參考文獻 |
[1] K.A. Hua, M.A. Tantaoui, and W. Tavanapong, “Video delivery technologies for large-scale deployment of multimedia applications,” Proc. IEEE, vol. 92, pp. 1439-1451, Sep. 2004.
[2] S.M. Faccin, P. Lalwaney, and B. Patil, “IP multimedia services: analysis of mobile IP and SIP interactions in 3G networks,” IEEE Commun. Mag., vol. 42, pp. 113-120, Jan. 2004.
[3] W. Burleson, S. Thampuran, and N. Ramaswamy, “Multimedia systems: enabling computer engineering education,” in Proc. Frontiers in Education, Nov. 2002, pp. T2F1-6.
[4] P. Schmitz, “Multimedia goes corporate,” IEEE Multimedia, vol. 9, pp. 18-21, July-Sept. 2002.
[5] H. Song and C.C. Jay Kuo, “A region-based H.263+ codec and its rate control for low VBR video,” IEEE Trans. Multimedia, vol. 6, pp. 489-500, June 2004.
[6] Z. Chen and K. N. Ngan, “Object-based rate control for MPEG-4 video object coding,” in Proc. ISCAS’O4, pp. III-973-6, May 2004.
[7] I. Dalgic and F. A. Tobagi, “Performance evaluation of ATM networks carrying constant and variable bit-rate video traffic,” IEEE J. Select. Areas Commun., vol. 15, Aug. 1997.
[8] I. M. Pao and M. T. Sun, “Encoding stored video for streaming applications”, IEEE Trans. Circuit Syst. for Video Technol., vol. 11, pp. 199-209, Feb. 2001.
[9] C. D. Iskander and P. T. Mathiopoulos, “Online smoothing of VBR H.263 video for the CDMA2000 and IS-95B uplinks,” IEEE Trans. Multimedia, vol. 6, pp. 647-658, Aug. 2004.
[10] S. Hartwig, M. Luck, J. Aaltonen, R. Serafat, and W. Theimer, Mobile multimedia-challenges and opportunities, IEEE Trans. Consumer Electron., vol. 46, pp. 1167-1178, Nov. 2000.
[11] H. Tomimori and Y. Nakamoto, “An efficient and flexible access control framework for Java program in mobile terminals,” in Proc. Distributed computing systems workshops, July 2002, pp. 777-782.
[12] V. Frost and B.Melamed, “Traffic modeling for telecommunications networks,” IEEE Commun. Mag., vol. 32, no. 3, pp. 70-81, Mar. 1994.
[13] S. Recker, W. Geisselhardt, and I. Wolff, “Dimensioning of traffic engineered trunks for deterministic service guarantees in mobile data networks,” in Porc. IEEE ICC’03, May 2003, pp. 1669-1674.
[14] D. Wu, Y.T. Hou, W. Zhu, T.H. Chiang, Y.Q. Zhang and H.J. Chao, “On end-to-end architecture for transporting MPEG-4 video over the Internet,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 923-941, Sept. 2000.
[15] P. Cocquet, “IPv6 on DSL : the best way to develop always-on services,” Proc. IEEE, vol. 92, pp. 1400-1407, Sep. 2004.
[16] R. Talluri and T. Instruments, “Error-resilient video coding in the ISO MPEG-4 standard,” IEEE Commun. Mag., vol. 36, pp. 112-119, June 1998.
[17] ITU-T Rec. H.320, “Narrowband Visual Telephone Systems and Terminal Equipment,” Mar. 1996.
[18] ITU-T Rec. H.263, “Video Coding for Low Bitrate Communication,” ITU-T SG 15, Oct. 1995.
[19] K. Rijkse, “ITU Standardization of Very Low Bitrate Video Coding Algorithms,” Sig. Processing: Image Commun., vol. 7, nos. 4-6, Nov. 1995, pp. 553-65.
[20] Takashima, Wada, and Murakami, “Reversible Variable Length Codes,” IEEE Trans. Commun., vol. 43, no. 2/3/4, Feb./Mar./Apr. 1995, pp. 158-62.
