博碩士論文 88343009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:18.118.12.102
姓名 黃聖和(Sheng-Ho Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微放電製作之微軸強度分析及其改善方法研究
(A study of analysis and improvement on strength of micro shaft manufactured by micro-EDM)
相關論文
★ 凹形球面微電極與異形微孔的成形技術研究★ 二氧化鈦薄膜之製備與分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 碳奈米管微電極陣列之製造與性質檢測
★ 超塑性5083鋁合金快速成形空孔狀態之分析★ 微極彈性內凹結構波桑比之有限元素法分析
★ 不銹鋼微細槽放電加工及電化學拋光精修槽壁效果之研究★ 壓力容器與引流管接合處之軸對稱有限元素分析
★ 負波桑比結構之桁架有限元素法分析★ 具負波桑比性質之細胞型材料之有限元素法分析
★ 具負波桑比傘狀結構之分析與應用★ Ti-6Al-4V之超塑性成形製程模擬與分析
★ 利用微極彈性理論分析蜂巢式結構之波桑比效應★ 結合微細放電與高頻抖動研磨之微孔加工研究
★ 負波桑比機構之設計與分析★ 微雙材料熱變形樑之應用分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微放電加工為製造具有高深寬比3D微元件的關鍵技術,然而利用微放電加工法製造的微元件會因微裂縫而發生缺口效應,進而導致應力集中降低疲勞強度,因此,本文將微放電加工法製造的碳化鎢微軸進行微拉伸與微彎曲破壞試驗,探討粗糙度效應與尺寸效應對破壞強度的影響,與試片初始破壞的原因,除此,並研究以微電鍍鉻技術改善碳化鎢放電試片的破壞強度,以及試片尺寸與表面粗糙度對鉻披覆鍍層表面形態之影響。
微破壞測試實驗結果顯示放電電流、軸向表面積、體積與長度都會影響試片的張力與彎曲破壞強度;試片在具有相同尺寸的條件下,平均張力與彎曲強度將隨著放電電流的增加而減少,而試片的破壞機率也會隨之增加;具有相同直徑與放電能量的試片,平均張力破壞強度隨著試片的長度、體積以及軸向表面積增加而降低,而張力破壞機率則隨之增加;此外,試片在具有相同放電能量的條件下,減少試片長度以及軸向表面積將會提高平均彎曲破壞強度,並降低試片的彎曲破壞機率。此外,微電鍍鉻實驗結果顯示,在相同的電鍍條件下,放電表面較粗糙的碳化鎢試片,鉻披覆鍍層的表面亦會較為粗糙,而隨著電鍍的時間增加,披覆鍍層的表面完善性會有明顯的改善,且不同粗糙披覆鍍層間的表面完善性也會隨之接近;此外,在相同電鍍電流作用下,直徑較小的放電試片可鍍出較緻密的鉻鍍層,但會產生較大的結晶塊而形成較粗糙的電鍍層;而經電鍍後的小尺度放電試片,將可提升張力破壞強度,降低張力破壞機率與減少張力破壞強度的散佈範圍。
摘要(英) Micro electrical discharge machining (Micro-EDM) is a critical technology to fabricate high aspect ratio 3D micro-components. However, the surfaces of micro- components manufactured by micro-EDM will exhibit micro-cracks that will produce notch effects, and lead to stress concentration and reduction of fatigue strength. This paper performs micro-tensile and micro-bending tests to investigate the influence of various roughness and sizes on the fracture strength of micro WC-shafts manufactured by micro-EDM, and determines the origin of the fracture in the specimen. Moreover, the further study on improvement of fracture strength of WC EDMed specimen through micro chromium electroplating is conducted. Besides, we also examine the influence of roughness and sizes on the surface topography of chromium coating.
