博碩士論文 88322067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.217.10.200
姓名 郭明傳(Ming-Chuan Kuo)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 複合岩體之岩塊體積比量測及其力學行為
(The measurement of block volumetric fraction and the mechanical behaviors of composite rock mass)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 「複合岩體」係由工程性質不同的粗顆粒岩塊及細粒基質材料或由兩種不同強、勁度的層狀岩石材料相互交錯所構成的混合岩體。由於複合岩體之異質性、異向性及其複雜的特性,此類地質之大地工程性質相當難以評估與掌握。而複合岩體之工程性質與力學行為主要受到組成材料之力學性質、內部岩塊體積比、岩塊排列方向或強度及變形異向性所影響。
其中,岩塊體積比則是最常用以評估複合岩體整體工程性質的參數,因此,本文利用數值模擬方式,藉由分析一代表性表徵單元內掃瞄線長度與岩塊顆粒相交長度,來探討掃瞄線長度、岩塊粒徑、岩塊體積比、岩塊長短軸比及岩塊排列方向對掃瞄線所求取之面積比的影響,建立各影響因素相互間的關係,並以統計學上「信心度」及「信賴區間」的觀念,給予掃瞄線法所求得之面積比一定性且定量的描述。
針對複合岩體之強度、變形性及其力學行為,採用試驗與理論併行方式來探討。利用人造方式製作具有「巨觀等向性」及「巨觀橫向等向性」之複合岩體,並進行一系列三軸試驗,以探討岩塊體積比、圍壓及層面傾角對複合岩體強度及變形性之影響。複合岩體破壞模態部分,利用改良型的旋轉式掃瞄器擷取試體破壞過程及破壞後之表面影像,以探討橫向等向性複合岩體的破壞過程及破壞機制,並就等向性及橫向等向性複合岩體的破壞模態進行分類及比較。理論分析部分,利用等值均質化觀念,以五種不同之微觀力學模式預測不同岩塊體積比之等向性複合岩體的楊氏係數與柏松比,結果顯示,利用微觀力學模式來預測等向性複合岩體之力學性質相當可行。並以異向性線彈性材料組成律模式,配合最大軸向應變理論及Jaeger(1960)之單一弱面理論,建立一個適合橫向等向性岩石的破壞準則。以此破壞準則針對不同類型之橫向等向性岩體及橫向等向性複合岩體在不同圍壓及傾角進行破壞強度預測,由理論預測與試驗數據比較,兩者相當吻合,足證此破壞準則之正確性、適用性與廣泛性。
摘要(英) Composite rock mass is a mixture of rocks, composed of geotechnically significant blocks with a bonded matrix of finer texture or rock materials with two kinds of distinct strength and stiffiness. Because of the heterogeneity, anisotropy and complex nature, composite rock mass is a kind of difficult geotechnical material with which to deal in geotechnical engineering. The engineering properties and mechanical behaviors of composite rock mass are mainly influenced by the mechanical properties of composite materials, volumetric fraction of block, preferred block orientation and the anisotropic behaviors of deformation and strength.
The volumetric fraction of block is a general parameter for assessing the overall engineering properties of composite rock mass. By analyzing the crossing length between the block and scanline in representative volume element (RVE), this research represented the discussion on the influence of total length of scanline, diameter of block, volumetric fraction of block, the aspect ratio of block and the preferred block orientation on the volumetric fraction of block measured by scanline. Using the concept of confidence level and confidence interval offers a qualitative and quantitative description of the volumetric fraction.
Furthermore, the main purpose of this research is to investigate the failure strength, deformation properties and mechanical behaviors of composite rock mass from both theorectical and experimental approaches. The preparation technique for artificial composite rock mass which overall mechanical properties are macroscopically isotropic and transversely isotropic is developed. A series of triaxial tests are conducted to investigate the influence of the volumetric fraction, confining pressure, the orientation angle on the composite rock mass. In the experiment carried out, a procedure using a rotary scanner to obtain the “unrolled” images of rock specimens at different stress level during the uniaxial compressive tests is employed. Based on the experimental results, the failure modes of isotropic rock mass and transversely isotropic rock mass are classified.
