博碩士論文 89222017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.12.36.45
姓名 陳文彥(Wen-yen Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 砷化銦鎵量子點與二維光子晶體共振腔之耦合效應研究
(Investigation of coupling effects of InGaAs quantum dots in two-dimensional photonic crystal nanocavities)
相關論文
★ 應力緩衝自聚性砷化銦量子點之電場調制反射光譜★ 垂直耦合自聚性砷化銦鎵量子點之光學特性研究
★ 氮化銦鎵/氮化鎵多層量子井之光學特性研究★ 自聚性砷化銦鎵量子點之光電特性
★ 熱退火處理之量子點的能階變化及其理論計算★ 碲硒化鋅磊晶層之光學特性研究
★ 硒化鋅磊晶層之光學性質★ 氮化銦鎵卅氮化鎵多層量子井發光二極體之電性研究
★ 低溫成長氮化鎵的光電性質★ 自聚性矽鍺多層量子點光學特性研究
★ III--氮族半導體的極化電場效應★ 應力緩衝層對砷化銦量子點侷限能階之影響
★ 砷化銦量子點在二維光子晶體中共振模態之光學特性研究★ 高銦含量氮化銦鎵薄膜之光學性質研究
★ 氮化銦奈米柱之光學性質研究★ 砷化銦鎵量子點在砷化鎵多面體結構之光學性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文旨在研究砷化銦鎵量子點與二維光子晶體共振腔之耦合效應。主要的研究內容分為以下三部分:首先,在論文的第一部份,我們探討光子晶體共振腔之共振腔效應,包括共振腔對光源之自發輻射效率、光引出效率與光極化特性的改變。接著,我們利用電子束微影以及高密度電漿蝕刻技術,製作了一系列不同共振腔結構的二維光子晶體共振腔,並研究光子晶體缺陷共振腔之共振態特性,以及光子晶體共振腔設計之靈活性與多樣性。
由於共振腔中光源之發光行為會受共振腔模態影響而改變,在論文的第二部分中,我們接著研究砷化銦自聚性量子點在光子晶體奈米共振腔中的螢光特性。我們首先研究群體量子點與共振腔的耦合效應。藉由本實驗室所架設的微螢光光譜系統,我們觀察到室溫下量子點在光子晶體共振腔中的發光強度是在塊材中的百倍,這是因為光子晶體共振腔不但可以提升量子點在半導體材料中的光引出效率,量子點本身的自發輻射效率也會因受光子晶體共振腔的影響而改變。我們藉由量子點的螢光強度與激發光強度的關係,觀察到了三倍的自發輻射效率的提升。因單缺陷光子晶體共振腔具有極小的模態體積,使量子點與共振腔能在室溫下達到弱耦合而提升量子點的自發輻射速率。
在研究完群體量子點在光子晶體中的發光特性後,我們更進一步研究單量子點與光子晶體的耦合效應。我們使用微螢光光譜系統,並搭配高解析度的光譜儀與高靈敏度的矽-電子耦合光偵測器,使我們可以在極低的溫度與極弱的雷射激發功率下解析出單量子點的單激子螢光光譜。在此實驗中,我們藉由比較量子點的發光強度隨激發雷射光強度的關係,發現與光子晶體奈米共振腔共振的量子點之自發輻射效率被提升了十倍。在單量子點在共振腔中的螢光偏極化特性上,我們發現單量子點的發光耦合到簡併的共振態時,量子點的螢光極化方向會因為與不同極化的共振態耦合而不同,我們認為這是因為量子點在共振腔中的空間隨機分布現象所導致。
由於光子晶體奈米共振腔具有提高自發性輻射速率與提升光引出效率的功能,因此非常適合用來發展高效率的量子點單光子元件。在論文的第三部分,我們將光子晶體共振腔應用到量子點單光子源元件的開發上。我們首先簡介單光子量測之原理與技術,接著我們將量子點的發光耦合到多缺陷之光子晶體共振腔中。藉由光子晶體能係的效應,量子點發光的自發耦合效率可以達到92%,共振態非簡併與特定極化特性使單光子極化率也高達95%,這些特性使光子晶體量子點單光子發射器非常適合來發展極化編碼式量子密碼傳輸。另外,我們也研究了量子點在光子晶體共振腔中單光子輻射之熱穩定性,並且提升元件工作溫度到60 K。藉由適當的共振腔品質參數與模態體積,光子晶體共振腔可同時具有極佳的自發輻射增強與熱穩定性。在光子相干性量測上,單光子信號的單光子反成束現象與低信號抖動可以從7 K維持到60 K。
摘要(英) This dissertation investigates the coupling effects of InGaAs quantum dots (QDs)
in two-dimensional photonic crystal (PC) nanocavities. The main focus of this
dissertation is divided into three parts. The first discusses cavity effects in
two-dimensional PC defect nanocavities. The theory of the modification of
spontaneous emission (SE), extraction efficiency and polarization property is presented.