The experimental results indicate that the discharge current, axial surface area, volume, and length of the specimen will affect its tensile and bending fracture strength. For specimens with the same size, the mean tensile and bending fracture strength decrease as discharge current increases, and the fracture probability of the specimens also increase. For specimens with the same diameter and discharge capacity, increasing the length, volume or axial surface area reduces the mean fracture strength, and increase the fracture probability. For specimens with the same discharge capacity, reducing the length or axial surface area will increase the mean bending fracture strength, and reduce the bending fracture probability. Besides, the experimental results of micro chromium electroplating indicate that, under the same electroplating parameters, the specimen with rougher discharge surface will exhibit a higher roughness on the chromium coating. Furthermore, the surface integrity effect of coating and the surface integrity within different roughness coatings will also improve with the increase of the electroplating time. Moreover, under the same electroplating current, the EDMed specimen with a smaller diameter can produce a chromium coating with compact build, but will also generate larger crystalline solids that lead to a rough surface. On the tiny scale, an EDMed specimen coated with electroplating will reduce scattered distribution of tensile fracture strength and the tensile fracture probability, and enhance tensile strength.
關鍵字(中) ★ 彎曲試驗
★ 拉伸試驗
★ 尺寸效應
★ 高深寬比
★ 微軸
★ 微放電加工
★ 破壞強度
★ 韋伯分佈
★ 微電鍍
關鍵字(英) ★ Micro-shaft
★ High aspect ratio
★ Size effect
★ Tensile test
★ Bending test
★ Weibull distribution
★ Micro electroplating
★ Micro-EDM
★ Fracture strength
論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
謝誌 Ⅲ
總目錄 Ⅳ
圖目錄 Ⅶ
表目錄 Ⅹ
第一章 序論 1
1.1 研究動機 1
1.2 研究背景 2
1.2.1微製造技術簡介 2
1.2.2 微放電加工技術 5
1.2.3 微電鍍加工技術 7
1.3 研究目的 8
1.4 研究方法 9
1.5 文獻回顧 11
第二章分析理論 20
2.1 圓形懸臂樑彎曲彈性理論 20
2.2 韋伯分析理論 20
第三章 實驗方法 23
3.1 碳化鎢試片製作 23
3.1.1碳化鎢材料簡介 23
3.1.2 試片製作設備 23
3.1.3 試片製作程序 25
3.2 微拉伸破壞試驗 29
3.2.1 微拉伸試驗設備 29
3.2.2 微拉伸試驗實驗步驟 32
3.3 微彎曲破壞試驗 34
3.3.1微彎曲試驗設備 34
3.2.2 微彎曲試驗實驗步驟 36
3.4 微電鍍試驗 38
3.4.1 前言 38
3.4.2 微電鍍材料 39
3.4.3 微電鍍設備 39
3.4.4 微電鍍程序 42
3.4.5 微電鍍破壞試驗 45
第四章 結果與討論 46
4.1微拉伸破壞試驗 46
4.1.1 放電電流之粗糙度影響 46
4.1.2放電能量與尺寸效應對張力破壞強度之影響 49
4.1.3 韋伯分析 52
4.1.4試片的初始破壞 57
4.1.5結論 61
4.2微彎曲破壞試驗 62
4.2.1 放電電流之粗糙度影響 62
4.2.2放電能量與尺寸效應對彎曲破壞強度之影響 66
4.2.3 韋伯分析 72
4.2.4試片的初始破壞 77
4.2.5結論 81
4.3微電鍍試驗 82
4.3.1 電鍍時間與鍍層厚度之關係 82
4.3.2 放電表面粗糙度對電鍍層表面之影響 87
4.3.3 尺寸效應對電鍍層表面之影響 90
4.3.4 電鍍鉻層對破壞強度之影響 92
4.3.5 電鍍鉻層對碳化鎢初始破壞之強化 97
4.3.6結論 100
第五章 總結論 101
參考文獻 103
作者簡介 118
參考文獻 [1] 吳東權等,微機電系統之技術現況與發展,工業技術研究院機械工業研究所,1994.
[2] 丁志明等,微機電系統技術與應用, 行政院國家科學委員會精密儀器中心出版,2003.
[3] M. Madou, Fundamentals of microfabrication: the science of miniaturization, CRC Press, 2002.