[21] G. Wen and J. Villasenor, “A Class of Reversible Variable Length Codes for robust Image and Video Coding,” in Proc. ICIP ’97, Santa Barbara, CA, vol. 2, Oct. 1997, pp. 65-68.
[22] J. H. Yeh, J. C. Chen, and C. C. Lee, “WLAN standards,” IEEE Potentials, pp. 16-22, Oct.-Nov. 2003.
[23] M. Schwartz, “Telecommunication networks: protocols, modeling and analysis,” Addision-Wesley, pp. 119-135, Mar. 1987.
[24] E. Modiano, “An adaptive algorithm for optimizing the packet size used in wireless ARQ protocols,” Wireless Network, pp. 279-286, May 1999.
[25] D. Wu, Y.T. Hou, W. Zhu, T.H. Chiang, Y.Q. Zhang and H.J. Chao, “On end-to-end architecture for transporting MPEG-4 video over the Internet,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 923-941, Sept. 2000.
[26] S. Shakkottai and T. S. Rappaport, ”Cross-layer design for wireless networks,” IEEE Commun. Mag., vol. 41, pp. 74-80,Oct. 2003.
[27] W. Kumwilaisak, T. Hou, Q. Zhang, W. Zhu, C.-C. Jay Kuo, and Y. Q. Zhang, “A cross-layer quality-of-service mapping architecture for video delivery in wireless networks,” IEEE J. Select. Areas Commun. vol. 21, pp. 1685-2003, Dec. 2003.
[28] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for Real-Time Applications,” RFC 3550, July 2003.
[29] R. Braden, L.Zhang, Berson, S. Herzog, and S. Jamin, “Resource ReSerVation Protocol (RSVP),” RFC 2205, Sep. 1997.
[30] S. R. Tong, Y. T. Yu, C. M. Huang, and M.H. Lin, “Efficient resource reservation based on communication paradigms for multicast multimedia applications,” IEEE Trans. Broadcasting, vol. 50, pp. 260-278, Sep. 2004.
[31] S. Vegesna, IP Quality of Service. Cisco Press, 2000.
[32] M. Bocci and J. Guillet, “ATM in MPLS-based converged core data networks,” IEEE Commun. Mag., vol. 41, pp. 139-145, Jan. 2003.
[33] P. Salama, N. B. Shroff, and E. J. Delp, “Error concealment in MPEG video streams over ATM networks,” IEEE J. Select. Areas Commun., vol. 18, pp. 1129-1144, June 2000.
[34] T. Kwok, ATM: The new paradigm for Internet, Intranet, and Residential broadband services and applications. New Jersey: Prentice Hall PTR, 1999.
[35] S. I. Maniatis, E. G. Nikolouzou, and I. S. Venieris, “End-to-end QoS specification issues in the converged all-IP wired and wireless environment,” IEEE Commun. Mag., vol. 42, pp. 80-86, June 2004.
[36] A. Durand, “Deploying IPv6,” IEEE Internet Computing, vol. 5, pp. 79-81, Jan.-Feb. 2001.
[37] M. Tatipamula and P. Grossetete, and H. Esaki, “IPv6 integration and coexistence strategies for next-generation networks,” IEEE Commun. Mag., vol. 42, pp. 88-96, Jan. 2004.
[38] E. B. Fgee, J. D. Kenney, W. J. Phillips, W. Robertson, and S. Sivakumar, “Implementing an IPv6 QoS management scheme using flow label & class of service fields,” in Proc. Electrical and Computer Engineering 2004, pp. 1049-1052, May 2004.
[39] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) specification,” IETF RFC 2460, Dec. 1998.
[40] S. Kent and R. Atkinson, “Security architecture for the Internet protocol,” IETF RFC 2401, Nov. 1998.
[41] D. Wright, “Voice over MPLS compared to voice over other packet transport technologies,” IEEE Commun. Mag., vol. 40, pp. 124-132, Nov. 2002.
