博碩士論文 89222011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:3.139.85.186
姓名 許伯任(Po-Jen Hsu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 金屬與合金分子叢集的結構
(Structures of metallic and bimetallic clusters)
相關論文
★ 金屬叢集的融化現象★ 帶電膠體系統之液態-液態/固態相變研究
★ 低濃度電解質在奈米管內異常的擴散和導電性★ 一價和多價叢集原子的熱穩定現象
★ 物理系統之能量與焓分佈之統計力學研究★ 膠體系統平衡相域與動態凝聚之研究
★ 合金金屬叢集的溫度效應★ 介面膠體叢聚現象的理論研究
★ 帶電膠體懸浮液的相圖與液態-玻璃相變研究★ 膠體相圖之理論計算
★ 膠體、棒狀粒子混合系統之相圖的理論分析★ 利用時間序列的統計方法研究金屬叢集的動力學
★ 由分子動力學模擬探討層狀石墨烯的成長與碳化矽基板上多層石墨烯的熱穩定性★ 金銅合金金屬叢集(N=38)的磁性性質研究
★ 膠體、盤狀粒子混合系統的兩階段動態相變區域★ 由超快速形狀辨識、時間序列分割、時間序列交互相關分析以及擴散理論方法研究蛋白質Transthyretin片斷與金屬叢集的分子動力學模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們應用平行電腦(PC-Cluster with MPI)以及各式最佳化演算法來計算分子叢集的結構,當分子叢集的數量在上百顆以上時,其已漸漸逼進奈米尺度,這些研究資料,為奈米實驗提供了許多初步的理論基礎,我們亦在此課題中驗證平行化計算的實用行,我們所發展出來的演算法均可以利用多顆CPU來分擔運算,使得計算效能突飛猛進,目前我們的計算已經可以進展至100顆以上,並且亦驗證其他領域的實用性,如蛋白質折疊與基礎態結構等,在本篇論文中,我們首先呈現兩個經典的最佳化演算法,隨後並介紹我們新發展的演算法,在數值計算方面,我們提供一系列初步的系統化結構分析,大小均在56顆以內,總共6個材料,分別是鹼金屬Na,K,Rb,Cs,以及四價金屬Pb,最後我們再以總數38金銅合金,並套用新發展之演算法作為結束
摘要(英) We present detailed numerical results on the ground state structures of metallic clusters and alloy clusters. The Gupta-like many-body potential is used to account for the interactions between atoms in the cluster. Both the genetic algorithm technique and the basin hopping method have been applied to search for the global energy minima of clusters. The good agreement found in both schemes for the global energy minima gives credence to the optimized energy values obtained. Our calculations for the ground state energies of alkali metallic clusters show regularities in the energy differences, and the cluster growth pattern manifested by this same group of clusters is generally icosahedral which is quite different from the close-packed and decahedral preferentially exhibited by the tetravalent lead clusters. Considering the inherent disparities in the electronic structures and the bulk structures in these metals (body-centered cubic for alkali metals and face-centered cubic for the lead metal), it is not unreasonable to say that the valence electrons do play a subtle role in the conformation of metallic clusters.And last,we introduce a new minimization method which contains all the advantages of the above algorithms,to examine the nanoalloy cluster,Cu-Au for total number N=38.To check all the permutation and the structure variation.In evidence,there exists the most stablize structure in an alloy with total number N=38.Our algorithm also shows the reliability to compete Basin-Hopping and Genetic Algorithm.
關鍵字(中) ★ 基因演算法
★ 鉀
★ 銣
★ 銫
★ 金
★ 銅
★ 基因演算子
★ 鈉
★ 鉛
★ 分子叢集
關鍵字(英) ★ Pb
★ algorithm
★ Cs
★ Na
★ alloy
★ Au
★ Cu
★ cluster
★ K
★ Rb
★ genetic
★ optimization
論文目次 Abstract ………………………………………………...……………….……………2
I. Introduction .………………………………………………......……………....2
II. Computational Details …………………………….……………………..4
A. Gupta-like potential …………………………………….……………..…….5
B. Method of genetic algorithm ……………………………………….........…7
C. Basin-Hopping method ……………………………………………….…….9
III. Introduction to the parallel tempering multicanonical basin-hopping,with genetic algorithm …………………...………….11
A. Modified Multicanonical Monte Carlo …………………………..……..11
B. Parallel Tempering Technique …………………….……………….……..14
C. Multicanonical basin-hopping and genetic algorithm:unification and parallel tempering trait(MBHGAPT) …………………………………...14
IV. Numerical Results ……………………………………………...….…..16
A. Monovalent metals: Na, K, Rb and Cs ……………..……………..….16
B. Tetravalent metal: Pb ………………………………………………………21
C. Nanoalloy cluster: Cu-Au …………………………………...…………….24
V. Summary and conclusion …………………………………………...…26
參考文獻 N.W. Ashcroft and D. Stroud, in Solid State Physics, edited by F. Seitz, D. Turnbull, H. Ehrenreich (Academic, New York, 1978), Vol.33, p.1.
D.H. Li, X.R. Li, and S. Wang, J. Phys. F 16, 309 (1986).
