博碩士論文 88245002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.133.117.113
姓名 簡莉珠(Li-Chu Chien)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 廣義線性模型架構下多個迴歸係數的有母數強韌推論法
(Parametric Simultaneous Robust Inferences for Regression Coefficients in General Regression Problems under Generalized Linear Models)
相關論文
★ 不需常態假設與不受離群值影響的選擇迴歸模型的方法★ 用卜瓦松與負二項分配建構非負連續隨機變數平均數之概似函數
★ 強韌變異數分析★ 用強韌概似函數分析具相關性之二分法資料
★ 利用Bartlett第二等式來估計有序資料的相關性★ 相關性連續與個數資料之強韌概似分析
★ 不偏估計函數之有效性比較★ 一個分析相關性資料的新方法-複合估計方程式
★ (一)加權概似函數之強韌性探討 (二)影響代謝症候群短期發生及消失的相關危險因子探討★ 利用 Bartlett 第二等式來推論模型假設錯誤下的變異數函數
★ (一)零過多的個數資料之變異數函數的強韌推論 (二)影響糖尿病、高血壓短期發生的相關危險因子探討★ 一個分析具相關性的連續與比例資料的簡單且強韌的方法
★ 時間數列模型之統計推論★ 複合概似函數有效性之探討
★ 決定分析相關性資料時統計檢定力與樣本數的普世強韌法★ 檢定DNA鹼基替換模型的新方法 - 考慮不同DNA鹼基間的相關性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(英) In this article, robust regression parameter inference in the setting of generalized linear models (GLMs) will be proposed. A parametric robust regression methodology that is robust to violations of the distributional assumptions is able to test hypotheses on the regression coefficients in the misspecified GLM setting. More specifically, it will be demonstrated that with large samples the ordinary normal, gamma and inverse Gaussian regression models can be made robust and provide consistent regression parameter estimates in the misspecified GLM setting. These adjusted regression models furnish the correct type I, II error probabilities, and also the correct coverage probability, for continuous data, as long as the true but unknown underlying distributions have finite second moments.
The parametric robust regression techniques are also applied to the analysis of variance (ANOVA) problems including the one-way, two-way ANOVA structures and the one-way analysis of covariance (ANCOVA) setup. In the ANOVA situations, these adjusted regression models continue to remain asymptotically valid representations of the particular parameters of interest, whatever distributions generate the data.
關鍵字(中) 關鍵字(英) ★ ANCOVA
★ normal regression
★ gamma regression
★ inverse Gaussian regression
★ ANOVA
★ Generalized linear models
論文目次 Abstract I
Acknowledgments II
Contents III
1 Introduction 1
2 Robust Tests Based on the Adjusted Likelihood Function 4
2.1 Model Msspecification …………………………………………………... 4
2.2 Robust Likelihood ……………………………………………………….. 11
2.2.1 Models with a One-Dimensional Parameter …………………….. 11
2.2.2 Models with Nuisance Parameters ………………………………. 14
3 Robust Likelihood Inference for the Regression Parameters in the
Setting of Generalized Linear Models 20
3.1 The Large-Sample Behavior of the Maximum Likelihood (ML)
Estimator in Misspecified Generalized Linear Models …………………. 20
3.1.1 Misspecified Generalized Linear Models ……………………….. 21
3.1.2 Asymptotic Properties of the ML Estimate ……………………... 26
3.2 Asymptotic Behavior of the ML Estimate Based on the Superior Working
Models ………………………………………………………………….. 29
3.3 Making Regression Models Robust ……………………………………... 41
4 Robust Regression Models 47
4.1 Robust Normal Regression ………………………………………………. 47
4.2 Robust Gamma Regression ……………………………………………… 50
4.3 Robust Inverse Gaussian Regression …………………………………….. 52
5 Analysis of Variance Models 55
5.1 One-Way ANOVA ………………………………………………………. 55
5.1.1 Normal Working Models ………………………………………... 56
5.1.2 Gamma Working Models ……………………………………….. 61
5.1.3 Inverse Gaussian Working Models ……………………………… 64
5.2 Two-Way ANOVA ………………………………………………………. 67
5.2.1 Normal Working Models ………………………………………... 68
5.2.2 Gamma Working Models ……………………………………….. 72
5.2.3 Inverse Gaussian Working Models ……………………………… 74
5.3 One-Way ANCOVA ……………………………………………………... 76
5.3.1 Normal Working Models ………………………………………... 77
5.3.2 Gamma Working Models ……………………………………….. 78
5.3.3 Inverse Gaussian Working Models ……………………………… 79
6 Simulation Studies 81
6.1 Regression Models ………………………………………………………. 81
6.2 Analysis of Variance Models ……………………………………………. 89
6.2.1 One-Way ANOVA ……………………………………………… 89
6.2.2 Two-Way ANOVA ……………………………………………… 103
6.2.3 One-Way ANCOVA …………………………………………….. 110
7 A Real Example 117
8 Concluding Remarks 119
References 121
Appendix A Adjusting Matrices 124
Appendix B Adjusted Covariance Matrices 132
參考文獻 Birnbaum, A. (1962). On the Foundations of Statistical Inference (with Discussion). J. Amer. Statist. Assoc., 53, 259-326.
Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman and Hall.
Drygas, H. (1976). Weak and Strong Consistency of the Least Squares Estimators in Regression Models. Z. Wahrsch. Verw. Gebiete, 34, 119-127.