[42] S. Ariga, K. Nagahashi, M. Minami, H. Esaki, and J. Murai. Performance evaluation of data transmission using IPSec over IPv6 networks. [Online]. Available: http://www.isoc.org/inet2000/ cdproceedings/li/li_1.htm.
[43] European Advanced Networking Test Center. Cisco Catalyst 6500 with supervisor 720 – 10 Gigabit Ethernet performance test. [Online]. Available: http://www.eantc.com/press/ pressreleases/sep03/EANTC-Summary-Report-Cisco-10GE-Catalyst6500-Supervisor720.pdf
[44] S. Zeadally and I. Raicu, “Evaluating IPv6 on Windows and Solaris,” IEEE Internet Computing, vol. 7, pp. 51-57, May-June 2003.
[45] I. Raicu and S. Zeadally, “ Impact of IPv6 on end-user applications,” in Proc. ICT 2003, pp. 973-980, March 2003.
[46] M. Degermark, B. Nordgren, and S. Pink, “IP header compression,” IETF RFC 2507, Feb. 1999.
[47] M. Engan, S. Casner, and C. Bormann, “IP header compression over PPP,” IETF RFC 2509, Feb. 1999.
[48] C. Bormann et al., ”RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed,” IETF RFC 3095, July, 2001.
[49] M. Degermark, “Requirements for robust IP/UDP/RTP header compression,” IETF RFC 3096, July, 2001.
[50] A. M. Dawood and M. Ghanbari, “Content-based MPEG video traffic modeling,” IEEE Trans. Multimedia, vol. 1, pp. 77-87, 2000.
[51] S. J. Yoo and S. D. Kim, “A new multi-level statistical model for variable bit rate MPEG sources over ATM networks and its performance study,” Computer Commun., vol. 24, pp. 296-307, 2001.
[52] X. Wang, S. Jung, and J. S. Meditch, “VBR broadcast video traffic modeling—A wavele decomposition approach,” in Proc. IEEE GLOBECOM’97, 1997, pp. 1052-1056.
[53] Jamin, P. B. Dansig, S. J. Shenker, and L. Zhang, “A measurement-based admission control algorithm for integrated service packet networks,” IEEE/ACM Trans. Networking, vol. 5, pp. 56-70, 1997.
[54] G. Chiruvolu, R. Sankar, and N. Ranganathan, “VBR video traffic management using a predictor-based architecture,” Computer Commun., vol. 23, pp. 62-70, 2000.
[55] C.-L. Chen and R.-s. Chang, “A new dynamic bandwidth allocation scheme for MEG videos in ATM networks,” Computer Commun., vol. 23, pp. 1505-1513, 2000.
[56] S. Feng and R. Sanker, “Limitation of and improvement to linear prediction and smoothing-based bandwidth allocation for VBR traffic,” in Proc. IEEE GLOBECOM’99, 1999, pp. 209-213.
[57] S. Chong, S.-Q. Li, and J. Ghosh, “Predictive dynamic bandwidth allocation for efficient transport of real-time VBR video over ATM,” IEEE J. Select. Areas Commun.,vol. 13, pp. 12-23, 1995.
[58] T. S. Randhawa and R. H. S. Hardy, “Proactive management of MPEG traffic in ATM networks using time sequenced RLS filters,” in Proc. ICATM’99, 1999, pp. 507-511.
[59] A. M. Adas, “Using adaptive inear prediction to support real-time VBR video under RCBR network service model,” IEEE/ACM Trans. Networking, vol. 6, pp. 635-644, 1998.
[60] X. Wang, S. Jung, and J. S. Meditch, “Dynamic bandwidth allocation for VBR video traffic using adaptive wavelet prediction,” in Proc. IEEE ICC’98, 1998, pp. 549-553.
[61] M. Hayes, Statistical Digital Signal Processing and Modeling. New York: Wiley, 1996.
