博碩士論文 88322055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.12.34.209
姓名 詹坤玉(Kun-Yu Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 具扭轉運動之多層高樓結構的系統識別理論
(System Identification Theory of Torsionally Coupled Multistorey buildings)
相關論文
★ 各種載重作用下neo-Hookean材料微孔動態分析★ 劉氏保群算法於高雷諾數Burgers方程之應用及探討
★ 彈性材料圓孔非對稱變形近似解研究★ HAF描述含圓孔橡膠材料三軸壓縮變形的誤差分析
★ 國立中央大學-HAF描述圓形微孔非對稱變形的誤差計算★ 多微孔橡膠材料受拉變形平面應力分析
★ 非線性彈性固體微孔變形特性★ 鋼絲網加勁高韌性纖維混凝土於RC梁構件剪力補強研究
★ 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響★ 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響
★ 搜尋週期為四年時使用SDICAE作強震預測的最佳精度設定★ 牛頓型疊代法二次項效應
★ GEH理論壓密量速算式★ 擴散管流量解析解
★ 宏觀收斂迭代法速度比較★ 二次項效應混合型牛頓疊代法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
在高樓結構的地震設計中為了準確預測結構系統的動力反應行為需要關於高樓結構系統動力性質的知識,除此之外,既存高樓結構的健康監測和損壞檢測亦需這方面的知識。本研究關心於此類動力性質識別結果的唯一性以及在這裡所提出的識別方法以有限的地震紀錄於實際運用的可行性。更具體地說,在線性反應範圍中具有重要影響性的動力性質,黏滯性阻尼與勁度分布,在這裡已進行調查研究。過去四十幾年來已發展出大量基於線性、共平面剪力高樓模型所推導出的高樓結構系統識別方法。在本篇論文中我們提出三種新的勁度與阻尼同時識別方法,識別理論基於結合恻向與扭轉運動之多層高樓模型並且使用有限的地震紀錄。這裡將顯示出在N層高樓結構中如果在某特定樓層上下兩樓版質量的反應是已知的,並且抵抗力矩構件的位置、樓版質量及樓版慣性矩是給定的,則這些構件的樓層勁度與黏滯阻尼可以唯一識別出;同時顯示對於二層高樓結構如果最底下樓版質量的反應和基底地表反應是已知的,並且所有抵抗力矩構件的位置、所有樓版質量及所有樓版慣性矩是給定的,則所有構件元素的樓層勁度與黏滯阻尼可以唯一識別出。本篇論文所提出的識別方法將透過真實有限地震紀錄以及使用Newmark’s積分法和快速傅立葉變換技巧進行數值模擬模型以驗證及調查其準確性。
摘要(英) Abstract
An knowledge of the dynamic properties of building structural systems is necessary besides for accurate predictions of the dynamic responses of the systems in the seismic design of building structures, health monitoring and damage detection of existing building structures. This study is concerned with the uniqueness of the results in the identification of such properties and feasibility of the identification methods proposed here in actual application using limited earthquake records. More specifically, the viscous damping and stiffness distributions, which are of importance in the linear range of response, have been investigated. During the past four decades, a great amount of system identification methods of building structures based on linear, planar shear building models are developed. In this thesis we propose three new methods of stiffness-damping simultaneous identification of lateral-torsional coupled multistory building models using limited earthquake records. It is shown that if the responses of the floor masses just above and below a specific storey are known, and the locations of moment-resisting elements, the floor masses and the floor moments of inertia are given in N-storey building structures, the storey stiffness and the viscous damping of these elements can be identified uniquely, and that for two-storey building structures if the response of the floor mass immediately above the base and the base are known, and the locations of all moment-resisting elements, all floor masses and all floor inertias are given, the storey stiffness and the viscous damping of all elements can be identified uniquely. The accuracy of the identification methods presented in this thesis is verified and investigated through the actual limited earthquake records and numerical simulation model by means of Newmark’s integration method and the technique of the FFT (Fast Fourier Transform).
