博碩士論文 89341001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.145.109.144
姓名 林信益(Hsin-Yi Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 雙參數離子活性係數模式應用
相關論文
★ 高速旋轉填充床應用於分離異丙醇-水共沸混合物之研究★ 水-醋酸-對位二甲苯-乙酸甲酯-乙酸異丁酯之汽液平衡
★ 進料不純物作為系統內自體共沸劑模擬回收醋酸之醋酸脫水程序及其效益分析★ 單電解水溶液離子活性係數與溫度之關係
★ 在超臨界CO2之溶解度量測及Poynting factor之探討★ 矽酸乙酯與乙醇在不同壓力之相平衡
★ 水-酚-對甲酚-鄰甲酚四成份系統之液液相平衡研究★ 單電解質水溶液離子活性係數之探討
★ 高速旋轉填充床於分離共沸混合物之研究★ 乙烯在甲苯、冰片烯及COC混合溶液之溶解度量測與關聯
★ 間氯酚與對氯酚之固液相平衡研究★ 高速旋轉填充床於分離乙醇-水共沸混合物之研究
★ 二價單電解質水溶液之個別離子活性係數 量測與關聯★ 雙參數個別離子活性係數模式應用於雙電解質水溶液蒸汽壓之估算
★ β-胡蘿蔔素-二丁基羥基甲苯於超臨界二氧化碳之溶解度量測與關聯★ 共溶劑對β-胡蘿蔔素於超臨界二氧化碳溶解度影響之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Lin and Lee (Fluid Phase Equilibria, vol. 205, (2003) 69-83)在其發表的論文中提出電解質水溶液中,離子活性係數肇因於離子水合作用之部份以solvation parameter表示,而肇因於離子間作用力之部份則以approaching parameter表示,本研究以Lin and Lee的二參數個別離子活性係數模式,並以Vera (AIChE J. vol. 50 (2004) 445-462)中以離子選擇性電極(ion selective electrode, ISE)測量所得的個別離子活性係數實驗值迴歸求得14種1:1型式、2種1:2型式及6種2:1型式共22種電解質個別離子活性係數參數,並成功預測單一電解質水溶液滲透係數及多電解質水溶液的平均活性係數及滲透係數,更可預測多電解質中單一離子的個別離子活性係數。
本研究進一步將利用含共同離子的二元電解質水溶液之滲透係數迴歸出2種1:1型式、5種2:1型式、3種1:2型式及2種2:2型式,共12種電解質個別離子活性係數參數,並成功預測單一電解質水溶液滲透係數及多電解質水溶液的平均活性係數、滲透係數及多電解質中單一離子的個別離子活性係數。
電解質水溶液之熱容量是相當重要的熱力學性質,本研究利用溶液過剩性質及Lin and Lee的二參數個別離子活性係數模式推演出電解質水溶液熱容量預測模式,並利用前述迴歸所得參數成功預測28種電解質水溶液的熱容量。
摘要(英) In the study of Lin and Lee (Fluid Phase Equilibria, vol.205, (2003) 69-83), it was concluded that, in the electrolyte solution, the ion activity coefficient is contributed by two parts: one is solvation which is expressed by solvation parameter, the other is ion-ion interaction which is expressed by approaching parameter. In this study, the Lin and Lee ‘s two-parameter individual ion activity coefficient model was adopted to regress the Vera’s experimental data measured with ISEs (AIChE J., vol.50 (2004) 445-462). The individual-ion-activity-coefficient parameters of 22 electrolytes, including 14 electrolytes of 1:1 type, 2 electrolytes of 1:2 type and 6 electrolytes of 2:1 type, were obtained. Using these parameters, the osmotic coefficients of aqueous uni-electrolyte solutions and the mean activity coefficients and osmotic coefficients of aqueous multi-electrolyte solutions have been predicted successfully. Even more, the individual ion activity coefficient of certain an ion in the aqueous multi-electrolyte solution can also be predicted.
Furthermore, the two-parameter individual ion activity coefficient model was adopted to regress the experimental data of osmotic coefficients of aqueous bi-electrolyte solutions containing common ions. The individual-ion-activity-coefficient parameters of 12 electrolytes, including 2 electrolytes of 1:1 type, 5 electrolytes of 2:1 type, 3 electrolytes of 1:2 type and 2 electrolytes of 2:2 type, were obtained. Using these parameters, the osmotic coefficients of aqueous uni-electrolyte solutions and the mean activity coefficients and osmotic coefficients of aqueous multi-electrolyte solutions, and the individual ion activity coefficient of certain an ion in the aqueous multi-electrolyte solution have been predicted successfully.