C.L. Cleveland and U. Landman, J. Chem. Phys. 94, 7376 (1991).
O.D. Haberlen , S.C. Chung, M. Stener and N. Rosch, J. Phys. Chem. B 106, 5189 (1997).
C.L. Cleveland, U. Landman, T.G. Schaaff, M.N. Shafigullin, P.W. Stephens and R.L. Whetten, Phys. Rev. Lett. 79, 1873 (1997).
F. Calvo and F. Spiegelmann, J. Chem. Phys. 112, 2888 (2000).
N. Ju and A. Bulgac, Phys. Rev. B 48, 2721 (1993).
R.S. Berry and B.M. Smirnov, J. Chem. Phys.113, 728 (2000).
J.P.K. Doye and D.J. Wales, J. Phys. B: At. Mol. Opt. Phys.29, 4859 (1996).
J.P.K. Doye and F. Calvo, J. Chem. Phys.116, 8307 (2002).
T.P. Martin, T. Bergmann, H. Gohlich, and T. Lange, Chem. Phys. Lett.172, 209 (1990).
H. Hubert, B. Devouard, L.A. J. Garvie, M.O'Keeffe, P.R. Buseck, W.T. Petuskey, and P.F. McMillan, Nature (London) 391, 376 (1998).
Y. Zeiri, Phys. Rev. E 51, R2769 (1995).
J.A. Niesse and H.R. Mayne, J. Chem. Phys.105, 4700 (1996).
J.P.K. Doye and D.J. Wales, New J. Chem.22, 733 (1998).
R.P. Gupta, Phys. Rev. B 23, 6265 (1981).
F. Ducastelle, J. Phys. (Paris) 31, 1055 (1970).
J. Friedel, in Electrons, Vol. I of Physics of Metals edited by J.M. Ziman (Pergamon, London, 1969).
F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).
Y. Li, E. Blaisten-Barojas and D.A. Papaconstantopoulos, Phys. Rev. B 57, 15519 (1998).
The interested readers may consult the early work of Cleri and Rosato and a more recent one of Chien et al. (C.H. Chien, E. Blaisten-Barojas, and M.R. Pederson, J. Chem. Phys.112, 2301 (2001)) for details.
C.D. Gelatt, Jr.H. Ehrenreich and R.E. Watson, Phys. Rev. B 15, 1613 (1977).
W.Y. Ching and J. Callaway, Phys. Rev. B 11, 1324 (1975).
G. Allan and M. Lanoo, Phys. Status Solidi B 74, 409 (1976).
N.A. Besley, R.L. Johnson, A. J. Stace, and J. Uppenbrink, J. Mol. Phys. Structure (Theochem) 34, 75 (1995).
D. Liu and J. Nocedal, Math. Program. B 45, 503 (1989).
Y. Zeiri, Chem. Phys. Lett. 261, 576 (1996).
Y. Zeiri, Computer Phys. Comm. 103, 28 (1997).
D.J. Wales and J.P.K. Doye, J. Phys. Chem. A 101, 5111 (1997).
Z. Li and H.A. Scheraga, Proc. Natl. Aca. Sci. USA 84, 6611 (1987).
W.D. Knight, K. Clemenger, W.A. de Heer, W.A. Saunders, M.Y. Chou and M.L. Cohen, Phys. Rev. Lett. 52, 2141 (1984).
A. Aguado, J.M. Lopez, J.A. Alonso and M.J. Stott, J. Chem. Phys. 111, 6026 (1999).
U. Rothlisberger and W. Andreoni, J. Chem. Phys. 94, 8129 (1991).
V. Bonacic-Koutecky, P. Fantucci and J. Koutecky, Phys. Rev. B 37, 4369 (1988).
F. Spiegelmann and D. Pavolini, J. Chem. Phys. 89, 4954 (1988).
F.C. Frank and J.S. Kasper, Acta Crystallogr. 11, 184 (1958); ibid 12, 483 (1959).
J.P.K. Doye and D.J. Wales, J. Chem. Soc., Faraday Trans. 93, 4233 (1997).
H.S. Lim, C.K. Ong and F. Ercolessi, Surf. Sci. 269/270, 1109 (1992).
C.H. Chien, E. Blaisten-Barojas, and M.R. Pederson, J. Chem. Phys. 112, 2301 (2001).
S. Darby, T.V. Mortimer-Jones, R.L. Johnston and C. Roberts, J. Chem. Phys. 116, 1536 (2002).
J.E. Heam and R.L. Johnston, J. Chem. Phys. 107, 4674 (1997).
J.A. Northby, J. Chem. Phys. 87, 6166 (1987).
Y.H. Luo, J. Zhao and S. Qiu and G. Wang, Phys. Rev. B 59, 14903 (1999).
F. Yonezawa, S. Nose and S. Sakamoto, Z. Phys. Chem. 156, 77 (1988).
We exclude the network glassy materials such as the Si or Ge where directional terms in the many-body potential must be explicitly included. This kind of clusters therefore differs from the class of clusters mentioned here.
指導教授 賴山強(San-Kiong Lai) 審核日期 2003-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明