For theoretical prediction, five micromechanical models are used to predict the Young’s modulus and Poisson’s ratio of isotropic composite rock mass with different block proportions. Comparing the theoretical predictions with test results, the feasibility of using the micromechanical models to predict the mechanical properties of isotropic composite rock mass was investigated. A new failure criterion for the transversely isotropic rocks has been developed and presented. The criterion is based on the maximum axial strain criterion, the constitutive laws of linearly elastic of anisotropic materials and the theory of single plane of weakness. The predictions of the failure strength of various types of transversely isotropic rock masses with different orientation angles and under various confining pressures agree well with experimental data. The accuracy and the versatility of the criterion are demonstrated.
關鍵字(中) ★ 複合岩體
★ 岩塊體積比
★ 掃瞄線法
★ 人造複合岩體
★ 微觀力學模式
★ 破壞準則
★ 破壞模態
關鍵字(英) ★ micromechanics model
★ artificial composite rock mass
★ scanline
★ volumetric fraction
★ composite rock mass
★ failure criterion
★ failure mode
論文目次 摘 要 I
Abstract III
目 錄 V
圖 目 錄 IX
表 目 錄 XXI
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的與方法 4
1.3 論文內容及架構 5
第二章 人造複合岩體之製作技術 8
2.1 等向性複合岩體之製作 9
2.1.1試體製作方式及流程 9
2.2 橫向等向性複合岩體之製作 11
2.2.1 模型材料之選擇 12
2.2.2 模型材料之組成 13
2.2.3 模型材料A及材料B之力學性質 13
2.2.4 橫向等向性複合岩體之製作流程 15
第三章 複合岩體之表面影像 18
3.1 表面展開影像之擷取 18
3.2 複合岩體之體積比量測方法 22
3.2.1 單位重法 24
3.2.2 面積比法 25
3.2.3 掃瞄線法 32
3.3 球形岩塊之表面影像特徵 36
3.3.1 複合岩體表面影像之顆粒幾何特性 36
3.3.2 表面影像推求複合岩體內部組成及粒徑特性 44
第四章 掃瞄線法之數值模擬 54
4.1 串接掃瞄線法之數值模擬 54
4.2 串接表徵單元法之數值模擬 60
4.2.1 代表性表徵單元(RVE)之選取 61
4.2.2 數值模擬架構之說明 63
4.2.3 數值模擬流程 66
4.2.4 掃瞄線總長度、面積比與標準差的關係 74
4.3 等圓球顆粒粒徑之數值模擬驗證 82
4.4 不同圓球顆粒粒徑之數值模擬驗證 83
4.5 橢圓球顆粒之數值模擬架構 90
4.5.1 橢圓球顆粒之代表性表徵單元選定 91
4.5.2 橢圓球顆粒之數值模擬流程 94
4.5.3 長短軸比 值及夾角 值與標準差的關係 97
4.6 顆粒之形狀因素探討 108
4.7 標準差與信心度之關係 114
4.8 案例演算及整體標準差之求取 115
4.9 現地案例之驗證 123
4.10 掃瞄線法之經驗建議長度探討 128
第五章 複合岩體之破壞模態 130
5.1 等向性岩體之破壞模態 136
5.2 等向性複合岩體之破壞模態 140
5.3 橫向等向性岩體之破壞模態 147
5.4 橫向等向性複合岩體之破壞過程及破壞模態 152
5.4.1 橫向等向性複合岩體之破壞過程 153
5.4.2 橫向等向性複合岩體之破壞模態分類 167
第六章 複合岩體之材料組成律 172
6.1 線彈性材料之組成律模式 173
6.1.1 單一彈性對稱面材料 174
6.1.2 三正交彈性對稱面材料 175