關鍵字(中) ★ 快速傅立葉變換
★ Newmark’s積分法
★ 有限地震紀錄
★ 結合側向與扭轉運動的多層高樓模型
★ 共平面剪力高樓模型
★ 系統識別
關鍵字(英) ★ Newmark’s integration method
★ Fast Fourier Transform
★ planar shear building models
★ system identification
★ lateral-torsional coupled multistory building mo
★ limited earthquake records
論文目次 Contents
Abstract i
Acknowledgments ii
Contents iii
List of Figures v
List of Tables xi
Chapter 1 Introduction 1
1.1 System identification 1
1.2 System identification of building structures 3
1.3 Torsionally coupled buildings 5
1.4 System identification in the frequency domain 6
1.5 Scope of this study 6
Chapter 2 System Considered 8
2.1 Asymmetric-plan, multistorey buildings 8
2.2 Mathematical model of the structural system 12
Chapter 3 Stiffness-Damping Identification Theory in Fourier Frequency Domain 18
3.1 Equations of motion in Fourier frequency domain 18
3.2 Lemma 21
3.3 Identification theory in Fourier frequency domain 23
Chapter 4 Stiffness-Damping Identification Theory in Laplace Variable Domain 28
4.1 Equations of motion in Laplace variable domain 28
4.2 Lemmas 30
4.3 Identification theory in Laplace variable domain 38
4.4 Identification formulae expressed in the Laplace transforms of Fourier sine series 39
Chapter 5 Stiffness-Damping Identification Theory of the Two-Storey Building Structures 42
5.1 Equations of motion in time domain 42
5.2 Equations of motion in Fourier frequency domain 44
5.3 Identification theory of two-storey buildings in Fourier frequency domain 45
Chapter 6 Verification of the Theories Through Numerical Simulation Model 51
6.1 Verification of the identification theory in Fourier frequency domain:example 1 51
6.1.1 Identification of stiffness 63
6.1.2 Identification of damping 73
6.2 Verification of the identification theory in Laplace variable domain:example 2 73
6.2.1 Identification of stiffness 83
6.2.2 Identification of damping 93
6.3 Verification of the identification theory of two-storey buildings: example 3 103
6.3.1 Identification of stiffness 103
6.3.2 Identification of damping 108
Chapter 7 Effect of Time Interval of Motion Time History Records to ,System Identification ccuracy 112
7.1 Accuracy of the identification theory in Fourier frequency domain to time interval: example 112
7.1.1 Accuracy of identification of stiffness to time interval 112
7.1.2 Accuracy of identification of damping to time interval 123
7.2 Accuracy of the identification theory in Laplace variable domain to time interval: example 5 133
7.2.1 Accuracy of identification of stiffness to time interval 133
7.2.2 Accuracy of identification of damping to time interval 143
7.3 Accuracy of the identification theory of two-storey buildings to time interval:example 6 153
7.3.1 Accuracy of identification of stiffness to time interval 153
7.3.2 Accuracy of identification of damping to time interval 157
Chapter 8 Discussion and Conclusions 161
References 163
參考文獻 References
1. Agbabian, M. S., Masri, S. F., Miller, R. K. and Caughey, T. K. “System identification approach to detection of structural changes.” Journal of Engineering Mechanics, ASCE, 117(2), 370-390 (1991).
2. Masri, S. F., Nakamura, M., Chassiakos, A. G. and Caughey, T. K., “A neural network approach to the detection of changes in structural parameters.” Journal of Engineering Mechanics, ASCE, 122(4), 350-360 (1996).
3. Hart, G. C. and Yao, J. T. P., “System identification in structural dynamics.” Journal of Engineering Mechanics Division, ASCE, 103(EM6), 1089-1104 (1977).
4. Beck, J. L. and Jennings, P. C., “Structural identification using linear models and earthquake records.” Earthquake Engineering and Structural Dynamics, 8, 145-160 (1980).
5. Hoshiya, M. and Saito, E., “Structural identification by extended Kalman filter.” Journal of Engineering Mechanics, ASCE, 110(12), 1757-1770 (1984).
6. Koh, C. G., See, L. M. and Balendra, T., “Estimation of structural parameters in time domain: a substructure approach.” Earthquake Engineering and Structural Dynamics, 20, 787-801 (1991).
