博碩士論文 88323008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.135.220.219
姓名 楊章豪(Chang-Hao Yang )  查詢紙本館藏   畢業系所 機械工程研究所
論文名稱 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響
(Influence of Environment Factors on High-Cycle Fatigue Behavior of Austempered Ductile Cast Iron)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為★ 電子構裝用無鉛銲錫之低週疲勞行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨在探討環境因素對沃斯回火球墨鑄鐵高週疲勞性質之影響,暸解其在不同腐蝕及中高溫環境下之高週疲勞行為,探討的腐蝕環境參數包括溶液之溫度、氯離子及pH值的影響,並比較在100oC、180oC、220oC及250oC中高溫空氣中之疲勞強度。此外,亦利用掃描式電子顯微鏡(SEM)觀察疲勞破斷面,以了解裂縫的生成及成長模式。
實驗結果顯示,由於腐蝕環境能協助短裂縫克服在微結構上所遭遇的障礙物,加速短裂縫成長,故在蒸餾水、3.5% NaCl、80oC 3.5% NaCl與硫酸溶液中的高週疲勞壽命皆比空氣中還低。而提高溶液溫度、加入氯離子及降低pH值,皆會加劇短裂縫的成長速率,進一步縮短高週疲勞壽命;其中,又以降低溶液pH值的影響最大。而潤滑油因其惰性環境降低了腐蝕效應,使得其高週疲勞壽命比空氣中長。對ADI疲勞性質而言,要造成所謂腐蝕疲勞破裂的現象必須要有應力與腐蝕環境的同時存在作用,只有單純的腐蝕環境先作用再受疲勞負載,並不會影響ADI的高週疲勞壽命。
ADI在室溫至300oC間的抗拉強度,並不會因環境溫度的改變,而有明顯的不同。此外,ADI在中高溫及高應力(低壽命)區的疲勞壽命明顯會隨著溫度的上升而下降;但在低應力(長壽命)區,220oC與250oC的疲勞壽命,並不如預期般的減少,反而會接近180oC的疲勞壽命值,這是由於其較高的溫度,使得碳化物更易析出,相對使得麻田散鐵的變態點(Ms點)上升,此時殘留沃斯田鐵較容易在循環應力的負載下,產生應力誘發變態成為麻田散鐵,而在變態過程所引發的體積膨脹,會在裂縫尖端產生殘留壓縮應力阻礙了裂縫成長,延長壽命。
摘要(英) The purpose of this study is to investigate the influence of various aqueous solutions and ambient air temperatures on the high-cycle fatigue (HCF) behavior of austempered ductile iron (ADI) . The effects of presence of chloride, pH value and temperature in aqueous solution on the HCF resistance were characterized. HCF results obtained in air at temperature ranging from room temperature to 250oC were made a comparison to characterize the temperature effect on HCF strength of ADI. Fractography and microstructural analyses with scanning electron microscopy (SEM) were conducted to determine the fatigue crack initiation and propagation modes.
Experimental results show the HCF lives in room-temperature water, 3.5% NaCl, 80oC 3.5% NaCl, and sulfuric acid solutions were shorter than those in room-temperature air for the given ADI. In addition, increasing solution temperature, adding chloride, and decreasing pH value would further decrease the HCF life as compared to room-temperature water. Among these factors, the decrease of pH value generated the most detrimental effect on HCF resistance. The SAE 10W40 lubrication oil provided an inert environment to increase the HCF life of ADI as compared to atmospheric environment. The synergism between corrosive environment and cyclic stresses was primarily responsible for the reduction of HCF life as the effect of prior corrosion did not significantly change the fatigue life when tested in air.
At temperatures from room temperature to 300oC, the tensile strength of ADI was invariant with temperature. The fatigue life of ADI would decrease with increasing temperature at high stress levels. However, the fatigue lives in 220oC and 250oC at low stress levels were comparable with those in 180oC. This is due to the fact that a higher temperature would cause more carbide precipitation and increase the temperature of Ms for martensitic transformation. Therefore, the unstable retained austenite could transform to martensite more easily under cyclic loading at higher temperatures. The volume expansion resulting from this transformation would produce residual compressive stress at crack tip to retard fatigue crack growth and extend fatigue life.
關鍵字(中) ★ 沃斯回火球墨鑄鐵
★  腐蝕環境
★  腐蝕疲勞破裂
★  高週疲勞
★  麻田散鐵
關鍵字(英) ★ Austempered Ductile Cast Iron
★  High-Cycle Fatigue
論文目次 List of Tables
List of Figures.
