博碩士論文 88541005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.219.207.11
姓名 葉榮輝(Rong-Hwei Yeh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 交流白光與電壓調色非晶質薄膜發光二極體的研製
(Studies of Alternating-Current and Voltage-Tunable Amorphous Thin-Film Light-Emitting Diodes)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器
★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體★ 大面積矽偵測器的製程改良與元件設計
★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文首先探討在n型矽晶圓上製作具二氧化矽隔離之非晶碳化矽氫薄膜發光二極體,此元件在注入電流密度為490 mA/cm2時的發光亮度為855 cd/m2,其電激發光光譜峰值約在610至680 nm。再者,同時利用非晶碳化矽氫與非晶氮化矽氫薄膜製作之薄膜發光二極體,其電激發光光譜峰值可利用電壓加以調變。
第二部份是將傳統pin薄膜發光二極體中之p與n層去除,利用頗為對稱之結構製作可在直流或交流電源下操作的非晶碳化矽氫薄膜發光二極體,此元件的發光強度會隨交流電源頻率而改變,此現象可利用一等效電路加以解釋。另外,也分別探討利用非晶碳氫與非晶氮化矽氫薄膜為發光層之交流白光非晶質薄膜發光二極體的特性,發現利用氫氣電漿處理可以非常有效的提昇元件特性。
摘要(英) In this dissertation, first, the feasibility of developing visible light-emitting devices on n-type c-Si substrate with the SiO2-isolated structure had been demonstrated. This i-a-SiC:H based thin-film LED (TFLED) revealed a brightness of 855 cd/m2 at an injection current density of 490 mA/cm2, a broad electroluminescence (EL) peak with wavelength ranging from 610 to 680 nm, and a full-width at half maximum (FWHM) of 205 nm at an applied voltage of 15 V. Then, the voltage-tunable i-a-SiC:H/i-a-SiN:H p-i-n TFLEDs with SiO2-isolation on c-Si has been proposed and fabricated. Its EL peak wavelength exhibited blue-shift from 655 to 565 nm with applied voltage increasing from 15 to 19 V, but the EL peak wavelength was red-shifted from 565 to 670 nm with further increase of voltage from 19 to 23 V. By comparing with the EL spectra of TFLEDs having an i-a-SiC:H or an i-a-SiN:H luminescent layer only, this voltage-tunable characteristic could be due to voltage-dependent EL contributions from radiative transitions in the i-a-SiC:H layer, i-a-SiN:H layer and i-SiC:H/p-SiC:H junction, respectively.
Also, by discarding the traditional n- and p- layers of a dc-operated p-i-n TFLED, the nearly symmetrical a-SiC:H TFLEDs fabricated on ITO(indium-tin-oxide)-coated glass substrate and exhibiting EL under either a DC (positive or negative) bias or an ac voltage have been demonstrated. The EL intensity of this alternating-current TFLED (ACTFLED) would vary with the frequency of applied ac bias. The EL intensity of this ACTFLED increased with the frequency up to 500 kHz and then decreased rapidly and became very weak as the frequency increased to about 1 MHz. A model based on the equivalent circuit has been proposed to explain this frequency-dependent EL behavior. At the same time, the contact behavior between the employed metal electrode and amorphous film was also investigated in this study. Furthermore, by employing the very thin i-a-C:H or i-a-SiN:H film as the luminescent layers, the ACTFLEDs could emit white light. The EL spectra of the alternating-current white TFLEDs (ACW-TFLEDs) had peak wavelength ranging from 505 to 530 nm and broad FWHM ranging from 240 to 260 nm under either DC forward or reverse bias, or the sinusoidal AC voltage. These devices revealed the brightnesses about 800 (500) cd/m2 under DC forward (reverse) bias at an injection current density of 600 mA/cm2 with the i-a-C:H film as the luminescent layer, and about 170 (168) cd/m2 at an injection current density of 100 mA/cm2 with the i-a-SiN:H film as the luminescent layer, respectively. In addition, it was found that in-situ hydrogen plasma treatment was a very effective way to improve the optoelectronic characteristics of these devices, such as increasing the EL intensity, reducing threshold voltage and broadening the FWHM of the EL spectrum. However, its EL spectrum would be red-shifted with the increased AC frequency. This phenomenon could be due to the carrier recombination occur mainly in the composition-graded (CG) i-a-SiC:H or i-a-SiN:H layer and emit light of longer wavelength when the AC frequency was increased.