7. Hjelmstad, K. D., “On the uniqueness of modal parameter estimation.” Journal of Sound and Vibration, 192(2), 581-598 (1996).
8. Ghanem, R. and Shinozuka, M., “Structural-system identification I: theory.” Journal of Engineering Mechanics, ASCE, 121(2), 255-264 (1995).
9. Shinozuka, M. and Ghanem, R., “Structural-system identification II: experimental verification.” Journal of Engineering Mechanics, ASCE, 121(2), 265-273 (1995).
10. Herrmann, T. and Pradlwarter, H. J., “Two-step identification approach for damped finite element models.” Journal of Engineering Mechanics, ASCE, 124(6), 639-647 (1998).
11. Kitada, Y., “Identification of nonlinear structural dynamic systems using wavelets.” Journal of Engineering Mechanics, ASCE, 124(10), 1059-1066 (1998).
12. Doebling, S. W., Farrar, C. R., Prime, M. B. and Shevitz, D. W., “Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review.” Report LA-13070-MS, Los Alamos National Laboratory (1996).
13. Housner, G. et al. Special issue, “Structural control: past, present, and future.” Journal of Engineering Mechanics, ASCE, 123(9), 897-971 (1997).
14. McVerry, G. H., “Structural identification in frequency domain from earthquake records.” Earthquake Engineering and Structural Dynamics, 8, 161-180 (1980).
15. Shinozuka, M., Yun, C. B. and Imai, H., “Identification of linear structural dynamic systems.” Journal of Engineering Mechanics Division, ASCE, 108, 1371-1390 (1982).
16. Safak, E., “Identification of linear structures using discrete-time filters.” Journal of Structural Engineering, ASCE, 117, 3064-3085 (1991).
17. Pi, Y. L. and Mickleborough, N. C, “Modal identification of vibrating structures using ARMA model.” Journal of Engineering Mechanics, ASCE, 115, 2232-2249 (1989).
18. Hart, G. C. and Vasudevan, R., “Earthquake design of buildings: damping.” Journal of Structural Division, ASCE, 101(ST1), 11-30 (1975).
19. Udwadia, F. E., Sharma, D. K. and Shah, P. C., “Uniqueness of damping and stiffness distributions in the identification of soil and structural systems.” Journal of Applied Mechanics, ASME, 45, 181-187 (1978).
20. Udwadia, F. E. and Sharma, D. K., “Some uniqueness results related to building structural identification.” Journal of Applied Mathematics, SIAM, 34, 104-118 (1978).
21. Kozin, F. and Natke, H. G., “System identification techniques.” Structural Safety, 3, 269-316 (1986).
22. Natke, H. G., “Recent trends in system identification.” Structural dynamics, W. B. Kratzig et al., eds., A. A. Balkema, Rottedam, The Netherlands, 283-289 (1991).
23. Safak, E., “Analysis of earthquake records from structures: an overview.”, Strong motion Instrumentation for Civil Engineering Structures, M. Erdik et al., eds., Kiuwer Academic Publishers, The Netherlands, 91-107 (2001).
24. Takewaki, I. and Nakamura, M., “Stiffliess-damping simultaneous identification using limited earthquake records.” Earthquake Engineering and Structural Dynamics, 29, 1219-1238 (2000).
25. Hejal, R. and Chopra, A. K., “Earthquake responses of torsionally-coupled buildings” Report No. UCB/EERC 87-20, Earthquake Engineering Research Center, University of California, Berkeley, CA, (1987).
26. Kan, C. L. and Chopra, A. K., “Elastic earthquake analysis of torsionally coupled multistory buildings.” Earthquake Engineering and Structural Dynamics, 5, 395-412 (1977).
27. Research notes written by Hin-Chi Lei, Department of Civil Engineering, National Central University, Taiwan, to be publish, (2003).
28. Chopra, A. K., “Dynamics of Structures: Theory and Applications to Earthquake Engineering (2thedn)”, Prentice-Hall, Inc., Upper Saddle River, NJ (2001).
指導教授 李顯智(Hin-Chi Lei) 審核日期 2004-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明