第一章 簡介
1-1 沃斯回火球墨鑄鐵之研究及發展
1-2 沃斯回火熱處理
1-3 不同環境溫度下球墨鑄鐵之機械性質文獻回顧
1-4 沃斯回火球墨鑄常溫與中高溫之疲勞性質與破壞機構
1-5 腐蝕疲勞與破壞機構
1-6 鑄鐵腐蝕性質文獻回顧
1-7 研究目的
第二章 實驗程序
2-1 材料及試片製作
2-2 沃斯回火熱處理
2-3 實驗環境
2-4 中高溫拉抻及硬度試驗
2-5 軸向疲勞試驗
2-6 電化學試驗
2-7 破斷面觀察
2-8 X-ray繞射分析
第三章 結果與討論
3-1 材料的機械性質、微結構及耐腐蝕力
3-2 腐蝕環境參數對高週疲勞性質的影響
3-3 不同環境溫度下之機械性質比較
3-4 不同環境溫度下之高週疲勞性質比較
3-5 破斷面觀察……………………………………………………
第四章 結論
參考文獻
Tables
Figures
參考文獻 1]洪敏雄, “沃斯回火球墨鑄鐵之簡介,” 沃斯回火球墨鑄鐵專輯, 中華民國鑄造學會77年全國學會大會, 1988.
[2]潘國桐、廖高宇譯, 球墨鑄鐵手冊, 中華民國鑄造學會編印, 1994.
[3]D. Venugopalan, K. L. Pilon, and A. Alagarsamy, “Influence of Microstructure on Fatigue Life of As-Cast Ductile Iron,“ AFS Transactions, Vol. 96, 1988, pp. 697-704.
[4]F. D. Griswold, Jr and R. I. Stephens, “Comparison of Fatigue Properties of Nodular Cast Iron Production and Y-block Castings,” International Journal of Fatigue, Vol. 9, 1984, pp. 3-10.
[5]P. A. Blackmore and K. Morton, “Structure-Property Relationships in Graphitic Cast Iron,” International Journal of Fatigue, Vol. 4, 1982, pp. 149-155.
[6]K. Ikawa and G. Ohira, “Fatigue Property of Cast Iron in Relation to Graphite Structure,” Cast Metals Research Journal, Vol. 3, 1967, pp. 11-21.
[7]J. F. Janowak and R. B. Gundalach, “Approaching Austempered Ductile Iron Properties by Controlled Cooling in the Foundry,” Journal of Heat Treating, Vol. 4, 1985, pp. 25-31.
[8]J. E. Bevan and W. G. Scholz, “Effect of Molybdenum on Transformation Characteristics and Properties of High-Strength Ductile Iron,” AFS Transactions, Vol. 85, 1977, pp. 271-276.
[9]張瑞模, “沃斯回火球墨鑄鐵之應用例,” 鑄造月刊, 第118期, 民國88年, pp 8-12.
[10]洪敏雄、周兆民, “球墨鑄鐵之變韌鐵化處理,” 機械月刊, 第13卷, 第6期, 民國76年, pp. 95-105.
[11]陳耀堡、施登士, “應用模內球化法鑄製球墨鑄鐵及其沃斯回火處理,” 鑄工, 第84期, 民國84年, pp. 1-10.
[12]B. V. Kovacs, “On the Terminology and Structure of ADI,” AFS Transactions, Vol. 102, 1994, pp. 417-420.
[13]M. Bahmani, R. Elliott, and N. Varahram, ”The Relationship between Fatigue-Strength and Microstructure in an Austempered Cu-Ni-Mn-Mo Alloyed Ductile Iron,” Journal of Materials Science, Vol. 32, 1992, pp. 5383-5388.
[14]K. P. Jen, J. Wu, and S. Kim, “Study of Fracture and Fatigue Behavior of Austempered Ductile Iron,” AFS Transactions, Vol. 100, 1992, pp. 833-846.
[15]J. Aranzabal, I. Gutierrez, J. M. Rodriguezibabe, and J. J. Urcola, ” Influence of the Amount and Morphology of Retained Austenite on the Mechanical-Properties of an Austempered Ductile Iron,” Metallurgical and Materials Transactions A, Vol. 28A, 1997, pp. 1143-1156.