[4] 王阿成,高精度微細孔槽的微放電複合技術研發及其加工特性研究,國立中央大學博士論文,2003.
[5] B. M. Schumacher, ”After 60 years of EDM the discharge process remains still disputed”, Journal of Materials Processing Technology 149 (2004) 376-381.
[6] Q. H. Zhang, J. H. Zhang, J. X. Deng, Y. Qin, Z. W. Niu, “Ultrasonic vibration electrical dicharge machining in gas”, Journal of Materials Processing Technology 129 (2002) 135-138.
[7] Z. Yu, T. Jun, K. Masanori, “Dry electrical discharge machining of cemented carbide”, Journal of Materials Processing Technology 149 (2004) 353-357.
[8] X. Q. Sun, T. Masuzawa, M. Fujino, “Micro ultrasonic machining and its applications in MEMS”, Sensors and Actuators A 57 (1996) 159-164.
[9] K. H. Ho, S. T. Newman, “State of the art electrical discharge machining (EDM)”, International Journal of Machine Tools & Manufacture 43 (2003) 1287-1300.
[10] D. T. Pham, S. S. Dimov, S. Bigot, A. Ivanov, K. Popov, “Micro-EDM recent developments and research issues”, Journal of Materials Processing Technology 149 (2004) 50-57.
[11] D. Reynaerts, P. H. Heeren, H. V. Brussel, “Microstructuring of silicon by electro-discharge machining (EDM) part I: theory”, Sensors and Actuators A 60 (1997) 212-218.
[12] M. Yamamoto, H. Takeuchi, S. Aoki, "Dimensional measurement of high aspect ratio structures with a resonating micro cantilever probe", Microsystem Technolgies 6 (2000) 179-183.
[13] M. Yamamoto,I. Kanno, S. Aoki, Profile measurement of high aspect ratio micro structures using a tungsten carbide micro cantilever coated with PZT thin films, Micro Electro Mechanical Systems, The Thirteenth Annual International Conference (2000) 217-222.
[14] D. Reynaerts, W. Meeusen, H. V. Brussel, Machining of three- dimensional microstructures in silicon by electro-discharge machining, Sensors and Actuators A 67 (1998) 159-165.
[15] C. L. Kuo, J. D. Huang, H. Y. Liang, “Precise Micro-Assembly Through an Integration of Micro-EDM and Nd-YAG”, International Journal of Advanced Manufacturing Technology 20 (2002) 454-458.
[16] J. D. Huang, C. L. Kuo, “Pin-plate micro assemble by integrating micro-EDM and Nd-YAG laser”, International Journal of Machine Tools & Manufacture 42(13) (2002) 1455-1464.
[17] M. Yamamoto,I. Kanno, S. Aoki, “Profile measurement of high aspect ratio micro structures using a tungsten carbide micro cantilever coated with PZT thin films”, Micro Electro Mechanical Systems, The Thirteenth Annual International Conference (2000) 217-222.
[18] X. Q. Sun, T. Masuzawa, M. Fujino, “Micro ultrasonic machining and self-aligned multilayer machining/assembly technologies for 3D micromachines”, An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems IEEE (1996) 312-317.
[19] K. Egashira, K. Mizutani, “Micro-drilling of monocrystalline silicon using a cutting tool”, Journal of the International Societies for Precision Engineering and Nanotechnology 26 (2002) 263-268.
[20] K. Egashira, K. Mizutani, “Ultrasonic vibration drilling of micro- holes in glass”, Annals of the CIRP 51 (2002) 339-342.
[21] C. C. Wang, B. H. Yan, H. M. Chow., Y. Suzuki, “Cutting austempered ductile iron using an EDM sinker”, Journal of Materials Processing Technology 88 (1999) 83-89.
[22] B. H. Yan, C. C. Wang, H. M. Chow, Y. C. Lin, “Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3/6061Al composite”, International Journal of Machine Tools & Manufacture 40 (2000) 1403-1421.
[23] B. H. Yan, Y. C. Lin, F. Y. Huang, “Surface modification of Al- Zn-Mg alloy by combined electrical discharge machining with ball burnish machining”, International Journal of Machine Tools & Manufacture 42 (2002) 925-934.
