博碩士論文 88343005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.129.70.153
姓名 楊景棠(Ching-Tang Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微電化學放電加工法應用於硼矽玻璃的精微加工及精度改善之研究
(Improving Machining Precision of Pyrex Glass by Using Micro Electrochemical Discharge Machining)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電化學放電加工是加工非導電硬脆材料的新興技術,加工材料不受限於材料的硬度、導電度,但是由於其加工過程中涵蓋了電解反應、熱熔融與蝕刻反應,加工機制複雜使其未能有效控制加工品質,離產業的實用化仍有段差距;因此探討電化學放電加工的基本加工機制、開發及改善電化學放電加工在微孔與線切割上的品質是本論文所要探討的主題。
本研究藉由攝影機觀察加工過程及加工電壓電流的波形,釐清加工中化學蝕刻與放電在材料移除機制上所扮演的角色,包括將硼矽玻璃置放於電解液中,並以CO2雷射加工玻璃表面,以模擬硼矽玻璃在如同電化學放電加工高溫高壓下的蝕刻狀況;另外使用傳統的放電加工,加工ITO導電玻璃(Indium Tin Oxide),以暸解玻璃材料在純放電加工下的表面狀況,分別比較純化學蝕刻、純放電加工與電化學放電加工三種加工方法的加工表面狀況,進一步探討加工的材料移除機制;並開發直徑小於0.3mm的電化學放電微鑽孔技術,針對微孔的錐度,提出了使用Al2O3電泳沉積研磨的方法來改善微孔品質,由實驗結果顯示,微孔經階級式電極研磨500秒後,可將平均粗糙度降至5nm,錐度可以改善至0.2o;在線切割加工的應用上,如何減少切割痕(saw mark)與切槽寬度(kerf)是必須克服的議題,本研究在電解液中添加SiC磨粒,由於磨粒的研磨效果,在擴槽量、粗糙度及加工速度上相對於純電化學放電線切割加工都有較佳的表現,達到擴槽量為0.024mm,粗糙度為0.84μm Ra。
摘要(英) Electrochemical discharge machining (ECDM) is new and developing technology to non-conductive hard brittle materials. The advantage of the technology is no limitation on brittleness and electrical conductivity. Since the complexity of ECDM involves the interdependency of thermal, electrochemical and mechanical effects, the machining quality can’t reach the application in industry. In view of such drawbacks, this study aims to investigate the machining mechanism in ECDM and enhance the precision quality of micro-holes and micro-slits machined by ECDM.
Real time photographs and the current response were taken to observe the transition process in ECDM. The effects of chemical etching were studied by comparing three surface morphologies, high temperature chemical etching, electrical discharge machining (EDM) and ECDM. The machining mechanism can be further analyzed. Micro-holes of glass with diameter less then 0.3mm and thickness 1.5mm were developed. This study proposed using Al2O3 electrophoretic deposition grinding (EPDG) to further improve taper and surface roughness of the microholes. The surface roughness and taper angle can be improved to 5nm Ra and 0.2o after 500 sec grinding time, respectively. In the wire cut application, it is important to decrease the saw mark and kerf loss. This study proposed adding SiC abrasives in the electrolyte to improve the micro-slits quality. The expansion of micro-slit and surface roughness achieved were 0.024mm and 0.84μm Ra, respectively.
關鍵字(中) ★ 線切割
★ 電泳沉積研磨
★ 微孔加工
★ 玻璃加工
★ 電化學放電加工
關鍵字(英) ★ wire cut
★ electrophoretic deposition grinding
★ micro-hole
★ glass drilling
★ ECDM
論文目次 中文摘要 I
英文摘要 II
謝誌 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究背景 4
1-3 文獻回顧 5
1-4 研究方法 7
1-5 本論文之構成 9
第二章 應用電化學放電加工法於硼矽玻璃微孔加工之研究 10
2-1 前言 10
2-2 實驗內容與方法 11
2-3 結果與討論 14
2-3-1微細電極製作 14
2-3-2電化學放電火花現象觀察 15
2-3-3電化學放電加工材料移除機制 19
2-3-3-1表面性狀觀察 19
2-3-3-2電解液對材料移除機制的影響 20
2-3-4加工參數對微孔加工品質的影響 24
2-3-4-1電解液濃度與初始溫度對加工時間的影響 24
2-3-4-2電解液濃度與種類對孔徑的影響 25
2-3-4-3電解液種類與輸入電壓對微孔表面粗度的影響 27
2-3-4-4荷重與加工時間的關係 28
2-3-4-5電極轉速與微孔真圓度的關係 29
2-3-4-6結合微放電與電化學放電加工於硼矽玻璃微孔加工 30
2-4 結論 32
第三章應用電泳沉積研磨改善電化學放電加工玻璃微孔品質 33
3-1 前言 33
3-2 電泳沉積原理 35
3-3 實驗內容與方法 37
3-3-1電泳沉積最佳參數 39