Heat capacity is an important thermodynamic property of aqueous electrolyte solutions. In this study, the predictive model of heat capacity of aqueous electrolyte solutions was also deduced by using the solution excess property and Lin and Lee’s two-parameter individual ion activity coefficient model, and, using the above regressed parameters, the heat capacities of 28 aqueous electrolyte solutions has been successfully predicted.
論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
表目錄 Ⅴ
圖目錄 Ⅷ
符號說明 Ⅸ
第一章 緒論 1
第二章 電解質水溶液熱力學性質 3
2.1 電解質溶液之濃度單位 3
2.1.1 重量莫耳濃度 3
2.1.2 離子強度 3
2.1.3 莫耳分率 3
2.1.4 莫耳分率之離子強度 3
2.2 標準狀態 (standard state) 3
2.3 電解質平均活性係數 5
2.4 溶液之滲透係數 5
2.5 溶液之熱容量 6
第三章 文獻回顧 7
3-1 電解質平均活性係數與溶液滲透係數模式之回顧 7
3-2 電解質溶液個別離子活性係數相關文獻之回顧 11
3-3 Lin & Lee電解質平均活性係數估算模式之回顧 13
第四章 電解質水溶液個別活性係數關聯 19
4-1 利用個別離子活性係數實驗數據關聯 Lin & Lee 模式參數 19
4-2 利用共同離子混合水溶液滲透係數實驗數據關聯 Lin & Lee 模式 20
第五章 電解質水溶液熱力學性質預估 24
5-1 二元及三元電解混合水溶液中滲透係數預估 24
5-2 單一電解質水溶液熱容量預估 26
第六章 個別離子活性係數測量之爭論 31
6-1 Vera團隊的發現 31
6-2 Vera的失誤 35
6-3 Malatesta的觀點 36
6-4 我們的看法 39
第七章 結論與未來展望 40
參考文獻 42
表 48
圖 83
參考文獻 [1] Anath, M.S.; Ramachandran, S., Self-consistent local composition model of electrolyte solutions. AIChE J. 36(1990) 370-386.
[2] Bates, R. G., Determination of pH Theory and Practice, 2nd ed., John Wiley, New York (1965).
[3] Bates, R.G. ; Staples, B.R.; Robinson, R.A., Ionic hydration and single ion activities in unassociated chlorides at high ionic strengths, Anal. Chem. 42 (1970) 867-871.
[4] Bromley, L.A., Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19 (1973) 313–320.
[5] Chen, C.C.; Britt, H.I.; Boston, J.F.; Evans, L.B., Longitudinal and lateral thermal dispersion in packed beds. Part I: Theory. AIChE J. 31 (1982) 588–596.
[6] Clegg, S. L.; Milioto, S. and Palmer, D. A., Osmotic and Activity Coefficients of Aqueous (NH4)2SO4 as a Function of Temperature, and Aqueous (NH4)2SO4 - H2SO4 Mixtures at 298.15 K and 323.15 K. J. Chem. Eng. Data, 41(1996) 455-467.
[7] Covington, A.K.; Lilley, T.H.; Robinson; R.A., Excess free energies of aqueous mixtures of some alkali metal halide salt pairs. J. Phys. Chem. 72(1968) 2759-2763
[8] Dinane, A.; Guendouzi, M. El; Mounir, A., Hygrometric determination of water activities, osmotic and activity coefficients of (NaCl + KCl)(aq) at T = 298.15 K. J. Chem. Thermodynamics, 34(2002a) 423-441.
[9] Dinane, A.; Guendouzi, M. El and Mounir, A., Hygrometric determination of the water activities and the osmotic and activity coefficients of (ammonium chloride + sodium chloride + water) atT = 298.15 K, J. Chem. Thermodynamics, 34(2002b) 783-793.
[10] Dinane, A.; Guendouzi, M. El and Mounir, A., Thermodynamic properties of {(NH4)2SO4(aq) + Li2SO4(aq)} and {(NH4)2SO4(aq) + Na2SO4(aq)} at a temperature of 298.15 K. J. Chem. Thermodynamics, 34(2002c) 1329-1339.
[11] Dinane, A.; Guendouzi, M. El and Mounir, A., Thermodynamic properties of the system MgSO4–MnSO4–H2O at 298.15 K. Fluid Phase Equilibria, 202(2002d) 221-231.