6.1.3 具一旋轉彈性對稱軸材料 176
6.1.4 完全對稱性材料 178
6.2 複合岩體之等值均質化觀念 178
6.2.1 等向性複合岩體之材料組成律 180
6.2.2 橫向等向性複合岩體之材料組成律 199
第七章 複合岩體之破壞準則 205
7.1 等向性材料之破壞準則 206
7.2 等向性複合岩體之破壞準則 212
7.3 橫向等向性材料之破壞準則 217
7.3.1數學理論之連續函數破壞準則 218
7.3.2非連續函數之破壞準則 228
7.3.3經驗公式之連續函數破壞準則 236
7.3.4 Tien and Kuo (2001)破壞準則 246
7.4橫向等向性複合岩體之破壞準則 270
7.4.1 橫向等向性複合岩體之破壞模態預測 274
第八章 結論與建議 276
8.1 結論 276
8.2 建議 280
參考文獻 282
參考文獻 (1)方世榮,統計學導論,華泰文化事業股份有限公司,台北 (1991)。
(2)田永銘、王仲宇、黃宗義、賴逸少,「互層岩體之組成律及破壞準則」,行政院國家科學委員會專題研究計畫成果報告,中壢 (1994)。
(3)田永銘、王仲宇、王仁正、賴逸少,「人造異向性岩體製作及其力學性質(Ⅰ)」,行政院國家科學委員會專題研究計畫成果報告,中壢 (1995)。
(4)田永銘、許宗傑、陳慶洪,「人造異向性岩體製作及其力學性質(Ⅱ)」,行政院國家科學委員會專題研究計畫成果報告,中壢 (1996)。
(5)田永銘、趙柏烽、楊世和,「人造異向性岩體製作及其力學性質(Ⅲ)」,行政院國家科學委員會專題研究計畫成果報告,中壢 (1997)。
(6)田永銘、郭明傳、蔡文傑、曹昌為,「利用混成岩表面影像推求內部岩塊特性之可行性研究」,第十屆大地工程研討會,三峽,第683~687頁 (2003)。
(7)古智君,「巨觀等向性併構岩之製作及其力學行為」,碩士論文,國立中央大學土木工程學系,中壢 (2004)。
(8)何春蓀,台灣地質概論—台灣地質圖說明書,經濟部中央地質調查所,台北,第122-124頁 (1997)。
(9)宋銘峰,「人造軟弱互層岩體之製作及其界面力學性質量測」,碩士論文,中央大學土木工程學系,中壢 (1998)。
(10)宋擁軍,「含氣量對混凝土抗凍性能的影響」,中國三峽建設,第11期 (1999)。
(11)林銘郎、鄭富書、翁作新、洪如江,「台灣斷層泥之特性及斷層泥力學評估新發展」,地工技術雜誌,第79期,第91-106頁 (2000)。
(12)周文賢,統計學,智勝文化事業有限公司,台北 (1997)。
(13)洪如江,工程地質之影像,財團法人地工技術研究發展基金會,台北,第77-79頁 (1999)。
(14)許靖華,大地構造與沈積作用,地質出版社,北京 (1985)。
(15)許靖華,「混成岩與台灣之混成岩構造」,中國地質學會會刊,第31卷,第二期,第87-92頁 (1988)。
(16)許宗傑,「人造互層岩體之製作及其力學性質」,碩士論文,中央大學土木工程學系,中壢 (1997)。
(17)孫思優,「岩石三軸室應變量測改進」,碩士論文,國立中央大學土木工程學系,中壢 (2002)。
(18)徐鐵良,台灣東部海岸山脈地質,台灣省地質調查所彙刊,第八號,第39-63頁 (1956)。
(19)陳志霖,「放射性廢料處置場緩衝材料之力學性質」,碩士論文,國立中央大學土木工程學系,中壢 (2000)。
(20)楊長義、黃燦輝、蘇建彰,「岩石模擬材料之相似性選擇原則」,中國土木水利工程學刊,第十卷,第一期,第151-156頁 (1998)。
(21)劉哲明,「混成岩模型試體製作與體積比量測」,碩士論文,中央大學土木工程學系,中壢 (2002)。
(22)蔡文傑,「巨觀等向性混成岩製作表面影像與力學性質」,碩士論文,中央大學土木工程學系,中壢 (2003)。
(23)趙柏烽,「人造異向性岩體製作及其力學行為」,碩士論文,中央大學土木工程學系,中壢 (1997)。
(24)譚建國,「以微分模式研究複合材料之力學性質」,行政院國家科學委員會專題研究計畫成果報告,台南 (1980)。
(25)譚建國、顏崇斌,「以微分模式探求纖維加強複合材料之熱彈係數」,中國工程學刊,第五卷,第三期,第121-131頁 (1982)。
(26)譚建國、王永明,「多相複合材料之微分模式:Ⅰ.整體彈性係數」,中國工程學刊,第六卷,第二期,第72-83頁 (1983)。
(27)Aboudi, J., Mechanics of Composite Materials: A Unified Micromechanical Approach, Elsevier, Amsterdam (1991).
(28)Allirot, D., Boehler, J. P., and Sawczuk, A., “Irreversible deformation of an anisotropic rock under hydrostatic pressure,” Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. Vol. 14, pp. 77-83 (1977).