This cavity effects in defect PC nanocavities are investigated. The inherent flexibility
and diversity of cavity designs of PC nanocavities are demonstrated.
The luminescence properties of light sources in optical cavities are dominated by
the cavity’s resonant mode. The second part of this dissertation studies the coupling
effects for In(Ga)As QDs in PC nanocavities. A micro-photoluminescence setup is used
to characterize the luminescence of QDs in PC nanocavities. The PL intensity of
ensemble QDs in a PC cavity is enhanced by two orders of magnitude. This large PL
enhancement is attributed to the combination of improved extraction efficiency and the
increased SE rate due to the Purcell effect. A threefold Purcell enhancement is observed
at room temperature, and is dominated by the very small mode volume of the PC
nanocavities. Emissions from single QDs in PC nanocavities are also discussed. A
high-resolution spectrometer and high-sensitivity silicon-based charge-couple device
are used to resolve single exciton emission lines under low excitations at low
temperature. Monitoring the power-dependence of individual QD emissions reveals a
nearly tenfold light enhancement from on-resonance QDs. The polarization state of
individual QDs in single-defect PC nanocavities is also investigated. Either a pure dipole mode or a mixture of both eigenmodes can be excited by an individual dot. This
behavior is attributed to the random distribution of QD position in the nanocavities.
PC nanocavities exhibit a strong ability to enhance SE rate and improve light
extraction, supporting the development of highly efficient single-photon devices. The
third part of this dissertation presents PC nanocavities to develop QD-based
single-photon devices. First, a general introduction of photon correlation
measurements, which can be used to characterize the quality of a single-photon source,
is presented. Then, single-photon pulses are coupled into the multi-defect PC
nanocavities. The single-photon source features the effects of photonic band gap,
yielding a single-mode SE coupling efficiency of as high as β ~92%. Since the cavity
possesses a single nondegenerate cavity mode with a well-defined polarization state, a
linear polarization degree of up to p ~ 95% for single photon emission is found. The
appealing performance makes it well-suited for the practical implementation of
polarization-encoded schemes in quantum cryptography. The temperature stability of
single-photon emission for QDs in PC nanocavities is also studied. The feasibility of
the operation of PC nanocavities for single QDs in single-photon applications up to 60
K is demonstrated. With a proper quality factor and a small mode volume, this PC
nanocavity exhibits excellent SE enhancement and high thermal stability. Measuring the
photon correlation function of single QD emission yields clear photon antibunching
with a small timing jitter, which is maintained from T = 7 to 60 K. These results
demonstrate that PC nanocavities with an appropriate quality factor and mode volume
are important for developing thermal-stable single-photon sources.