Fahrmeir, L. and Kaufmann, H. (1985). Consistency and Asymptotic Normality of the Maximum Likelihood Estimator in Generalized Linear Models. The Annals of Statistics, 13, 342-368.
Fahrmeir, L. and Kaufmann, H. (1986). Asymptotic Inference in Discrete Response Models. Statistical Papers, 27, 179-205.
Fahrmeir, L. (1987). Asymptotic Testing Theory for Generalized Linear Models. Statistics, 18, 65-76.
Fahrmeir, L. (1990). Maximum Likelihood Estimation in Misspecified Generalized Linear Models. Statistics, 21, 487-502.
Fahrmeir, L. and Tutz, G. (2001). Multivariate Statistical Modelling Based on Generalized Linear Models. 2nd ed. New York: Springer-Verlag.
Gourieroux, C., Monfort, A. and Trognon, A. (1984). Pseudo Maximum Likelihood Methods: Theory. Econometrica, 52, 681-700.
Hall, A. R. and Inoue, A. (2003). The Large Sample Behavior of the Generalized Method of Moments Estimator in Misspecified Models. Journal of Econometrics, 114, 361-394.
Heagerty, P. J. and Kurland, B. F. (2001). Misspecified Maximum Likelihood Estimates and Generalised Linear Mixed Models. Biometrika, 88, 973-985.
Helsel, D. R. (1983). Mine Drainage and Rock Type Influences on Eastern Ohio Street Water Quality. Water Resources Bulletin, 19, 881-887.
Heyde, C. C. (1997). Quasi-Likelihood and Its Application. New York: Springer-Verlag.
Huber, P. J. (1967). The Behavior of Maximum Likelihood Estimates under Nonstandard Conditions. Proc. Fifth Berkeley Symp. Math. Statist. Probab., 1, 221-233. Univ. California Press, Berkeley.
Huber, P. J. (1981). Robust Statistics. New York: John Wiley.
Kaufmann, H. (1988a). On Existence and Uniqueness of a Vector Minimizing a Convex Function. ZOR, 32, 357-373.
Kaufmann, H. (1988b). On Existence and Uniqueness of Maximum Likelihood Estimates in Quantal and Ordinal Response Models. Metrika, 35, 291-313.
Kent, T. J. (1982). Robust Properties of Likelihood Ratio Tests. Biometrika, 69, 19-27.
Lai, T. L., Robbins, H. and Wei, C. Z. (1979). Strong Consistency of Least Squares Estimates in Multiple Regression II. J. Multivariate Anal., 9, 343-361.
Lehmann, E. L. (1983). Theory of Point Estimation. New York: Springer-Verlag.
Lehmann, E. L. (1999). Elements of Large-Sample Theory. New York: Springer-Verlag.
Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. London, New York: Academic Press.
McCullagh, P. (1983). Quasi-Likelihood Functions. Annals of Statistics, 11, 59-67.
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed. New York: Chapman and Hall.
Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized Linear Models. JRSS-A, 135, 370-384.
Rao, C. R. and Toutenburg, H. (1999). Linear Models – Least Squares and Alternatives. 2nd ed. New York: Springer-Verlag.
Rawlings, J. O., Pantula, S. G. and Dickey, D. A. (1998). Applied Regression Analysis – A Research Tool. 2nd ed. Now York: Springer-Verlag.
Rohatgi, V. K. (1976). An Introduction to Probability Theory and Mathematical Statistics. New York: John Wiley.
Royall, R. M. (1997). Statistical Evidence – A Likelihood Paradigm. London: Chapman and Hall.
Royall, R. M. (2000). On the Probability of Observing Misleading Statistical Evidence (with Discussion). J. Amer. Statist. Assoc., 95, 760-780.
Royall, R. M. and Tsou, T.-S. (2003). Interpreting Statistical Evidence Using Imperfect Models: Robust Adjusted Likelihood Functions. JRSS-B, 65, 391-404.
Stafford, J. E. (1996). A Robust Adjustment of the Profile Likelihood. The Annals of Statistics, 24, 336-352.
Tsou, T.-S. (2003). Comparing Two Population Means and Variances – A Parametric Robust Way. Comm. Stat. – Theor. Meth., 32, 2013-2019.
Tsou, T.-S. and Cheng, K.-F. (2004). Parametric Robust Regression Analysis of Contaminated Data. Comm. Stat. – Theor. Meth., 33, 1887-1898.
Tsou, T.-S. (2004). Parametric Robust Inferences for Regression Parameters under Generalized Linear Models. (submitted)
Tsou, T.-S. (2005). Robust Poisson Regression. J. Statist. Plan. Infer. (to appear)
Wedderburn, R. W. M. (1974). Quasi-Likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method. Biometrika, 61, 439-447.
Wedderburn, R. W. M. (1976). On the Existence and Uniqueness of the Maximum Likelihood Estimates for Certain Generalized Linear Models. Biometrika, 63, 27-32.
White, H. (1982). Maximum Likelihood Estimation of Misspecified Models. Econometrica, 50, 1-25.
White, H. and Domowitz, I. (1984). Nonlinear Regression with Dependent Observations. Econometrica, 52, 143-161.
White, H. (1984). Maximum Likelihood Estimation of Misspecified Dynamic Models. In: Dijlestra, T. (Ed.), Misspecification Analysis. Berlin: Springer-Verlag.
指導教授 鄒宗山(Tsung-Shan Tsou) 審核日期 2005-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明