[16]C. P. Cheng, S. M. Chen, T. S. Lui, and L.H.Chen, ”High-Temperature Tensile Deformation and Thermal Cracking of Ferritic Spheroidal Graphite Cast Iron,” Metallurgical and Materials Transactions A, Vol. 28A, 1997, pp. 325-333.
[17]Y. Ishihara, “Mechanical Properties of Austempered Ductile Iron at Elevated Temperature up to 500oC,” Imono, Vol. 57, 1986, pp. 250-254.
[18]T. S. Lui, T. A. Din, and L.H.Chen, “The Tensile Deformation Behavior of Austempered Spheroidal Graphite Cast Iron at Elevated Temperature,” Imono, Vol. 64, 1992, pp. 45-48.
[19]Y. Ishihara, “Low Temperature Properties of Austempered Ductile Iron,” Imono, Vol. 58, 1986, pp. 29-34.
[20]J. A. Bannantine, J. J. Comer, and J. L. Handrock, Fundamentals of Metal Fatigue Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, USA, 1990.
[21]周兆民譯, "沃斯回火球墨鑄鐵-I," 鑄造月刊, 第66期, 民國84年, pp. 17-25.
[22]賴炳坤, “沃斯回火球墨鑄鐵之高週疲勞性質研究,” 國立中央大學機械工程研究所碩士論文, 1995.
[23]K. Fukuyama, N. Hasegawa, and K. Inaba, ” Fatigue Properties of Austempered Ductile Cast Iron at Room and Elevated Temperatures,” Journal of the Society of Materials Science, Japan, Vol. 44, 1995, pp. 1164-1170.
[24]魏景元, “不同斷面沃斯回火球墨鑄鐵之高週疲勞性質,” 國立中央大學機械工程研究所碩士論文, 1996.
[25]L. Bartosiewicz, A. R. Krause, B. Kovacs, and S. K. Putatunda, “Fatigue Crack Growth Behavior of Austempered Ductile Cast Iron,” AFS Transactions, Vol. 130, 1992, pp. 135-142.
[26]L. Bartosiewicz, A. R. Krause, F. A. Alberts, I. Singh, and S. K. Putatunda, “Influence of Microstructure on High-Cycle Fatigue Behavior of Austempered Ductile Cast Iron,” Materials Characterization, No. 30, 1993, pp. 221-234.
[27]P. Shanmugam, P. P. Rao, K. R. Udupa, and N. Venkataraman, “Effect of Microstructure on the Fatigue Strength of an Austempered Ductile Iron,” Journal of Materials Science, Vol. 29, 1994, pp. 4933-4940.
[28]T. J. Marrow, and H. Cetinel, “Short Fatigue Cracks in Austempered Ductile Cast Iron, “Fatigue and Fracture of Engineering Materials and Structures , Vol. 23, 2000, pp. 425-434.
[29]P. C. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” Journal of Basic Engineering, Vol. 85, 1960, pp. 528-534.
[30]Y. Tanaka, Z. Yang, and K. Miyamoto, “Evaluation of Fatigue Limit of Spheroidal Graphite Cast Iron,” Materials Transactions, JIM, Vol. 36, 1995, pp. 749-756.
[31]M. Takita and Y. Ueda, ”Effect of Retained Austenite on Properties of Austempered Ductile Iron,” Cast Metals, Vol. 1, 1988, pp. 147-155.
[32]S. Doi, Y. Mimura, K. Sato, T. Hiroyasu, and H. Ikeda, “Fatigue Strength of Austempered Ductile Cast Iron Under Thermal Environment,” Transactions of the Japan Society of Mechanical Engineers, Vol. 63, 1997, pp. 7-12.
[33]B. J. Weng, S. T. Chang, H. N. Liu, and S. E. Hsu, “Crack Initiation and Propagation of Austempered Ductile Iron and its Properties,” Chinese Journal of Materials Science, Vol. 23, 1991, pp. 278-286.
[34]M. R. Bayoumi, “Fatigue Behavior of a Commercial Aluminum Alloy in Sea Water at Different Temperatures,” Engineering Fracture Mechanics, Vol. 45, 1993, pp. 297-307.
[35]S. Suresh, Fatigue of Materials, Cambridge University Press, New York, 1991, Chapter 12.
[36]F. P. Ford and M. Silverman, Mechanistic Aspects of Environment-Controlled Crack Propagation in Steel/Aqueous Environment System, Report No. HTGE-451-8-12, General Electric Company, Schenectady, New York, 1979.
[37]K. J. Miller and R. Akid, “The Application of Microstructural Fracture Mechanics to Various Metal Surface States,” Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 452, 1996, pp. 1411-1432.