關鍵字(中) ★ 砷化銦鎵量子點
★ 共振腔效應
★ 光子晶體共振腔
關鍵字(英) ★ photonic crystal nanocavities
★ InGaAs quantum dots
★ cavity effects
論文目次 Abstract i
Acknowledgement v
Contents vi
List of Figures viii
List of Tables xiii
Chapter 1 General Introduction 1
1.1 Foreword 1
1.2 Outline 5
Chapter 2 Cavity Modes in Two-dimensional Photonic Crystal Nanocavities 6
2.1 Introduction 6
2.2 Microcavity effects 9
2.2.1 Modification of spontaneous emission 9
2.2.2 Modification of light extraction 13
2.3 Fabrication of two-dimensional photonic crystal nanocavities 17
2.4 Characterization of two-dimensional photonic crystal defect nanocavities 21
2.4.1 Single-defect photonic crystal nanocavities 22
2.4.2 Multi-defect photonic crystal nanocavities 29
2.5 Conclusions 33
Chapter 3 Coupling Effects of Quantum Dots in Photonic crystal nanocavities 34
3.1 Introduction 35
3.2 Modified light emission from InGaAs quantum dots in photonic crystal nanocavities 37
3.2.1 Experimental details 37
3.2.2 Enhanced light emission from quantum dots in photonic crystal nanocavities 40
3.2.3 Polarization properties of individual quantum dot emissions in photonic crystal nanocavities 49
3.3 Conclusions 58
Chapter 4 Photonic Crystal Nanocavities for Quantum-dot-based Single-Photon Sources 59
4.1 Introduction 60
4.1.1 Quantum cryptography 62
4.1.2 Second-order correlation function 64
4.1.3 Detection of single photon emission 66
4.2 Efficient single photon emission from single quantum dots in photonic crystal nanocavities 68
4.2.1 Experimental details 68
4.2.2 Emission efficiency of single photon emission 69
4.2.3 Thermal stability of single-photon emission 71
4.3 Conclusions 77
Chapter 5 Summary 78
Reference 81
Appendix: 90
A1. Quality factor 90
Publication Lists 92
Journal papers: 92
International conference reports: 94
參考文獻 [1] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, "Photonic crystals — Molding the flow of light." (Princeton University Press, New Jersey, 1995).
[2] J. W. S. Rayleigh, "On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes," Phil. Mag. 26, 256 (1887).
[3] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059 (1987).
[4] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486 (1987).
[5] C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch, "Nanofabricated three-dimensional photonic crystal operating at optical wavelengths," Phys. Scripta T68 (1996).
[6] R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band gap materials: Low-loss bends and high Q cavities," J. Appl. Phys. 75, 4753 (1994).
[7] I. N. Stranski and L. Krastanow, "Sitzungsberichte d. Akad. D. Wissenschaften in Wien," Akad. Wiss Wien Math.-Natur. IIb 146, 797 (1937).
[8] K. J. Vahala, "Optical microcavities," Nature (London) 424, 839 (2003).
[9] E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
[10] D. Kleppner, "Inhibited spontaneous emission," Phys. Rev. Lett. 47, 233 (1981).
[11] L. C. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276 (1999).
[12] J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110 (1998).
[13] B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J.-L. Pelouard, "High-Q wet-etched GaAs microdisks containing InAs quantum boxes," Appl. Phys. Lett. 75, 1908 (1999).
[14] A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoğlu, Lidong Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, "Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure," Appl. Phys. Lett. 78, 3932 (2001).
[15] O. Painter and K. Srinivasan, "Polarization properties of dipolelike defect modes in photonic crystal nanocavities," Opt. Lett. 27, 339 (2002).
[16] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[17] R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, "Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths," Appl. Phys. Lett. 74, 1522 (1999).
[18] T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J.-P. Reithmaier, and M. Kamp, and A. Forchel, "Enhanced light emission of InxGa1-xAs quantum dots in a two-dimensional photonic-crystal defect microcavity," Phys. Rev. B 66, 041303 (2002).