3-3-2實驗設備與加工參數 40
3-4 結果與討論 42
3-4-1電極直徑對研磨效果的比較 42
3-4-2研磨時間的影響 44
3-4-2-1研磨時間對孔徑差與擴孔量的影響 44
3-4-2-2研磨時間對真圓度的影響 45
3-4-2-3研磨時間對粗糙度的影響 47
3-4-3研磨轉速的影響 49
3-4-3-1研磨轉速對真圓度的影響 49
3-4-3-2研磨轉速對孔徑差與擴孔量的影響 50
3-4-3-3研磨轉速對粗糙度的影響 51
3-4-4研磨液粒徑的影響 52
3-4-4-1研磨液粒徑對真圓度的影響 53
3-4-4-2研磨液粒徑對孔徑差與擴孔量的影響 54
3-4-4-3研磨液粒徑對粗糙度的影響 56
3-5 結論 58
第四章電解液中添加SiC磨粒改善電化學放電切割特性的研究 60
4-1 前言 60
4-2 實驗內容與方法 60
4-2-1進給機構的改善 62
4-2-2實驗參數設定與實驗流程 64
4-3 結果與討論 66
4-3-1擴槽量 66
4-3-1-1磨粒濃度對擴槽量的影響 67
4-3-1-2粒徑對擴槽量的影響 69
4-3-1-3能量輸入頻率對擴槽量的影響 71
4-3-1-4衝擊係數對於擴槽量的影響 73
4-3-1-5電解液種類對於擴槽量的影響 74
4-3-1-6線張力對擴槽量的影響 75
4-3-1-7送線速度對於擴槽量的影響 76
4-3-2粗糙度 78
4-3-2-1磨粒添加濃度粒徑與對粗糙度的影響 78
4-3-2-2能量輸入頻率與衝擊係數對粗糙度的影響 83
4-3-3材料去除率 86
4-3-3-1能量輸入頻率與衝擊係數對加工速度的影響 87
4-3-3-2線張力與送線速度對加工速度的影響 89
4-3-3-3磨粒添加濃度與粒徑對加工速度的影響 91
4-3 結論 94
第五章 總結論 96
參考文獻 98
參考文獻 1. 黃忠良,精密陶瓷加工-硬脆材料的精密機械加工,p.5.
2. C.S. Taylor, Investigation on anode discharge in electrolysis of melted sodium chloride, Trans. Electro-chem. Soc. 47 (1925) 301-305.
3. H.H. Kellog, The interface observation of poles in water electrolysis, J. Electrochem. Soc. 97 (1950) 133-137.
4. H. Karafuji, K. Suda, Electrical discharge drilling of glass, Ann. CIRP 16 (1968) 415-419.
5. A.N. Merkurev, Electrochemical discharge machining of steel, Elektron obrab. Mater., 3 (1969) p.7.
6. M. Kubota, Drilling of steel by using electrochemical discharge machining, Proceedings of the International Conference on Production Engineering, Tokyo (1974) 51-55.
7. X. Ni, A study of electrical discharges in electrolyte by high speed photography, J. Electrochem. Soc., 140 no.12 (1993) 3505-3512.
8. I. Basak, A. Ghosh, Mechanism of spark generation during electrochemical discharge machining: a theoretical and experimental verification, Journal of Materials Processing Technology, 62 (1996) 46-53.
9. A.B.M. Khayry and J.A. Mcgeough, Modelling of electrochemical arc machining by use of dynamic data systems Proceedings of 25th International Machine Tool Design and Research Conference (1985) 321-328.
10. Y.P. Singh, V.K. Jain, P. Kumar, D.D. Agrawal, Machining piezoelectric (PZT) ceramics using an electrochemical spark machining (ECSM) process Journal of Materials Processing Technology 58 (1996) 24-31.
11. Allesu K, Ghosh A and Muju M K, Preliminary qualitative approach of a proposed mechanism of material removal in electrical machining of glass Eur. J. Mech. Eng. 36 (1992) 202-207.
12. H. Langen, V. Fascio, R. Wüthrich and D. Viquerat, Three-dimensional structuring of pyrex glass devices – trajectory control Int. Conf. European Society for Precision Engineering and Nanotechnology (EUSPEN) (Eindhoven) 2 (2002) 435-438.
13. A.B. Khayry, J.A. McGeough, Analysis of electrochemical arc machining by stochastic and experimental methods, Proceedings of Royal Society, London, (1987) p.403.
14. V.K. Jain, P.M. Dixit, P.M. Pandey, On the analysis of the electro0chemical spark machining process-test of machining on composit materials, International Journal of Machining Tools and Manufacture, (1999) 39 p.165.
15. B. Bhattacharyya, B.N. Doloi, S.K. Sorkhel, Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials, Journal of Materials Processing Technology, 95 (1999) p. 145.