[24] H. M. Chow, B. H. Yan, F. Y. Huang, J. C. Hung, “Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining”, Journal of Materials Processing Technology 101 (2000) 95-103.
[25] W. Theisen, A. Schuermann, “Electro discharge machining of nickel- titanium shape memory alloys”, Materials Science and Engineering A 378 (2004) 200-204.
[26] B. Mohan, A. Rajadurai, K. G. Satyanarayana, “Effect of SiC and rotation of electrode on electric discharge machining of Al-SiC composite”, Journal of Materials Processing Technology 124 (2002) 297-304.
[27] H. C. Tsai, B. H. Yan, F. Y. Huang, “EDM performance of Cr/Cu- based composite electrodes”, International Journal of Machine Tools & Manufacture 43 (2003) 245-252.
[28] S. H. Lee, X. Li, “Study of the surface integrity of the machined workpiece in the EDM of tungsten carbide”, Journal of Materials Processing Technology 139 (2003) 315-321.
[29] H. T. Lee, T. Y. Tai, “Relationship between EDM parameters and surface crack formation”, Journal of Materials Processing Technology 142 (2003) 676-683.
[30] G. L. Benavides, L. F. Bieg, M. P. Saavedra, E. A. Bryce, “High aspect ratio meso-scale parts enabled by wire micro-EDM”, Microsystem Technologies 8 (2002) 395-401.
[31] B. H. Yan, F. Y. Huang, H. M. Chow, J. Y. Tsai, “Micro-hole machining of carbide by electric discharge machining”, Journal of Materials Processing Technology 87 (1999) 139-145.
[32] Z. N. Guo, X. Wang, Z. G. Huang, T. M. Yue, “Experimental investigation into shaping particle-reinforced material by WEDM- HS”, Journal of Materials Processing Technology 129 (2002) 56-59.
[33] C. C. Wang, B. H. Yan, “Blind-hole drilling of Al2O3/6061Al composite using rotary electro-discharge machining”, Journal of Materials Processing Technology 102 (2000) 90-102.
[34] A. Kruusing, S. Leppavuori, A. Uusimaki, B. Petretis, “Micro- machining of magnetic materials”, Sensors and Actuators 74 (1999) 45-51.
[35] M. G. Her, F. T. Weng, “Micro-hole Machining of Copper Using the Electro-discharge Machining Process with a Tungsten Carbide Electrode Compared with a Copper Electrode”, International Journal of Advanced Manufacturing Technology 17 (2001) 715-719.
[36] M. G. Her, F. T. Weng, “A study of the electrical discharge machining of semi-conductor BaTiO3”, Journal of Materials Processing Technology 122 (2002) 1-5.
[37] J. Qian, S. Steegen, E. Vander Poorten, D. Reynaerts, H. Van Brussel, “EDM texturing of multicrystalline silicon wafer and EFG ribbon for solar cell application”, International Journal of Machine Tools & Manufacture 42 (2002) 1657-1664.
[38] Y. Uno, A. Okadaa, Y. Okamotoa, K. Yamazakib, S. H. Risbudb, Y. Yamadac, “High efficiency fine boring of monocrystalline silicon ingot by electrical discharge machining”, Precision Engineering 23 (1999) 126-133.
[39] A. G. Mamalis, A. I. Grabchenko, M. G. Magazeev, N. V. Krukova, J. Prohàszká, N. M. Vaxevanidis, “Two-stage electro-discharge machining fabricating superhard cutting tools”, Journal of Materials Processing Technology 146 (2004) 318-325.
[40] A. Muttamara, Y. Fukuzawa, N. Mohri, T. Tani, “Probability of precision micro-machining of insulating Si3N4 ceramics by EDM“, Journal of Materials Processing Technology 140 (2003) 243-247.
[41] T. Tani, Y. Fukuzawa N. Mohri, N. Saito, M. Okada, “Machining phenomena in WEDM of insulating ceramics”, Journal of Materials Processing Technology 149 (2004) 124-128.