[19] H. Y. Ryu and M. Notomi, "Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity," Opt. Lett. 28, 2390 (2003).
[20] W.-H. Chang, W.-Y. Chen, H.-S. Chang, T. M. Hsu, T.-P. Hsieh, and J.-I. Chyi, "Optical emission from individual InGaAs quantum dots in single-defect photonic crystal nanocavity," J. Appl. Phys. 98, 034306 (2005).
[21] W.-Y. Chen, W.-H. Chang, H.-S. Chang, T. M. Hsu, C.-C. Lee, C.-C. Chen, P. G. Luan, J.-Y. Chang, T.-P. Hsieh, and J.-I. Chyi, "Enhanced light emission from InAs quantum dots in single-defect photonic crystal microcavities at room temperature," Appl. Phys. Lett. 87 071111 (2005).
[22] J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65 016608 (2001).
[23] J. Vučković and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot," Appl. Phys. Lett. 82, 2374 (2003).
[24] O. Painter, J. Vučković, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Soc. Am. B 16, 275 (1999).
[25] C. Reese, B. Gayral, B. D. Gerardot, A. Imamoğlu, P. M. Petroff, and E. Hu, "High-Q photonic crystal microcavities fabricated in a thin GaAs membrane," J. Vac. Sci. Technol. B 19, 2749 (2001).
[26] C. Reese, C. Becher, A. Imamoğlu, E. Hu, B. D. Gerardot, and P. M. Petroff, "Photonic crystal microcavities with self-assembled InAs quantum dots as active emitters," Appl. Phys. Lett. 78, 2279 (2001).
[27] S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, "Microwave propagation in two-dimensional dielectric lattices," Phys. Rev. Lett. 67, 2017 (1991).
[28] J. M. Gérard and B. Gayral, "Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities," J. Lightwave Technol. 17, 2089 (1999).
[29] A. Tafove, "Computational Electrodybamics - The finite-difference time-domain method." (Artech house, Masachussetts, 1995).
[30] 葛德彪 and 閆玉波, "電磁波時域有限差分方法." (西安電子科技大學出版社, 西安, 2001).
[31] K. S. Yee, "numerical solution to initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat. 14, 302 (1966).
[32] D. F. Walls and G. J. Milburn, "Quantum optics." (Springer, New York, 1994).
[33] J. S. Peng and G. X. Li, "Introduction to modern quantum optics." (World scientific publishing, Singapore, 1998).
[34] C. Cohen-Tannoudji and and F. Laloe B. Diu, "Quantum Mechanics." (John Wiley & Sons, Inc., New York, 1977).
[35] A. Yariv, "Quantum Electronics." (John Wiley & Sons, New York, 1989).
[36] H. Benisty, H. De Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction - part I: basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612 (1998).
[37] H. Y. Ryu, Y. H. Lee, R. L. Sellin, and D. Bimberg, "Over 30-fold enhancement of light extraction from free-standing photonic crystal slabs with InGaAs quantum dots at low temperature," Appl. Phys. Lett. 79, 3573 (2001).
[38] J. K. Hwang, H. Y. Ryu, and Y. H. Lee, "Spontaneous emission rate of an electric dipole in a general microcavity," Phys. Rev. B 60, 4688 (1999).
[39] J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850 (2002).
[40] J. W. Goodman, "Introduction to fourier optics." (McGraw-Hill Book Co., Singapore, 1996).
[41] Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661 (2003).
[42] K. Sakoda, "optical properties of photinic crystals." (Springer-Vwelag, New York, 2001).
[43] E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure " Phys. Rev. Lett. 24, 3380 (1991).
[44] K. Sakoda, "Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices," Phys. Rev. B 52, 7982 (1995).
[45] S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999).
[46] C. Sauvan, P. Lalanne, and J. P. Hugonin, "Slow-wave effect and mode-profile matching in photonic crystal microcavities," Phys. Rev. B 71, 165118 (2005).