關鍵字(中) ★ 非晶矽
★ 交流
★ 電壓調色
★ 薄膜發光二極體
關鍵字(英) ★ amorphous silicon
★ voltage-tunable
★ thin-film light-emitting diodes
★ alternating-current
論文目次 Abstract I
Figure captions V
Table captions VIII
Chapter 1. Introduction 1
Chapter 2. SiO2-isolated visible amorphous thin-film LED fabricated on crystalline silicon substrate 5
2-1 Device fabrication 5
2-2 Results and discussions 11
2-3 Summary 17
Chapter 3. Voltage-tunable SiO2-isolated a-SiC:H and/or a-SiN:H p-i-n thin-film LEDs fabricated on c-Si 18
3-1 Device fabrication 18
3-2 Results and discussions 21
3-2.1 B-V and J-V curves 21
3-2.2 EL spectra 24
3-2.3 Effects of annealing 30
3-3 Summary 40
Chapter 4. Alternating-current hydrogenated amorphous silicon carbide thin-film light-emitting diodes 43
4-1 Device fabrication
4-2 Results and discussions 43
4-2.1 B-V and J-V curves 43
4-2.2 EL spectra 49
4-3 Summary 56
Chapter 5. Alternating-current white thin-film light-emitting diodes based-on hydrogenated amorphous carbon layer 57
5-1 Device fabrication 57
5-2 Results and discussions 57
5-3 Summary 71
Chapter 6. Optoelectronic characteristics of alternating-current white thin-film light-emitting diodes based on hydrogenated amorphous silicon nitride film 73
6-1 Device fabrication
6-2 Results and discussions 73
6-2.1 J-V and J-B characteristics 73
6-2.2 Current-conduction mechanism 79
6-2.3 EL spectra 82
6-2.4 Effects of H2-plasma treatment 85
6-2.5 Stability 85
6-3 Summary 88
Chapter 7. Conclusion and future works 89
References 91
Biography 99
Publication list 100
參考文獻 [1] K. H. Li, C. Tsai, and J. C. Campbell, “Investigation of rapid-thermal-oxidized porous silicon.” Appl. Phys. Lett., vol.62, pp. 3501-3503, 1993.
[2] H. Chen and X. Hou, “Passivation of porous silicon by wet thermal oxidation.” J. Appl. Phys., vol. 79, pp. 3282-3285, 1996.
[3] I. Kleps, D. Nicolaescu, C. Lungu, G. Musa, C. Bostan, and F. Caccavle, “Porous silicon field emitters for display applications.” Appl. Surface Science, vol. 111, pp. 228-232, 1997.
[4] B. Gelloz and N. Koshida, “Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode.” J. Appl. Phys., vol. 88, pp. 4319-4324, 2000.
[5] Z. An, R. K. Y. Fu, W. Li, P. Chen, and P. K. Chu, “Low-temperature photoluminescence of hydrogen Ion and plasma implanted silicon and porous silicon.” J. Appl. Phys., vol. 96, pp. 248-251, 2004.
[6] D. B. Geohegan, A. A. Puretzky, G.. Duscher, and S. J. Pennycook, “Photoluminescence from gas-suspended SiOx nanoparticles synthesized by laser ablation.” Appl. Phys. Lett., vol. 73, no. 4, pp. 438-440, 1998.
[7] A. V. Kabashin, M. Meunier, and R. Leonelli, “Photoluminescence characterization of Si-based nanostructured films produced by pulsed laser ablation.” J. Vac. Sci. Technol. B, vol. 19, pp. 2217-2222, 2001.
[8] X. Y. Chen, Y. F. Lu, Y. H. Wu, B. J. Cho, M. H. Liu, D. Y. Dai, and W. D. Song, “Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient.” J. Appl. Phys., vol. 93, pp. 6311-6319, 2003.