[42] S. H. Yeo, G. G. Yap, “A Feasibility Study on the Micro Electro- Discharge Machining Process for Photomask Fabrication”, The International Journal of Advanced Manufacturing Technology 18 (2001) 7-11.
[43] Y. C. Lin, B. H. Yan, Y. S. Chang, “Machining characteristics of titanium alloy (Ti-6Al-4V) using a combination process of EDM with USM”, Journal of Materials Processing Technology 104 (2000) 171-177.
[44] C. T. Yang, S. S. Ho and B. H. Yan, “Micro hole machining of glass through electrochemial discharge machining (ECDM)”, Key Engineering Materials 196 (2001) 149-166.
[45] E. S. Lee, D. Howard, E. Liang, S. D. Collins, R. L. Smith, “Removable tubing interconnects for glass-based micro-fluidic systems made using ECDM”, Journal of Micromechinics and Microengineering 14 (2004) 535-541.
[46] V. Fascio, R. Wuthrich, D. Viquerat, H. Langen, “3D micro- structuring of glass using electrochemical discharge machining (ECDM)”, Micromechatronics and Human Science, 1999. MHS '99. Proceedings of 1999 International Symposium 23-26 (1999) 179- 183.
[47] K. Takahata, N. Shibaike, H. Guckel, “High-aspect-ratio WC-Co microstructure produced by the combination of LIGA and micro-EDM”, Microsystem Technologies 6 (2000) 175-178.
[48] T. A. Fofonoff, S. M. Martel, N. G Hatsopoulos, J. P. Donoghue, I. W. Hunter, “Microelectrode Array Fabrication by Electrical Discharge Machining and Chemical Etching”, Biomedical Engineering IEEE 51 (6) (2004) 890-895.
[49] K. Takahata, Y. B. Gianchandani, “Batch mode micro-electro- discharge machining”, Journal of Microelectromechanical Systems 11 (2) (2002) 102-110.
[50] B. H. Yan, A. C. Wang, C. Y. Huang, F. Y. Huang, ”Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining”, International Journal of Machine Tools & Manufacture 42 (2002) 1105-1112.
[51] A. C. Wang, B. H. Yan, X. T. Lee, F. Y. Huang, “Use of micro ultrasonic vibration lapping to enhance the precision of micro holes drilled by micro electro-discharge machining”, International Journal of Machine Tools & Manufacture 42(8) (2002) 915-923.
[52] T. Kurita, S. Watanabe, M. Hattori, “Development of hybrid micro machine tool”, Environmentally Conscious Design and Inverse Manufacturing, 2001. Proceedings EcoDesign 2001: Second International Symposium, (2001) 797-802
[53] Y. C. Lin, B. H. Yan and F. Y. Huang, “Surface Improvement Using a Combination of Electrical Discharge Machining with Ball Burnish”, International Journal of Advanced Manufacturing Technology 18 (2001) 673-682
[54] C. A. Grimes, M. K. Jain, R. S. Singh, Q. Cai, A. Mason, “Magneto- elastic mcirosensors for environmental monitoring, Micro Electro Mechanical Systems”, The 14th IEEE International Conference (2001) 278-281.
[55] K. Takahata, S. Aoki, T. Sato, “Fine surface finishing method for 3-dimensional microstructures”, Micro Electro Mechanical Systems, IEEE The Ninth Annual International Workshop 11-15 (1996) 73-78.
[56] P. H. Heeren, D. Reynaerts, Hendrik Van Brussel, C. Beuret, O. Larrson, A. Bertholds, “Microstructuring of silicon by electro- discharge machining (EDM)- partⅡ: applications, Sensors and Actuators A 61 (1997) 379-386.
[57] J. Clijnen, W. Meeusen, D. Reynaerts, H. V. Brussel, R. Simons, K. Plessers, “Design and realization of an optical bi-axial inclination sensor”, Sensors, Proceedings of IEEE 2 (2002) 870-873.
