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes”, J. Phys. D: Appl. Phys., vol.4, pp. 1589-1601, 1971.
[3.14] M. S. Tyagi, Metal-Semiconductor Schottky Barrier Junctions and Their Application, New York, p. 20, 1984.
[3.15] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian and W. E. Mayo, “Schottky barrier heights of In0.5(AlxGa1−x)0.5P (0≤X≤1) lattice matched to GaAs”, Solid-State Electron., vol. 42, pp. 1045-1048, 1998.
Chapter 4
[4.1] J. S. Wang, C. G. Shih, W. H. Chang, J. R. Middleton, P. J. Apostolakis and M. Feng, “11 GHz bandwidth optical integrated receivers using GaAs-MESFET and MSM technology”, IEEE Photon. Technol. Lett., vol. 5, pp. 316-318, 1993.
[4.2] A. A. Ketterson, J. W. Seo, M. H. Tong, K. L. Nummila, J. J. Morikuni, K. Y. Cheng, S. M. Kang and I. Adesida, “A MODFET-based optoelectronic integrated-circuit receiver for optical interconnects”, IEEE Trans. Electron Devices, vol. 40, pp. 1406-1416, 1993.
[4.3] P. R. Berger, “MSM Photodiode”, IEEE Potentials, vol. 15, pp. 25-19, 1996.
[4.4] P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar and I. Adesida, “A comparative study of integrated photoreceivers using MSM/HEMT and PIN/HEMT technologies”, IEEE Photon. Technol. Lett., vol. 10, pp. 582-584, 1998.
[4.5] D. K. Schroder, Semiconductor Material and Device Characterization, Wiley-Interscience, New York, p. 151, 1981.
[4.6] M. Ito and O. Wada, ”Low dark current GaAs metal-semiconductor-metal (MSM) photodiodes using WSix contacts”, IEEE J. Quantum Electron., vol. 22, pp. 1073-1077, 1986.
[4.7] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, Oxford University Press, New York, pp. 98-99, 1988.
[4.8] M. Kingenstein, J. Schneider, C. Moglestue, A. Hulsmann, J. Schneider and K. Kohler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors”, Solid-State Electron., vol. 37, pp. 333-340, 1994.
[4.9] J. Burm, and L. F. Eastman, “Low-frequency gain in MSM photodiodes due to charge accumulation and image force lower”, IEEE Photo. Technol. Lett., vol. 8, pp. 113-115, 1996.
[4.10] S. M. Sze, Semiconductor Devices Physics and Technology, John Wiley, New York, p.282, 1985.
Chapter 5
[5.1] R. H. Yuang, Y. J. Chien, J. L. Shieh and J. I. Chyi, “GaAs metal-semiconductor-metal photodetectors (MSM-PD’s) with AlGaAs cap and buffer layers”, Appl. Phys. Lett., vol.69, pp. 245-247, 1996.
[5.2] J. C. Carrano, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, “Very low dark current metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN epitaxial layers”, Appl. Phys. Lett., vol. 70, pp. 1992-1994. 1997.
[5.3] St. Kollakowski, U. Schade, E. H. Böttcher and D. Bimberg, “Fully passivated AR coated InP/InGaAs MSM photodetectors”, IEEE Photo. Technol. Lett., vol. 6, pp. 1324-1326, 1994.
[5.4] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy and L. F. Eastman, “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs”, IEEE Electron Device Lett., vol. 21, pp. 268-270, 2000.
[5.5] St. Kollakowski, U. Schade, E. H. Böttcher, D. Kuhl, D. Bimberg, P. Ambrée and K. Wandel, “Silicon dioxide passivation of InP/InGaAs metal-semiconductor-metal photodetectors”, J. Vac. Sci. Technol. B, vol. 14, pp. 1712-1719, 1996.