[9] M. Matsuoka and S. I. Tohno, “Electroluminescence of erbium-doped silicon films as grown by ion beam epitaxy.” Appl. Phys. Lett., vol. 71, no. 1, pp. 96-98, 1997.
[10] C. F. Lin, M. J. Chen, E. Z. Liang, W. T. Liu, and C. W. Liu, “Reduced temperature dependence of luminescence from silicon due to field-induced carrier confinement.” Appl. Phys. Lett., vol. 78, no. 3, pp. 261-263, 2001.
[11] C. F. Lin, M. J. Chen, S. W. Chang, P. F. Chung, E. Z. Liang, T. W. Su, and C. W. Liu, “Electroluminescence at silicon band gap energy from mechanically pressed indium–tin–oxide/Si contact.” Appl. Phys. Lett., vol. 78, no. 13, pp. 1808-1810, 2001.
[12] M. Garter, J. Scofield, R. Birkhahn, and A. J. Steckl, “Visible and infrared rare-earth-activated electroluminescence from indium tin oxide Schottky diodes to GaN:Er on Si.” Appl. Phys. Lett., vol. 74, no. 2, pp. 182-184, 1999.
[13] C. W. Liu, M. H. Lee, M. J. Chen, I. C. Lin, and C. F. Lin, “Room-temperature electroluminescence from electron-hole plasmas in the metal–oxide–silicon tunneling diodes.” Appl. Phys. Lett., vol. 76, no. 12, pp. 1516-1518, 2000.
[14] M. J. Chen, J. F. Chang, J. L. Yen, and C. S. Tsai, “Electroluminescence and photoluminescence studies on carrier radiative and nonradiative recombinations in metal-oxide-silicon tunneling diodes.” J. Appl. Phys., vol. 93, pp. 4253-4259, 2003.
[15] J. G. Mihaychuk, M. W. Denhoff, S. P. McAlister, and W. R. McKinnon, “Broad-spectrum light emission at microscopic breakdown sites in metal-insulator-silicon tunnel diodes.” J. Appl. Phys., vol. 98, pp. 54502-54510, 2005.
[16] T. S. Jen, J. W. Pan, N. F. Shin, J. W. Hong, and C. Y. Chang, “Electroluminescence characteristics and current-conduction mechanism of a-SiC:H p-i-n thin-film light-emitting diodes with barrier layer inserted at p-i interface.” IEEE Trans. On Electron Devices, vol. 41, no. 10, pp. 1761-1769, 1994.
[17] Y. A. Chen, C. F. Chiou, W. C. Tsay, L. H. Laih, J. W. Hong, and C. Y. Chang, “Optoelectronic Characteristics of a-SiC:H-Based P-I-N Thin-Film Light-Emitting Diodes with Low-Resistance and High-Reflectance N+-a-SiCGe:H Layer,” IEEE Trans. On Electron Devices, vol. 44, No. 9, pp. 1360-1366, 1997.
[18] Z. Pei, Y. R. Chang, and H. L. Hwang, “White electroluminescence from ydrogenated amorphous-SiNx thin films,” Appl. Phys. Lett., vol. 80, no. 16, pp. 2839-2841, 2002.
[19] A. Chingsungnoen, P. Kengkan, and W. Tantraporn, “Anomalous Poole-Frenkel mode of current-conduction mechanism in the p-i-n thin-film light-emitting diodes.” IEEE Trans. On Electron Devices, vol. 51, No. 6, pp. 1040-1043, 2004.
[20] M. Uchida, Y. Ohmori, T. Noguchi, T. Ohmishi, and K. Yoshino, “Color-variable light-emitting diode utilizing conducting polymer containing fluorescent dye.” Jpn. J. Appl. Phys., vol. 32, L921-L924, 1993.
[21] J. Kalinowski, P. Di Marco, M. Cocchi, V. Fattori, and N. Camaioni, “Voltage-tunable-color multilayer organic light emitting diode.” Appl. Phys. Lett., vol. 28, no. 17, pp. 2317-2319, 1996.
[22] F. Wang, P. Wang, X. Fan, X. Dang, C. Zhen, and D. Zou, “Voltage-controlled multicolor emitting devices.” Appl. Phys. Lett., vol. 89, pp. 183519-183521, 2006.