[58] H. Takeuchi, K. Nakamura, N. Shimizu, N. Shibaike, “Optimization of mechanical interface for a practical micro-reducer”, Micro Electro Mechanical Systems, The Thirteenth Annual International Conference (2000) 23-27.
[59] W. Meeusen, J. Clijnen, D. Reynaerts, H. V. Brussel, R. Puers, “Micro-Electro-Discharge Machining as Microsensor Fabrication Technology”, IEEE Sensors Journal 3(5) (2003) 632-638.
[60] A. Menciassi, A. Eisinberg, M. Mazzoni, P. Dario, “A sensorized ?electro discharge machined superelastic alloy microgripper for micromanipulation: simulation and characterization”, Intelligent Robots and System, IEEE/RSJ International Conference 2 (2002) 1591-1595.
[61] Z. Yu, T. Masuzawa, M. Fujino, “3D Micro-EDM with Simple Shape Electrode Paet1: Machining of cavities with sharp corners and electrode wear compensation”, Science and Technology, 2000. KORUS 2000. Proceedings. The 4th Korea-Russia International Symposium, 3(27) (2000) 102-105.
[62] F. T. Weng, M. G. Her, “Study of the Batch Production of Micro Parts Using the EDM Process”, International Journal of Advanced Manufacturing Technology 19 (2002) 266-270.
[63] J. A. Rund, D. Josell, F. Spaepen, A. L. Greer, “A new method tensile testing of thin film”, Journal of Materials Research Society 8(1) (1993) 112-117.
[64] J. N. Ding, Y. G. Meng, S. Z. Wen, “Size effect on the mechanical properties and reliability analysis of microfabricated polysilicon thin films”, Reliability Physics Symposium, 2001. Proceedings. 39th Annual. 2001 IEEE International 30 (2001) 106-111.
[65] T. Tsuchiya, O. Tabata, J. Sakata, Y. Taga, “Specimen size effect on tensile strength of surface micromachined polycrystalline silicon thin films”, Micro Electro Mechanical Systems, 1997. MEMS '97, Proceedings, IEEE, Tenth Annual International Workshop, 26-30 (1997) 529-534.
[66] T. Tsuchiya, O. Tabata, J. Sakata, Y. Taga, “Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films”, Journal of Micro-electro-mechanical Systems 7(1) (1998) 106-113.
[67] W. Suwito, M. L. Dunn, S. J. Cunningham, D. T. Read, “Elastic moduli, strength, and fracture initiation at sharp notches in etched single crystal silicon micro-structures”, Journal of Applied Physics 85(7) (1999) 3519-3534.
[68] E. Harry, A. Rouzaud, M. Ignat, P. Juliet, “Mechanical properties of W and W(C) thin: Young’s modulus, fracture toughness and adhesion”, Thin Solid Films 332 (1998) 195-201.
[69] E. Harry, M. Ignat , A. Rouzaud, P. Juliet, “Cracking investigation of W and W(C) films deposited by physical vapor deposition on steel substrates”, Surface and Coatings Technology 111 (1999) 177-183.
[70] R. R. Keller, J. M. Phelps, D. T. Read, “Tensile and fracture behavior of free-standing copper films”, Materials and Engineering 214 (1996) 42-52.
[71] J. Lu, J. A. Szpunar, “Microstructural modal of intergranular fracture during tensile tests”, Journal of Materials Processing Technology 60 (1996) 305-310.
[72] D. T. Read, “Piezo-actuated microtensile test apparatus”, Journal of Testing and Evaluation, JTEVA 26(3) (1998) 255-259.
[73] M. A. Haque, M. T. A. Saif, “Microscale Materials Testing Using MEMS Actuators”, Journal of Microelectromechanical Systens, 10(1) (2001) 146-152.
[74] S. Johansson, J. A. Schweitz, L. Tenerz, J. Tiren, “Fracture testing of silicon microelements in situ in a scanning electron microscope”, Journal of Applied Physics 63(10) (1988) 4799-4803.