(29)Amadei, B., Rock Anisotropy and the Theory of Stress Measurement, Springer-Verlag, Heidelberg (1983).
(30)ASTM, Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete: ASTM Test Designation C457-98, Vol. 04.02 Concrete and Aggregates, ASTM, Philadelphia (2003).
(31)Attewell, B., and Sandford, M. R., “Intrinsic shear strength of a brittle anisotropic rock;Ⅰ.Experimental and Mechanical Interpretation. Ⅱ.Textural data acquisition and processing. Ⅲ. Textural interpretation of failure,” International Journal of Rock Mechanics and Mining Sciences, Vol. 11, pp. 423-451 (1974).
(32)Baddeley, A., and Jensen, E. B. V., Stereology for statisticians, Chapman and Hall, London (2005).
(33)Barton, N. R., “The shear strength of rock and rock joints,” Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. Vol. 13, No. 10, pp. 1-24 (1976).
(34)Batzle, M. L., Simmons, G., and Siegfried, R.W., “Microcrack closure in rock under stress: direct observation,” J. Geophys. Res., Vol. B12, pp. 7072-7090 (1980).
(35)Bentz, D. P., and Garboczi, E. J., “Computer modeling of the interface transition zone – Microstructure and properties,” RILEM ETC report, Gaithersburg, pp. 349-385 (1999).
(36)Bieniawski, Z.T., “Mechanism of brittle fracture rock; PartⅠ: Theory of the fracture process; PartⅡ: Experimental studies; PartⅢ: Fracture in tension and under long term loading,” International Journal of Rock Mechanics and Mining Sciences, Vol. 4, No. 4, pp. 395-430 (1967).
(37)Bieniawski, Z.T., “Propagation of brittle fracture in rock,” Proceedings of the 10th Symposium on Rock Mechanics (AIME), New York, pp.409-427 (1972).
(38)Borecki, M., and Kwasniewski, “Experimental and analytical studies on compressive strength of anisotropic rocks,” Proc. of 7th Plenary Scientific Session of the International Bureau of Rock Mechanics, Katowice, pp.23-49 (1981).
(39)Brady, B. H. G., and Brown, E. T., Rock Mechanics:For Underground Mining, Chapman and Hall, London, (1993).
(40)Brown, L. S., and Pierson, C. U., “Linear traverse technique for measurement of air in hardened concrete,” Journal of the American Concrete Institute, Vol. 22, pp. 117-723, Article 47-7 (1950).
(41)Chen, W. F., and Saleeb, A. F., Constitutive Equations for Engineering Materials, Vol. 1:Elasticity and Modeling, John-Wiley, New York (1981).
(42)Christensen, R. M., Mechanics of Composite Materials, John-Wiley, New York (1979).
(43)Church, M.A., Mclean, D.G., and Wolcott, J.F., “River bed gravel : Sampling and analysis”, In Sediment Trasport in Gravel-bed River, edited by Thorne, C. R., Bathurst, J. C., and Hey, R. W., Wiley, Chichester, pp. 43-79 (1987).
(44)David, C., Menendez, B., and Bernabe, Y., “The mechanical behaviour of synthetic sandstone with varying brittle cement content,” International Journal of Rock Mechanics and Mining Sciences, Vol. 35, No. 6, pp. 759-770 (1998).
(45)Deere, D.U. and Miller, R.P., “Engineering classification and index properties of intact rock,” Air Force Laboratory Technical Report No. AFNL-TR-65-116, Albuquerque, NM. (1966).
(46)Delesse, M. A., “Procédé mécanique pour déterminer la composition des roches,” Comptes Rendues de l’Académie des Sciences, Paris, Vol. 25, pp. 544-545 (1847).(間接引用自Baddeley, A. J., and Jensen, E. B. V., 2003)
(47)Dictionary of Geology and Mineralogy, McGraw-Hill, New York (2003).
(48)Donath, F. A., “Strength variation and deformational behavior in anisotropic rock.,” In State of Stress in the Earth’s Crust, Eds. Judd, W.R., Elsevier, Amsterdam, pp. 280-297 (1964).
(49)Duveau, G., Shao, J. F., and Henry, J. P., “Assessment of some failure criteria for strongly anisotropic geomaterials,” Mechanics of Cohesive-Frictional Materials, Vol. 3, pp. 1-26 (1998a).
(50)Duveau, G., and Shao, J. F., “A modified single plane of weakness theory for the failure of highly stratified rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 35, No. 6, pp. 807-813 (1998b).