[23] C. J. Liang and W. C. H. Choy, “Color tunable organic light-emitting diodes by using europium organometallic complex.” Appl. Phys. Lett., vol. 89, pp. 251108-251110, 2006.
[24] N. Narendran, “Requirements for solid-state lighting,” Lasers and Electro-Optics proceedings, vol. 1, p. 1, 2004.
[25] A. J. Steckl, J. Heikenfeld, and S. C. Allen, “Light wave coupled flat panel displays and solid-state lighting using hybrid inorganic/organic materials.” J. Display Technol., vol. 1, pp. 157-166, 2005
[26] Z. Yang, B. Hu, and F. E. Karasz, “Polymer electroluminescence using ac or reverse dc biasing.” Macromolecules, vol. 28, pp. 6151-6154, 1995.
[27] A. J. Pal, R. Osterbacka, K. M. Kallman, and H. Stubb, “High-frequency response of polymeric light-emitting diodes.” Appl. Phys. Lett., vol. 70, pp. 2022-2024, 1997.
[28] R. Osterbacka, K. M. Kallman, and H. Stubb, “Frequency response of molecularly thin alternating current light-emitting diodes.” J. Appl. Phys., vol. 83, pp. 1748-1752, 1998.
[29] J. Robertson, “Electronic structure of diamond-like carbon,” Diamond Relat. Mater., vol. 6, pp. 212-218, 1997.
[30] M. Koos, M. Veres, M. Fule, and I. Pocsik, “Ultraviolet photoluminescence and its relation to atomic bonding properties of hydrogenated amorphous carbon,” Diamond Relat. Mater., vol. 11, pp. 53-58, 2002.
[31] J. Xu, J. Mei, X. Huang, W. Li, Z. Li, X. Li, and K. Chen, “The change of photoluminescence characteristics of amorphous carbon films due to hydrogen dilution,” J. Non-Cryst. Solids, vol. 338-340, pp. 481-485, 2004.
[32] C. Casiraghi, A. C. Ferrari, and J. Robertson, “Ramon spectroscopy of hydrogenated amorphous carbon,” Phys. Rev. B, vol. 72, no. 8, pp. 85401-85414, 2005.
[33] T. Heitz, C. Godet, J. E. Bouree, and B. Drevillon, “Radiative and nonradiative recombination in polymerlike a-C:H films,” Phys. Rev. B, vol. 60, no. 8, pp. 6045-6052, 1999.
[34] J. V. Anguita, W. T. Young, R. U. Khan, S. R. P. Silva, S. Haq, I. Sturland, and A. Pritchard, “Photoluminescence in low defect density a-C:H and a-C:H:N,” J. Non-Cryst. Solids, vol. 266-269, pp. 821-824, 2000.
[35] S. B. Kim, and J. F. Wager, “Electroluminescence in diamond-like carbon films,” Appl. Phys. Lett., vol. 53, no. 19, pp. 1880-1881, 1988.
[36] A. Foulani, and C. Laurent, “Wide-gap a-C:H prepared by dc glow discharge of CH4: photoluminescence and electroluminescence in the visible region,” Mater. Chem. Phys., vol. 80, pp. 466-471, 2003.
[37] R. Reyes, C. Legnani, P. M. R. Pinto, M. Cremona, P. J. G. de Araugo, and C. A. Achete, “Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films,” Appl. Phys. Lett., vol. 82, no. 23, pp. 4017-4019, 2003.
[38] Y. A. Chen, M. L. Hsu, L. H. Laih, J. W. Hong, and C. Y. Chaug, “Characteristics of SiC-based thin-film LED fabricated using plasma-enhanced CVD system with stainless steel mesh,” Electronics Letters, vol. 35, pp. 1274-1275,1999.
[39] M. S. Haque, H. A. Naseem, W. D. Brown, and S. S. Ang, “Hydrogenated amorphous silicon/aluminum interaction at low temperatures, “Mat. Res. Soc. Symp. Proc., Vol. 258, pp. 1037-1042, 1992.
[40] H. Matsuura, T. Okuno, H. Okushi, and K. Tanaka, “Electrical properties of n-amorphous/p-crystalline silicon heterojunctions.” J. Appl. Phys., vol. 55, pp. 1012-1019, 1984.