[75] P. Ruther, W. Bacher, K. Feit, W. Menz, ” LIGA-microtesting system with integrated strain gauges for force measurement”, Micro Electro Mechanical Systems, 1997. MEMS '97, Proceedings, IEEE. Tenth Annual International Workshop on, 26-30 Jan. (1997) 541-545.
[76] T. Namazu, Y. Isono, “Quasi-static/cycle loading tests of nanometric SiO2 wires using AFM technique for NEMS Designs”, Nanowire devices and applications IEEE (2002) 51-54.
[77] M. T. A. Saif, N. C. Macdonald, “Micro mechanical single crystal silicon fracture strudies torsion and bending”, Micro Electro Mechanical Systems, 1996, MEMS '96, Proceedings. 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems'. IEEE, The Ninth Annual International Workshop, 11-15 (1996) 105-109.
[78] T. Namazu, Y. Isono, “High-cycle fatigue damage evaluation for micro-nanoscale single crystal silicon under bending and tensile stressing”, Micro Electro Mechanical Systems, 2004. 17th IEEE International Conference on. (MEMS), (2004) 149-152.
[79] L. M. Fok, C. K. M. Fung, Y. H. Liu, W. J. Li, “Nano-scale mechanical test of MEMS structures by atomic force microscope”, Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on, 5(15-19) (2004) 4587-4590.
[80] C. Serre, P. Gorostiza, A. P. Rodriguez, F. Sanz, J. R. Morante, “Measurement of micromechanical properties of polysilicon microstructures with atomic force microscope”, Sensors and Actuators A 67 (1998) 215-219.
[81] L. S. Stephens, K. W. Kelly, S. Simhadri, A. B. McCandless, E. I. Meletis, “Mechanical property evaluation and failure analysis of cantilevered LIGA nickel microposts”, Journal of Microelectro- mechanical Systems 10(3) (2001) 347-359.
[82] H. Kapels, R. Aigner, J. Binder, “Fracture strength and fatigue of polysilicon determined by a novel thermal actuator”, IEEE Transactions on Electron devices 47(7) (2000) 1522–1528.
[83] F. Ericson, J. A. Schweitz, “Micromechanical fracture strength of silicon”, Journal of Applied Physics 68(11) 1990 5840-5844.
[84] T. Namazu, Y. Isono, T. Tanaka, “Evaluation of size Effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM”, Journal of Microelectromecjanical Systems 9(4) (2000) 450-459.
[85] T. Namazu, Y. Isono, T. Tanaka, “Nano-scale bending test of Si beam for MEMS”, Micro Electro Mechanical Systems, 2000. MEMS 2000. The Thirteenth Annual International Conference on, 23-27 Jan. (2000) 205-210.
[86] T. Namazu, Y. Isono, “High-cycle fatigue test of nanoscale Si and SiO2 wires based on AFM technique”, Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference on, 19-23 Jan. (2003) 662-665.
[87] Y. H. Guu, H. Hocheng, “Improvement of fatigue life of electrical discharge machined AISI D2 tool steel by TiN coating”, Materials Science and Engineering A 318 (2001) 155-162.
[88] B. Casas, A. Lousa, J. Calderon, M. Anglada, J. Esteve, L. Llanes, “Mechanical strength improvement of electrical discharge machined cemented carbides through PVD (TiN, TiAlN) coatings”, Thin Solid Films 447-448 (2004) 258-263.
[89] T. Lee, J. Deng, “Mechanical surface treatments of electro-discharge machined (EDMed) ceramic composite for improved strength and reliability”, Journal of the European Ceramic Society 22 (2002) 545-550.
[90] Y. K. Lok, T. C. Lee, “Processing of Advanced Ceramies Using the Wire-Cut EDM Process”, Journal of Materials Processing Technology 83 (1997) 839-843.
[91] C. C. Liu, J. L. Huang, “Effect of the electrical discharge machining on strength and reliability of TiN/Si3N4 composites”, Ceramics International 29 (2003) 679-687.
[92] B. H. Yan, S. H. Huang, F. Y. Huang, “Bending strength analysis of micro WC-shaft manufactured by micro electro-discharge machining”, accepted by The International Journal of Advanced Manufacturing Technology (2005).