[47] Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, "Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab," Appl. Phys. Lett. 82, 1341 (2003).
[48] Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944 (2003).
[49] Z. Zhang and M. Qiu, "Influence of structural variations on high-Q microcavities in two-dimensional photonic crystal slabs," Opt. Lett. 30, 1713 (2005).
[50] G. S. Solomon, M. Pelton, and Y. Yamamoto, "Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity," Phys. Rev. Lett. 86, 3903 (2001).
[51] A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, "Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals," Phys. Rev. B 71, 241304(R) (2005).
[52] K. Matsuda, T. Saiki, H. Saito, and K. Nishi, "Room-temperature photoluminescence spectroscopy of self-assembled In0.5Ga0.5As single quantum dots by using highly sensitive near-field scanning optical microscope," Appl. Phys. Lett. 76, 73 (2000).
[53] H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, Y. H. Lee, and D. H. Jang, "Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures," Appl. Phys. Lett. 78, 1174 (2001).
[54] L. Landin, M. S. Miller, M.-E. Pistol, C. E. Pryor, and L. Samuelson, "Optical studies of individual InAs quantum dots in GaAs: few-particle effects," Science 280, 262 (1998).
[55] M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, "Hidden symmetries in the energy levels of excitonic 'artificial atoms," Nature (London) 405, 923 (2000).
[56] H. J. Kimble, M. Dagenais, and L. Mandel, "Photon antibunching in resonance fluorescence " Phys. Rev. Lett. 39, 691 (1977).
[57] F. Diedrich and H. Walther, "Nonclassical radiation of a single stored ion," Phys. Rev. Lett. 58, 203 (1987).
[58] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, "A quantum dot single-photon turnstile device," Science 290, 2282 (2000).
[59] E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001).
[60] P. Lodahl, A. F. van Drie, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature (London) 430, 654 (2004).
[61] C. H. Bennett and G. Brassard, in Proc. of the IEEE Int. Conf. on Computers, Systems & Signal Processing (Bangalore, India, 1984), p. 175.
[62] D. Bouwmeester, A. Ekert, and A. Zeilinger., "The physics of quantum information." (Springer, Berlin, 2000).
[63] R. H. Brown and R. Q. Twiss, "The question of correlation between photons in coherent light rays," Nature (London) 178, 1447 (1956).
[64] T.-P. Hsieh, H.-S. Chang, W.-Y. Chen, W.-H. Chang, T. M. Hsu, N.-T. Yeh, W.-J. Ho, P.-C. Chiu, and J.-I. Chyi, "Growth of low density InGaAs quantum dots for single photon sources by metal-organic chemical vapour deposition," Nanotechnology 17, 512-515 (2006).
[65] Z. G. Xie and G. S. Solomon, "Spatial ordering of quantum dots in microdisks," Appl. Phys. Lett. 87, 093106 (2005).
[66] A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158 (2005).
[67] T.-P. Hsieh, J.-I. Chyi, H.-S. Chang, W.-Y. Chen, T. M. Hsu, and W.-H. Chang, "Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane," Appl. Phys. Lett. 90, 073105 (2007).
[68] S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Scanning a photonic crystal slab nanocavity by condensation of xenon," Appl. Phys. Lett. 87, 141105 (2005).
[69] K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, "Tuning photonic nanocavities by atomic force microscope nano-oxidation," Appl. Phys. Lett. 89, 041118 (2006).
[70] C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Single-photon generation with InAs quantum dots," New J. Phys. 6, 89 (2004).
[71] I. Robert, E. Moreau, M. Gallart, J. M. Gérard, and I. Abram, "Solid-state triggered single photon sources," Physica E 16, 51 (2003).
[72] W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T. M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006).
[73] J. D. Jackson, "Classical electrodynamics." (Wiley, New York, 1999).
指導教授 徐子民(Tzu-Min Hsu) 審核日期 2007-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明