[41] D. Kruangam, M. Deguchi, T. Toyama, H. Okamoto, and Y. Hamakawa, “Carrier injection mechanism in a-SiC:H p-i-n junction thin-film LED,” IEEE Trans. Electron Devices, Vol. 35, No. 7, pp.957, 1988.
[42] G. Lavareda, C. Nunes, E. Fortunato, A. Amaral, and A. R. Ramos, “Properties of a-Si:H TFTs using carbonitride as dielectric.” J. Non-Cryst. Sol., vol. 338-340, pp. 797-801, 2004.
[43] S. M. Passche, T. Toyama, H. Okamoto, and Y. Hamakawa, ”Amorphous-SiC thin film p-i-n light-emitting diode using amorphous-SiN hot-carrier tunneling injection layers,” IEEE Trans. Electron Devices, Vol. 36, No.12, pp.2895, 1989.
[44] F. Giorgis, C. F. Pirri, E. Tresso, V. Rigato, S. Zandolin, and P. Rvav, “Wide band gap amorphous silicon-based alloys.” Phys. B, vol. B229, pp. 233-239, 1997.
[45] H. Y. Wey, “Surface of amorphous semiconductors and their contacts with metals.” Phys. Rev. B, vol. 13, pp. 3495-3505, 1976.
[46] B. Gan, J. A. Rusli, Q. Zhang, S. F. Yoon, V. A. Ligatchev, J. Y. K. Chew, “Thickness dependence of density of gap states in diamond films studied using space-charge-limited current,” J. Appl. Phys., vol. 89, no. 10, pp. 5747-5753, 2001.
[47] C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and f. Giorgis, “Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor deposition,” J. Appl. Phys., vol. 96, no. 7, pp. 3987-3997, 2004.
[48] K. Mui, D. K. Basa, F. W. Smith, and R. Corderman “Optical constants of a series of amorphous hydrogenated silicon-carbon alloy films: dependence of optical response on film microstructure and evidence for homogeneous chemical ordering,” Phys. Rev. B, vol. 35, no. 15, pp. 8089-8102, 1987.
[49] J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng. R, vol. 37, pp. 129-281, 2002.
[50] M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B, vol. 16, no. 8, pp. 3556-3571, 1997.
[51] J. Robertson, “Photoluminescence mechanism in amorphous hydrogenated carbon,” Diamond Relat. Mater., vol. 5, pp. 457-460, 1996.
[52] M. A. Lampert and P. Mark, Current injection in Solids. New York: Academic, 1970, chap. 2, 4, and 5.
[53] J. Frenkel, ”On prebreakdown phenomena in insulators and electronic semiconductors,” Phys. Rev., vol. 54, pp. 647-648, 1938.
[54] J. G. Simmons, “Poole-Frenkel effect and Schottky effect in metal-insulators-metal systems,” Phys. Rev., vol. 155, no. 3, pp. 657-660, 1967.
[55] P. Mark, and T. E. Hartman, “On distinguishing between the Schottky and Poole-Frenkel effect in insulators,” in Proc. Rec. Communications Conf., Nov. 1967, pp. 2163-2164.
[56] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., New York: Wiley, 1981, chap. 1, 5, and 7.
[57] R. H. Yeh, T. R. Yu, S. Y. Lo, and J. W. Hong, “Alternating-current white thin-film light-emitting diodes based on hydrogenated amorphous carbon layer,” IEEE Photo. Tech. Lett., vol. 18, no. 22, pp. 2341-2343, 2006.
[58] F. Giorgis, C. F. Pirri, and E. Tresso, “Structural properties of a-Si1-xNx:H films grown by plasma enhanced chemical vapor deposition by SiH4 + NH3 + H2 gas mixtures,” Thin Solid Films, Vol. 307, pp. 298-305, 1997.
[59] V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B, vol. 73, pp. 1953331-1953338, 2006.
[60] J. J. Mei, H. Chen, and W. Z. Shen, ”Optical properties and local bonding configurations of hydrogenated amorphous silicon nitride thin films,” J. Appl. Phys., vol. 100, pp. 0735161-0735169, 2006.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2008-1-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明