[62] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[63] H.-M Hang and J.-J Chen, “Source model for transform video coder and its application─Part I: Fundamental theory,” IEEE Trans. Circuits Syst. Video Technol., vol. 7,pp. 287-298, Apr. 1997.
[64] H. Gish and J. N. Pierce, “Asymptotically efficient quantizing,” IEEE Trans. Inform. Theory, vol. IT-14, pp. 676-683, Sept. 1968.
[65] T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ: Prentice-Hall, 1984.
[66] T. Chiang and Y. Q. Ahang, “A new rate control scheme using quadratic rate distortion model,” IEEE Trans. Circuits Syst. Video Technol., vol. 7,pp. 246-250, Feb. 1997.
[67] J. R. Corbera and S. Lei, “Rate control in DCT video coding for low-delay communications,” IEEE Trans. Circuits Syst. Video Technol., vol. 9,pp. 172-185, Feb. 1999.
[68] W. Ding and B. Liu, “Rate control of MPEG video coding and recording by rate-quantization modeling,” IEEE Trans. Circuits Syst. Video Technol., vol. 6,pp. 12-20, Feb. 1996.
[69] B. Tao, H. A. Peterson, and B. W. Dickinson, “A rate-quantization model for MPEG Encoders,” in Proc. 1997 Int. Conf. Image Processing, Oct. 1997, pp. 338-341.
[70] K. H. Yang, A. Jacquin, and N. S. Jayant, “A normalized rate-distortion model for H.263-compatible codecs and its application to quantizer selection,” in Proc. 1997 Int. Conf. Image Processing, Oct. 1997, pp. 41-44.
[71] L.-J Lin and A. Ortega, “Bit-rate control using piecewise approximated rate-distortion characteristics,” IEEE Trans. Circuits Syst. Video Technol., vol. 38, pp. 82-93, Jan. 1990.
[72] Z. He, Y. Kim, and S. K. Mitra, “A novel linear source model and a unified rate control algorithm for H.263/MPEG-2/MPEG-4,” presented at the Int. Conf. Acoustics, Speech, and Signal Proessing, Salt Lake City, UT, May 2001.
[73] ITU-T, “Video coding for low bit rate communications,”,ITU-T Recommendation H.263, version 1, Nov. 1995.
[74] T. Sikora, “The MPEG-4 video standard verification model,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 19-31, Feb. 1997.
[75] A. He, T.-H Yu, and S. K. Mitra, “Blockwise zeros mapping image coding,” in Proc. Int. Conf. Image Processing, Vancouver, BC, Canada, Sept. 2000.
[76] C.S. Chang and J.A. Thomas,“Effective bandwidth in high-speed digital networks,” IEEE J. Select. Areas Commun., vol. 13, pp. 1091-1101, Aug. 1995.
[77] T. Ott, T. V. Lakshman, and A. Tabatabai, “A scheme for smoothing delay-sensitive traffic offered to ATM networks,” in Proc. IEEE INFOCOM, Florence, Italy, May 1992, pp. 776-785.
[78] J. D. Salehi, Z. L. Zhang, J. Kurose, D. Towsley, “Supporting Stored Video: Reducing Rate Variability and End-to-End Resource Requirements Through Optimal Smoothing,” IEEE Trans. Networking, vol. 6, pp. 397-410, Aug. 1998.
[79] C. S. Chang and Y. H. Lin, “A general framework for deterministic service guarantees in telecommunication networks with variable length packets,” in Proc. Int. Workshop on Quality of Service, 1998, pp. 49-58.
[80] R. Cruz, “A calculus for network delay, part I: Network elements in isolation,” IEEE Trans. Inform. Theory, vol. 37, pp. 114-131, Jan. 1991.
[81] J. Rexford, S. Sen, W. Feng, K. Kurose, J. Stankovic, and D. Towsley, “Online smoothing of live, variable-bit-rate video,” in Proc. NOSSDAV, pp. 235-243, 1997.
[82] R. I. Chang, “Dynamic Window-Based Traffic-Smoothing for Optimal Delivery of On-line VBR Media Streams,” in Proc. ICPADS, pp. 127-134, 2000.