[93] S. Sundararajan, B. Bhushan, “Development of AFM-based techniques to measure mechanical properties of nanoscale structures”, Sensors and Actuators A 101 (2002) 338-351.
[94] T. Namazu, Y. Isono, “Quasi-static bending test of nano-scale SiO2 wire at intermediate temperatures using AFM-based technique”, Sensors and Actuators A 104 (2003) 78-85.
[95] J. N. Ding, Y.G. Meng, S. Z. Wen, “Specimen size effect on mechanical properties of polysilicon microcantilever beams measured by deflection using a nanoindenter”, Materials Science and Engineering B 83 (2001) 42-47.
[96] J. Yang, O. Paul, “Fracture properties of LPCVD silicon nitride thin films from the load-deflection of long membranes”, Sensors and Actuators A 97-98 (2002) 520-526.
[97] C. I. Vallo, “Influence of load type on flexural strength of a bone cement based on PMMA”, Polymer Testing 21 (2002) 793-800.
[98] Y. Isono, T. Namazu, T. Tanaka, “AFM bending of nanometric single crystal silicon wire at intermediate temperatures for MEMS”, Micro Electro Mechanical Systems, The 14th IEEE International Conference 21-25 (2001) 135-138.
[99] S. Greek, F. Eredric, S. Johnsson, J. A. Schweitz,”In situ tensile strength measurement and Weibull analysis of thick film and thin film micromachined polysilicon structures”, Thin Solid Films 292 (1997) 247-254.
[100] S. H. Huang, F. Y. Huang, B. H. Yan, “Fracture strength analysis of micro WC-shaft manufactured by micro electro-discharge machining”, accepted by The International Journal of Advanced Manufacturing Technology (2003).
[101] S. Greek, F. Ericson, S. Johansson, M. Furtsh, A. Rump, “Mechanical characterization of thick polysilicon films: Young’s modulus and fracture strength evaluated with microstructures”,
Micromech. Microeng. 9 (1999) 245-251.
[102] P. Heyl, T. Olschewski, R. W. Wijnaendts, “Manufacturing of 3D structures for micro-tools using laser ablation”, Microelectronic Engineering 57-58 (2001) 775-780.
[103] H. H. Langen, T. Masuzawa, M. Fujino, “A micro-EDM/assembly system unit for microparts fabrication”, Emerging Technologies and Factory Automation, 1993. Design and Operations of Intelligent Factories. Workshop Proceedings. IEEE 2nd International Workshop on, 27-29 (1993) 229-237.
[104] T. Masuzawa, M. Fujino, K. Kobayashi, “Wire electro-discharge grinding for micro-machining”, Annals of the CIRP 34 (1) (1985) 431-434.
[105] D. Y. Sheu, “Multi-spherical probe machining by EDM Combining WEDG technology with one-pulse electro-discharge”, Journal of Materials Processing Technology 149 (2004) 597-603.
[106] W. S. Zhao, Z. L. Wang, S. C. Di, G. X. Chi, H. Y. Wei, “Ultrasonic and electric discharge machining to deep and small hole on titanium alloy”, Journal of Materials Processing Technology 120 (2002) 101-106.
[107] G. W. Chang, B. H. Yan, R. T. Hsu, “ Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives”, International Journal of Machine Tools & Manufacture 42 (2002) 575-583.
[108] B. H. Yan, G. W. Chang, T. J. Cheng, R. T. Hsu, “Electrolytic magnetic abrasive finishing”, International Journal of Machine Tools & Manufacture 43 (2003) 1355-1366.
[109] S. Yin, T. Shinmura, “Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy”, International Journal of Machine Tools & Manufacture 44 (2004) 1297-1303.
[110] 劉弘松,洪榮洲,顏炳華,黃豐元,2004, “結合微細放電與電解拋光之微孔加工研究”,中國機械工程學會第二十一屆學術研討會論文集, pp. 4387-4392.
指導教授 黃豐元(Fuang-Yuan Huang) 審核日期 2005-5-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明