(51)Fonseka, G. M., Murrell, S. A. F., and Barnes, P., “Scanning electron microscope and acoustic emission studies of crack development in rocks,” Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. Vol. 22, No. 5, pp. 273-289 (1985).
(52)Glagolev, A. A., “On geometrical methods of quantitative mineralogic analysis of rocks,” Trans. Inst. Econ. Min.,, Vol. 59, pp. 1-47 (1933). (間接引用自Baddeley, A. J., and Jensen, E. B. V., 2003)
(53)Goodman, R.E., Introduction to Rock Mechanics, 2nd ed, John Wiley and Sons, New York (1989).
(54)Griggs, D. T., and Handin, J., “Observation on fracture and a hypothesis of earthquakes,” In Rock Deformation-A Symposium of Geol. Soc. America Mem. 79, Eds. Griggs, D. T., and Handin, J., pp. 347-373 (1960).(間接引用自Spencer, E. W., 1969)
(55)Halpin, J. C., Primer on Composite Materials Analysis, Technomic Pub. Co., Inc, Lancaster, pp. 67-98 (1984)
(56)Hashin, Z., “The elastic moduli of heterogeneous materials,” ASME, Journal of Applied Mechanics, Vol. 29, pp. 143-150 (1962).
(57)Hashin, Z., and Shtrikman, S.,“On some variational principles in anisotropic and nonhomogeneous and elasticity,” Journal of the Mechanics and Physics of Solids, Vol. 10, pp. 335-342 (1962).
(58)Heard, H. C., “Transition from brittle fracture to ductile flow in Solenhofen limestone as a function of temperature, confining pressure, and interstitial fluid pressure,” In Rock Deformation-A Symposium of Geol. Soc. America Mem. 79, Eds. Griggs, D. T., and Handin, J., pp. 193-226 (1960).(間接引用自Paterson, M. S., 1978)
(59)Hershey, A. V., “The elasticity of an isotropic aggregate of anisotropic cubic crystals,” J. Appl. Mech., Vol.21, pp. 236 (1954).
(60)Hill, R., The Mathematical Theory of Plasticity, Clarendon Press, Oxford (1950).
(61)Hill, R., “A self-consistent mechanics of composite materials,” Journal of the Mechanics and Physics of Solids, Vol.13, pp. 213-222 (1965).
(62)Hoek, E. and Brown, E.T., Underground Excavations in Rock, Institution of Mining and Metallurgy, London, pp.137-162 (1980).
(63)Hoek, E., “Strength of jointed rock masses,” 23rd Rankine Lecture, Geotechnique, Vol.33, No. 3, pp. 187-223 (1983).
(64)Hoek, E., and Brown, E. T., “The Hoek-Brown failure criterion, In Rock engineering for underground excavations,” Proc. of 15th Canadian rock mech. Symp., Eds. Curran, J. C., pp. 31-38 (1988).
(65)Holt, R. M., Unander, T. E., and Kenter, C. J., “A modified single plane of weakness theory for the failure of highly stratified rocks,” Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., Vol. 35, No. 6, pp. 807-813 (1998).
(66)Holmes, A., Petrographic Methods and Calculations, Thos. Murray and Co, London (1921).
(67)Ibanez, W.D. and Kronenberg, A.K., “Experimental deformation of shale: Mechanical properties and microstructural indicators of mechanisms,” International Journal of Rock Mechanics and Mining Sciences, Vol. 30, No. 7, pp. 723-734 (1993).
(68)Indraratna, B., “Development and application of a synthetic material to simulate soft sedimentary rocks,” Geotechnique, Vol. 30, No. 7, pp. 719-722 (1993).
(69)ISRM, Rock Characterization Testing and Monitoring, Pergamon Press, Oxford (1981).
(70)Jaeger, J.C., “Shear failure of anisotropic rocks,” Geol. Mag., Vol. 97, pp.65-72 (1960).
(71)Jaeger, J. C., and Cook, N. G. W., Fundamental of Rock Mechanics, 3rd edition, Chapman & Hall, London (1979).
(72)Johnston, I. W. and Choi, S. K., “A synthetic soft rock for laboratory model studies,” Geotechnique, Vol. 36, No. 2, pp. 251-263 (1986).
(73)Jones, R. M., Mechanics of Composite Materials, Scripta Book Company, Washington, D. C. (1975).