[38]R. Akid and G. Murtaza, “Environment Assisted Short Crack Growth Behaviour of a High Strength Steel,” pp. 193-207 in Short Fatigue Cracks, ESIS 13, Mechanical Engineering Publications, London, 1992.
[39]D. J. Duquette, “A Review of Aqueous Corrosion Fatigue,” pp.12-24 in Corrosion Fatigue: Chemistry, Mechanics and Microstructure, Edited by O. Devereux, A. J. Evily, and R. W. Staehle, National Association of Corrosion Engineers, Houston, 1971.
[40]柯賢文, 腐蝕及其防制, 全華科技出版社, 台北, 1995, pp. 127-135.
[41]左景伊, 應力腐蝕破裂, 西安交通大學出版社, 陝西西安, 1985, pp. 1-9.
[42]J. D. Atkinson, J. Yu, Z. Y. Chen, and Z. J. Zhao, “Modelling of Corrosion Fatigue Crack Growth Plateaux for RPV Steels in High Temperature Water,” Nuclear Engineering and Design, Vol. 184, 1998, pp. 13-25.
[43]Y. Nakai, K. Tanaka, and R. P. Wei, “Short-Crack Growth in Corrosion Fatigue for a High Strength Steel,” Engineering Fracture Mechanics, Vol. 24, 1986, pp. 433-444.
[44]R. P. Wei, “Some Aspects of Environment-Enhanced Fatigue Crack Growth,” Engineering Fracture Mechanics, Vol. 1, 1970, pp. 633-651.
[45]S. Muthukumarasamy and S. Seshan, “Corrosion and Corrosion-Fatigue of Ductile Irons,” AFS Transaction, Vol. 16, 1992, pp. 873-879.
[46]M. G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill, Inc., New York, USA, 1986.
[47]M. M. Gahfelehbashi and P. Davami, “Effect of Graphite Shape on the Mechanical Properties and Corrosion Resistance of Ni-Resist Cast Irons,” AFS International Cast Metals Journal, Vol. 2, 1977, pp. 41-46.
[48]A. O. Surendranathan, K. R. Hebbar, and H. V. S. Nayak, “Aqueous Corrosion Behaviour of Ductile Iron and Ductile Iron Containing 1.5Ni-0.3Mo,” Journal of the Electrochemical Society of India, Vol. 45, 1996, pp. 61-69.
[49]O. E. Okorafor and C. R. Loper, “Embrittlement of Ductile Cast Irons Exposed to Water,” Indian Journal of Technology, Vol. 23, 1985, pp. 214-222.
[50]“Standard Practice for Conducting Constant Amplitude Axial Fatigue Tests of Metallic Materials,” ASTM E466-96, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 471-475.
[51]“Standard Test Method for Tension Testing of Metallic Materials,” ASTM E8M-98, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 78-98.
[52]“Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation,” ASTM E975-95, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 675-680.
[53]B. D. Cullity, Elements of X-Ray Diffraction, 2nd Ed., Addison-Wesley Publishing Company, Inc., California, USA, 1978, p. 411.
[54]王鎮和, “不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為,” 國立中央大學機械工程研究所碩士論文, 2000.
[55]J. B. Duh, W. T. Tsai, and H. Chang, “Effect of Potential on the Corrosion Fatigue Crack Growth Rate of Fe-Al-Mn Alloy in 3.5% NaCl Solution,” Corrosion, Vol. 46, 1990, pp. 983-988.
[56]J. Aranzabal, I. Gutierrez, J. M. Rodrigues-lbabe, and J. J. Urcola, “Influence of Heat Treatments on Microstructure and Toughness of Austempered Ductile Iron,” Materials Science and Technology, Vol. 8, 1992, pp. 263-273.
[57]K. Hori and T. Kobayashi, “Crack Closure on Fatigue Crack Propagation in Austempered Ductile Iron,” Imono, Vol. 65, No. 10, 1993, pp. 777-782.
[58]Y. Tanaka and H. Ishii, “Effect of the Graphite Nodule Size on Fatigue Properties of Austempered Spheroidal Graphite Cast Iron,” Imono, Vol. 63, No. 8, 1991, pp. 699-705.
[59]田永奎, 金屬腐蝕與防護, 機械工業出版社, 大陸, 1992.
[60]鮮祺振, 腐蝕理論與實驗, 徐氏基金會, 台北, 1974, pp. 4-5.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2001-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明