16. A. Kulkarni, R. Sharan, G.K. Lal, An experimental study of discharge mechanism in electrochemical discharge machining, International Journal of Machine Tools and Manufacture, 42 (2002) p. 1121.
17. V. Fascio, H. Langen, H. Bleuler, C. Comninellis, Spark assisted chemical engraving: a novel technology for glass microstructuring, Proceedings of the 54th International Society of Electrochemistry, Sao Pedro, Brazil, (2003) p. 203.
18. R. Wuthrich, V. Fascio, H.Bleuler, A stochastic model for electrode effects, 49 (2004) p. 4005.
19. 李群威、邱源成、李榮宗,電化學放電氣泡層形成機制之研究,中國機械工程學會第二十二屆全國學術研討會論文集,A6-017.
20. 李群威、邱源成、李榮宗、吳添益,電化學放電加工機制之研究,中國機械工程學會第二十三屆全國學術研討會論文集,A6-018.
21. H. Tsuchiya, T. Inoue, M. Miyazaiki, Wire electro-chemical disharge machining of glass and ceramics, Bulletin Japanese Society of Precision Engineering, 19 (1985) p. 73.
22. V.K. Jain, P.S. Rao, S.K. Choudhury, K.P. Rajurkar, Experimental investigations into traveling wire electrochemical spark machining (TW-ECSM) of composites, Transactions of ASME, Journal of Engineering for Industry, 113 (1991) p. 75.
23. V.K. Jain, Y.P. Singh, P. Kumar, D.C. Agrawal, Machining piezoelectric (PZT) ceramics using an electrochemical spark machining(ECSM) process, Journal of Materials Processing Technology, 58 (1996) p. 24.
24. V.K. Jain, N. Gautam, Experimental investigations into ECSD process using various tool kinematics, 38 (1998) p. 15.
25. V.K. Jain, S.K. Choudhury, K.M. Ramesh, On the machining of alumina and glass, International Journal of Machine Tools and Manufacure, 42 (2002) p.1269.
26. H. Langen, R. Wuthrich, V. Fascio, D. Viquerat, Study of spark assisted chemical engraving-process technology data, Proceedings of International Conference of the European Society for Precision Engineering and Nanotechnology (EUSPEN), Eindhoven, (2002) p. 265.
27. W.Y. Peng, Y.S. Liao, Study of electrochemical discharge machining technology for slicing non-conductive brittle materials, Journal of Materials Processing Technology, 149 (2004) 363-369.
28. Yunn-Shiuan Liao, Wen-Yang Peng, Study of hole-machining on Pyrex wafer by electrochemical discharge machining (ECDM), Materials Science Forum, 505-507 (2006) 1207-1212.
29. 程道腴,玻璃學,徐氏基金會出版.
30. V. Fascio, R. Wüthrich, D. Viquerat and H. Langen 3D microstructuring of glass using electrochemical discharge machining (ECDM), International Symposium on Micromechatronics and Human Science (1999) 179-183.
31. V. Fascio, R. Wüthrich and H. Bleuler, Spark assisted chemical engraving in the light of electrochemistry, Electrochimica Acta 49 (2004) 3997-4003.
32. Dae-Jin Kim, Yoomin Ahn, Seoung-Hwan Lee and Yong-Kweon Kim, Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass, International Journal of Machine Tools & Manufacture (2006) 46 1064-1067.
33. K. Takahata, S. Aoki and T. Sato, Fine surface finishing method for 3-dimensional micro structures, Proc IEEE MEMS (1996) 73-78.
34. Y. Tani, T. Saeki, Y. Samitsu, K. Kobayashi and Y. Sato, Infeed grinding of silicon wafers applying electrophoretic deposition of ultrafine abrasives, Ann CIRP 47(1) (1998) 245-248.
35. Z. Haga and T. Semba, Electrophoretic polishing of zirconia ceramics using a porous anodic film as a binder of ultrafine silica abrasives, JSME Int J Series C 41(4) (1998) 922–928.
36. B.H. Yan, K.L. Wu, F.Y. Huang, C.C. Hsu, A study on the mirror surface machining by using a micro-energy EDM and the electrophoretic deposition polishing, International Journal of Advanced Manufacturing Technology, published on line May (2006).
37. 黃士瑋,使用電泳沉積研磨加工改善放電微孔精度之研究,中央大學機械工程研究所,2003 .
38. 許俊傑,利用電泳沉積Al2O3 粉末對微能量放電加工表面拋光的基礎研究,中央大學機械工程研究所,2004.
39. 田福助,電化學基本原理與應用,五洲出版,83-102.
40. 蘇祺振,電極動力學,徐氏基金會出版,53-55.
指導教授 顏炳華(Biing-Hwa Yan) 審核日期 2007-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明