[83] V. Frost and B.Melamed, “Traffic modeling for telecommunications networks,” IEEE Commun. Mag., vol. 32, no. 3, pp. 70-81, Mar. 1994.
[84] S. Recker, W. Geisselhardt, and I. Wolff, “Dimensioning of traffic engineered trunks for deterministic service guarantees in mobile data networks,” in Porc. IEEE ICC’03, May 2003, pp. 1669-1674.
[85] D. E. Wrege, E. W. Knightly, H. Zhang, and J. Liebeherr, “Deterministic delay bounds for VBR video in packet-switching networks: fundamental limits and practical trade-offs,” IEEE/ACM Trans. Networking, vol. 4, no. 3, Jun. 1996.
[86] H. Esaki, “Call admission control method in ATM networks,” in Proc. ICC 92, vol. 3, pp. 1628-1633, June 1992.
[87] T. Ozawa, “Performance characteristics of a packet-based leaky-bucket algorithm for ATM networks,” IEICE Trans. Commun., E82-B, 1, pp. 305-308, 1999.
[88] W. Y. Chen, Jean-Lien C. Wu, and H. Y. Shin, ”Performance analysis of dynamic resource allocation with finite buffers in cellular networks,” in Proc. ICON2003, pp. 641-646, Oct. 2003.
[89] R. G. Cheng, C. J. Chang, and L. F. Lin, “A QoS-provisioning neural fuzzy connection admission controller for multimedia high-speed networks,” IEEE/ACM Trans. Networking, vol. 7, pp. 292-298, Feb. 1999.
[90] H. M. Mokhtar, R. Pereira, and M. Merabti, “An effective bandwidth model for deterministic QoS guarantees traffic,” in Proc. ISCC 2003, pp. 353-358, July, 2003.
[91] M. Grossglauser, S. Keshav, and D. N. C. Tse, “RCBR: A Simple and Efficient Service for Multiple Time-Scale Traffic,” IEEE Trans. Networking, vol.5, no. 6, pp. 741-755, Dec. 1997.
[92] G. Leshen, S. Sen, Y. Fangchun, and L. Jinde, “Dynamic end-system resource management for QoS control,” in Porc. IEEE Communications, Circuits and Systems and West Sino Expositions, July, 2002, pp. 644-647.
[93] C. Oottamakorn and D. Bushmitch, “Resource management and scheduling for the QoS-capable home network wireless access point,” in Proc. CCNC 2004, Jan. 2004, pp. 7-12.
[94] J. R. Yee and E. J. Weldon Jr., “Evaluation of the performance of error-corresting codes on a Gilbert channel,” IEEE Trans. Commun. Vol. 43, no. 8, pp. 2316-2323, Aug. 1995.
[95] ISO/IEC JTC1/SC29/WG11, “MPEG-4 video verification modelversion 18.0,” N3908, Jan. 2001.
[96] S. J. Yoo, “Efficient traffic prediction scheme for real-time VBR MPEG video transmission over high-speed networks,” IEEE Trans. Broadcast., vol. 48, pp. 10-18, Mar. 2002.
[97] Z. He and S. K. Mitra, “Optimum bit allocation and accurate rate control for video coding via ρ-Domain source modeling,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, pp. 840-849, Oct. 2002.
[98] J. Vieron and C. Guillemot, “Real-time constrained TCP-compatible rate control for video over the Internet,” IEEE Trans. Multimedia, vol. 6, pp. 634-646, Aug. 2004.
[99] J. Liebeherr, D. Wrege, and D. Ferrari, ”Exact admission control for networks with bounded delay services,” IEEE/ACM Trans. Networking, vol. 4, pp. 885-901, Dec. 1996.
[100] E. W. Knightly and H. Zhang, “D-BIND: An Accurate Traffic Model for Providing QoS Guarantees to VBR Traffic,” IEEE/ACM Trans. Networking, vol. 5, Apr. 1997. |