(74)Krumbein, W. C., and Pettijhon, F. J., Manual of sedimentary petrography, Appleton-Century Company, New York (1938).
(75)Kuo, M. C., Tien, Y.M., and Chu, C.A., “Study of Failure Process and Failure Modes of Interstratified Rock Mass with an Emphasis on Specimen Preparation and Image Scanning.” The 6th North American Rock Mechanics Symposium, Houston, Texas, Paper No.584 (2004).
(76)Kuo, M. C., Y.M. Tien, C.A. Chu, “Experimental Study of Failure Process and Failure Modes of Interstratified Rock Mass.” Proceedings of the 5th Asian Young Geotechnical Engineers Conference, Taipei, p.173-179 (2004).
(77)Kwasniewski, M. A., “Mechanical behavior of anisotropic rocks,” In Comprehensive Rock Engineering, Vol. 1. Fundamentals, Eds. Hudson, J. A., Pergamon Press, Oxford, pp. 285-312 (1993).
(78)Lama, R. D., and Vutukuri, V. S., Handbook on Mechanical Properties of Rocks VolumeⅡ: Testing Techniques and Results, Trans Tech Publications, Germany (1978).
(79)Lekhnitskii, S. G., Theory of Elasticity of an Anisotropic Elastic Body, Translated by P. Fern, Holden-Day Inc., San Francisco (1963).
(80)Lindquist, E. S., “The strength and deformation properties of mélange,” Ph.D. Dissertation, Department of Civil Engineering, University of California, Berkeley (1994).
(81)Lindquist, E. S., “The mechanical properties of a physical model melange,” 7th International IAEG Congress, Rotterdam, pp. 819- 826 (1994).
(82)Lindquist, E. S., and Goodman, R. E., “Strength and deformation properties of a physical model melange,” Proc.of 1st NARMS, Rotterdam, pp. 851-858 (1994).
(83)Lindqvist, P.A, Lai, H.H. and Alm, O., “Indentation fracture development in rock continuously observed with a scanning electron microscope,” International Journal of Rock Mechanics and Mining Sciences, Vol. 21, No. 4, pp. 165-182 (1984).
(84)McClintock, F. A., and Walsh, J. B., “Friction on Griffith cracks in rocks under pressure,” Proc. 4th Congr. Appl. Mech., Berkeley, pp.1015-1021 (1962).
(85)McLamore, R., and Gray, K. E., “The mechanical behavior of anisotropic sedimentary rocks,” Journal of Engineering for Industry, Trans. of the ASME, Vol. 89, pp. 62-73 (1967).
(86)McLaughlin, R., “A study of the differential scheme for composite materials,” International Journal of Engineering Science, Vol.15, pp. 237-244 (1977)
(87)Medley, E. W., “The engineering characterization of mélanges and similar block-in-matrix rocks (Bimrocks),” Ph.D. Dissertation, Department of Civil Engineering, University of California, Berkeley (1994).
(88)Medley, E. W., “Using stereological methods to estimate the volumetric proportions of blocks in melanges and similar block-in-matrix rocks (bimrocks),” 7th International IAEG Congress, Rotterdam, pp. 1031-1040 (1994).
(89)Medley, E. W., and Goodman, R. E., “Estimating the block volumetric proportions of melanges and similar block-in-matrix rocks (bimrocks),” Proc. of 1st NARMS, Rotterdam, pp. 851-858 (1994).
(90)Nemat-Nasser, S., and Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam (1993).
(91)Niandou, H., Shao, J. F., Henry, J. P., and Fourmaintraux, D., “Laboratory investigation of the mechanical behavior of Tournemire shale,” International Journal of Rock Mechanics and Mining Sciences, Vol. 34, No. 1, pp. 3-16 (1997).
(92)Nova, R., “The failure of transversely isotropic rocks in triaxial compression,” Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. Vol. 17, pp. 325-332 (1980).
(93)Nolen-Hoeksema, R.C. and Gordon, R.B., “Optical detection of crack patterns in the opening-mode fracture of marble,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 24, No. 2, pp. 135-144 (1987).
(94)Olsson, W.A. and Peng, S.S., “Microcrack nucleation in marble,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 13, pp. 53-59 (1976).