[5.6] B. Luo, J. W. Johnson, J. Kim, R. M. Mehandru, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, A. G. Baca, R. D. Briggs, R. J. Shul, C. Monier, and J. Han, “Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors”, Appl. Phys. Lett., vol. 80, pp. 1661-1664, 2002.
[5.7] B. Luo, Jihyun Kim, F. Ren, J. K. Gillespie, R. C. Fitch, J. Sewell, R, Dettmer, G. D. Via, A. Crespo,T. J. Jenkins B. P. Gila, A. H. Onstine, K. K. Allums, C. R. Abernathy, S. J. Pearton, R. Dwivedi, T. N. Fogarty and R. Wilkins, “Electrical characteristics of proton-irradiated Sc2O3 passivated AlGaN/GaN high electron mobility transistors”, Appl. Phys. Lett., vol. 82, pp. 1428-1430, 2003.
[5.8] B. Luo, J. W. Johnson, B. P. Gila, A. Onstine, C. R. Abernathy, F. Ren, S. J. Pearton, A. G. Baca, A. M. Dabiran, A. M. Wowchack and P. P. Chow, “Surface passivation of AlGaN/GaN HEMTs using MBE-grown MgO or Sc2O3”, Solid-State Electron., vol. 46, pp. 467-476, 2002.
[5.9] J. K. Gillespie, R. C. Fitch, J. Sewell, R. Dettmer, G. D. Via, A. Crespo, T. J. Jenkins, B. Luo, R. Mehandru, J. Kim, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy and S. J. Pearton, “Effects of Sc2O3 and MgO passivation layers on the output power of AlGaN/GaN HEMTs”, IEEE Electron Device Lett., vol. 23, pp. 505-507, 2002.
[5.10] C. T. Lee, H. Y. Lee and H. W. Chen, “GaN metal-oxide-semiconductor device using SiO2/Ga2O3 insulator grown by photoelectrochemical oxidation method”, IEEE Electron Device Lett., vol. 24, pp. 54-56, 2003.
[5.11] C. T. Lee, H. W. Chen and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN”, Accepted to be published in Appl. Phys. Lett. (2003).
[5.12] R. Khare, D. B. Young, G. L. Snider and E. L. Hu, “Effect of band structure on etch-stop layers in the photoelectrochemical etching of GaAs/AlGaAs semiconductor structures”, Appl. Phys. Lett., vol. 62, pp. 1809-1811, 1993.
[5.13] E. H.Chen, D. T. Mcinturff, T. P. Chin, M. R. Melloch and J. M. Woodall, “Use of annealed low-temperature grown GaAs as a selective photoetch-stop layer”, Appl. Phys. Lett., vol. 68, pp. 1678-1680, 1996.
[5.14] C. Youtsey, I. Adesida and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett., vol. 71, pp. 2151-2153, 1997.
[5.15] L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang and C. Y. Chen, “Deep ultraviolet enhanced wet chemical etching of gallium nitride”, Appl. Phys. Lett., vol. 72, pp. 939-941, 1998.
[5.16] H. O. Finkiea, Semiconductor Electrodes, Elsevier Science, The Netherlands, 1988.
[5.17] T. H. Oh, D. L. Huffaker, L. A. Graham, H. Deng and D. G. Deppe, “Steam oxidation of GaAs”, Electron. Lett., vol. 32, pp.2024-2026, 1996.
[5.18] H. J. Yoon, M. H. Choi and I. S. Park, “The study of native oxide on chemically etched GaAs (100) surfaces”, J. Electrochem. Soc., vol. 139, pp. 3229-3234, 1992.
[5.19] R. Khare, E. L. Hu, J. J. Brown and M. A. Melendes, “Micromachining in III-V semiconductors using wet photoelectrochemical etching”, J. Vac. Sci. Technol. B, vol. 11, pp. 2497-2501, 1993.
[5.20] S. M. Sze, D. J. Coleman, JR. and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures”, Solid-States Electron., vol. 14, pp. 1209-1218, 1971. |