[12] Dinane, A.; Guendouzi, M. El and Mounir, A., Hygrometric determination of the thermodynamic properties of the system MgSO4–Na2SO4–H2O at 298.15 K. Fluid Phase Equilibria, 201(2002e) 233-244.
[13] Dinane, A.; Mounir, A., Water activities, osmotic and activity coefficients in aqueous mixtures of sodium and magnesium chlorides at 298.15 K by the hygrometric method. Fluid Phase Equilibria, 206(2003) 13-25.
[14] Downes, C. J., Osmotic and activity coefficients for system sodium chloride - manganese(II) chloride - water at 25.deg., J. Chem. Eng. Data, 18(1973) 412-416.
[15] Ghosh, S.; Patwardhan, V.S., Aqueous solutions of single electrolytes: a correlation based on ionic hydration. Chem. Eng. Sci. 45 (1990) 79–87
[16] Guendouzi, M. El; Benbiyi, A.; Dinane, A.; Azougen, R., The thermodynamic study of the system LiCl–KCl–H2O at the temperature 298.15 K. Computer Coupling of Phase Diagrams and Thermochemistry, 27(2003a) 213-219.
[17] Guendouzi, M. El; Mounir, A. and Dinane, A., Thermodynamic Properties of Aqueous Mixtures of Magnesium and Ammonium Sulfates, J. Chem. Eng. Data, 48(2003b) 529-534.
[18] Guendouzi, M. El and Abdelkbir, E., Thermodynamic Properties of the Mixed Electrolytes {(y)NH4Cl + (1 - y)(NH4)2SO4}(aq) at the Temperature 298.15 K, J. Chem. Eng. Data,: 49(2004) 186-191.
[19] Guggenheim, E.A., The specific thermodynamic properties of aqueous solutions of strong electrolytes. Philosophical Magazine 19(1935) 588-643
[20] Haghtalab, A.; Vera, J.H., A nonrandom factor model for the excess gibbs energy of electrolyte solutions. AIChE J., 34(1988) 803-813.
[21] Hamer, W.J.; Wu, Y.C., Osmotic Coefficients and Mean Activity Coefficients of Uni-univalent Electrolytes in Water at 25°C. J. Phys. Chem. Ref. Data, 1 (1972) 1047–1054.
[22] Hu, Y.F. and Wang, Z.C., Isopiestic studies on {NaCl (mB) + NH4Cl (mC) + BaCl2 (mD)}(aq) at the temperature 298.15 K. A quaternary system obeying Zdanovskii's rule. J. Chem. Thermodynamics, 26(1994) 429-433.
[23] Kawaguchi,Y.; Kanai, H.; Kajiwara, H. and Arai,Y., Correlation for Activities of Water in Aqueous Electrolyte Solutions Using ASOG Model. J. Chem. Eng. Japan, 14(1981) 243-246.
[24] Khoshkbarchi, M.K.; Vera, J.H., Measurement and correlation of ion activity in aqueous single electrolyte solutions. AIChE J. 42 (1996) 249-258.
[25] Kielland, J., Individual Activity Coefficients of Ions in Aqueous Solutions, J. Am. Chem. Soc. 59 (1937) 1675-1938
[26] Kumar, A., Prediction of activity coefficients of electrolytes in aqueous mixed electrolyte solutions, Fluid Phase Equilib. 43 (1988) 21-27.
[27] Kuschel, F.; Seldel, J., Osmotic and activity coefficients of aqueous potassium sulfate-magnesium sulfate and potassium chloride-magnesium chloride at 25.degree.C. J. Chem. Eng. Data, 30(1985) 440-445.
[28] Lin, C.L.; Tseng, H.C.; Lee, L.S., A three-characteristic-parameter correlation model for strong electrolyte solutions. Fluid Phase Equilibria. 152 (1998) 169–185
[29] Lin,C.L.; Lee, L.S., A two-ionic-parameter approach for ion activity coefficients of aqueous electrolyte solutions. Fluid Phase Equilibria. 205 (2003) 69–88
[30] Lu, X.H.; Wang, Y.R. and Shi, J., Prediction of vapor—liquid equilibria for electrolyte solution by the extended pitzer (1980) model part 1. physical interpretation of the model parameter. Fluid Phase Equilib. 43(1988) 137-152
[31] Malatesta, F., On the Rodil-Vera method for determining ion activity coefficients. Fluid Phase Equilib. 233(2005) 103-109
[32] Malatesta, F., On the experimental determinations of ion activity coefficients. Fluid Phase Equilib.