(95)Omine, k., Yoshida, N., and Ochiai, H., “Stress-strain behavior of mixtures with two different elastic materials,” Fukuoka University Review of Technological Sciences, Vol. 51, pp. 83-93 (1993).(間接引用自Yasufuku et al., 2001)
(96)Pariseau, W.G., “Plasticity theory for anisotropic rocks and soils,” Proceedings of the 10th Symposium on Rock Mechanics (AIME), New York, pp.267-295 (1972).
(97)Paterson, M. S., Experimental Rock Deformation: The Brittle Field, Springer-Verlag, Berlin (1978).
(98)Qiao, C. S., “The fracture mechanism of stratiform rocks under uniaxial compression,” International Journal of Rock Mechanics and Mining Science, Vol. 41, No. 3, paper No.1A 17 (2004).
(99)Ramamurthy, T., Rao, G. V., and Rao, K. S., “A strength criterion for rocks,” In Proc. Indian Geotech. Conf., Roorkee, Vol. 1, pp.59-64 (1985).(間接引用自Ramamurthy, 1993)
(100)Ramamurthy, T., “Strength and modulus responses of anisotropic rocks,” In Comprehensive Rock Engineering, Vol. 1. Fundamentals, Pergamon Press, Oxford, pp.313-329 (1993).
(101)Rosiwal, A., “Ueber geometrische Gesteinsanalysen,” Verhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt Wien, pp. 143-175 (1898). (間接引用自Baddeley, A. J., and Jensen, E. B. V., 2003)
(102)Rummel, F., “A review of fracture criteria of brittle rock,” In Rock Mechanics, Eds. Muller, L., Springer-Verlag, New York, pp. 72-84 (1972).
(103)Salamon, M. D. G., “Elastic moduli of a stratified rock mass,” International Journal of Rock Mechanics and Mining Science, Vol. 5, pp. 519-527 (1968).
(104)Santarelli, F.J. and Brown, E.T., “Failure of three sedimentary rocks in triaxial and hollow cylinder compression tests,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 26, No. 5, pp. 401-413 (1989).
(105)Stimpson, B., “Modeling materials of engineering rock mechanics,” International Journal of Rock Mechanics Mining Sciences, Vol.7, pp. 77-121 (1970).
(106)Thomson, E., “Quantitative microscopic analysis,” Journal of Geology, Vol. 38, pp. 193-222 (1930). (間接引用自Baddeley, A. J., and Jensen, E. B. V., 2003)
(107)Tien, Y. M. and Tsao, P. F., “Preparation and mechanical properties of artificial transversely isotropic rock,” International Journal of Rock Mechanics and Mining Sciences, Vol. 37, pp. 1001-1012 (2000).
(108)Tien, Y. M., and Kuo, M. C., “A failure criterion for transversely isotropic rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 3, pp. 399-412 (2001).
(109)Tien, Y. M., and Chu, C. A., “Rotary scanner for cylindrical specimens,” Proceedings of the 5th Asian Young Geotechnical Engineers Conference, Taipei, Taiwan, pp. 181-186 (2004).
(110)Vutukuri, V. S., Lama, R. D., and Saluja, S. S., Handbook on Mechanical Properties of Rocks VolumeⅠ: Testing Techniques and Results, Trans Tech Publications, Germany (1974).
(111)Walsh, J. B., and Brace, W. F., “A fracture criterion for brittle anisotropic rock,” Journal of Geophysical Reserach, Vol. 69, No. 16, pp. 3449-3456 (1964).
(112)Wardle, L. J., and Gerrard, C. M., “The ‘equivalent’ anisotropic properties of layered rock and soil mases,” Rock Mechanics, Vol. 4, pp. 155-175 (1972).
(113)Wawersik, W. R., and Fairhurst, C, “A study of bruttle rock fracture in laboratory compression experiments,” Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., Vol. 7, pp. 561-575 (1970).
(114)Wu, T. T.,“The effect of inclusion shape on the elastic moduli of a two-phase materials,” International Journal of Solid and Structures, Vol. 2, pp. 1-8 (1966).
(115)Xie, H., Fractals In Rock Mechanics, A. A. Balkema, Rotterdam, 1993.
(116)Zhao, Y.H. Huang, J.F. and Wang, R., “SEM study of fracture development in rock materials.,” Proceedings of the Conference on Fracture and Jointed Rock Masses. California, pp.495-499 (1995).
(117)Zimmerman, R. W., “Hashin-Shtrikman bounds on the Poisson ratio of a composite material,” Mechanics Research Communications, Vol. 19, No.6, pp. 563-569 (1992).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2005-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明