[33] Meissner, H. P.; Tester, J.W., Activity Coefficients of Strong Electrolytes in Aqueous Solutions. I&EC Proc. Des. Dev. 11(1972) 128-133
[34] Padova, J.; Saad, D., Thermodynamics of Mixed Electrolyte Solutions. VIII. An Isopiestic study of the Ternary System KCl-MgCl2-H2O at 250C. Journal of Solution Chemistry, 6(1977) 57-71.
[35] Pitzer, K.S., Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77 (1973) 268–277
[36] Pitzer, K.S., Mayorga, G., Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77 (1973) 2300–2307.
[37] Pitzer,K.S.; Kim, J.J., Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96 (1974) 5701–5707
[38] Pitzer, K.S., Activity coefficients in electrolyte solutions 2nd ed. CRC press, Boca Raton, Florida, 1991.
[39] Planche, H.; Renon, H., Mean spherical approximation applied to a simple but nonprimitive model interaction for electrolyte solutions and polar substances. J. Phys. Chem. 85 (1981) 3924–3929.
[40] Plarford, R.F., Isopiestic measurements on the system water - sodium chloride - sulfuric acid disodium salt at 25.degree. J. Chem. Eng. Data. 13(1968) 46-48.
[41] Plarford, R. F., Thermodynamics of mixed salt solutions: Excess Gibbs energies of mixing for the six ternary systems formed from aqueous MgCl2, Mg(NO3)2, CaCl2, and Ca(NO3)2 at 25°C. J. Chem. Thermodynamics, 3(1971) 319-324.
[42] Rard. J.A. and Miller, D.G., Isopiestic determination of the osmotic and activity coefficients of aqueous mixtures of sodium chloride and strontium chloride at 25.degree.C. J. Chem. Eng. Data, 27(1982) 342 – 346.
[43] Rard, J.A.; Miller, D.G., Isopiestic determination of the osmotic and activity coefficients of aqueous mixtures of sodium chloride and magnesium chloride at 25.degree.C. J. Chem. Eng. Data, 32(1987) 85-92.
[44] Rasaiah, J.C.; Friedman, H.L., Integral Equation Methods in the Computation of Equilibrium Properties of Ionic Solutions. J. Chem. Phys. 48(1968) 2742-2752
[45] Reddy, D.C.; Ananthaswamy, J., Thermodynamics of electrolyte solutions: activity and osmotic coefficients of the ternary system potassium chloride-barium chloride-water at 25, 35, and 45.degree.C. J. Chem. Eng. Data. 35(1990a) 144-147.
[46] Reddy, D.C. and Ananthaswamy, J., Thermodynamic properties of aqueous electrolyte solutions: an e.m.f. study of {KCl(mA) + SrCl2(mB)}(aq) at the temperatures 298.15 K, 308.15 K, and 318.15 K. J. Chem. Thermodynamics, 22(1990b) 1015-1023.
[47] Reilly, P.J.; Wood, R.H.; Robinson, R.A., Prediction of osmotic and activity coefficients in mixed-electrolyte solutions. J. Phys. Chem. 75(1971) 1305-1315
[48] Robinson, R.A.; Stokes, R.H., Electrolyte Solutions 2nd ed. Butterworths, London, 1959.
[49] Robinson, R.A., Activity Coefficients Of Sodium Chloride And Potassium Chloride In Mixed Aqueous Solutions At 25. J. Phys. Chem. 65(1961) 662-667.
[50] Robinson, R.A.; Bower, V.E., Properties of Aqueous Mixtures of Pure Salts. Thermodynamics of the Ternary System: Water-Calcium Chloride-Magnesium Chloride at 25 0C. Journal of Research of the National Bureau of Standards-A: Physics and Chemistry, 70A(1966a) 305-311.
[51] Robinson, R.A.; Bower, V.E., Properties of Aqueous Mixtures of Pure Salts. Thermodynamics of the Ternary System: Water-Sodium Chloride-Calcium Chloride at 25 0C. Journal of Research of the National Bureau of Standards-A: Physics and Chemistry, 70A(1966b) 313-318.
[52] Robinson, R.A.; Covington, A.K., The Thermodynamics of the Termary System: Water-Potassium Chloride-Calcium Chloride at 25 0C. Journal of Research of the National Bureau of Standards-A: Physics and Chemistry, 72(1968) 239-245.
[53] Robinson, R.A.; Wood, R.H.; Reilly, P.J., Calculation of excess Gibbs energies and activity coefficients from isopiestic measurements on mixtures of lithium and sodium salts. J. Chem. Thermodynamics. 3(1971a) 461-471.
[54] Robinson, R. A. and Lim., C. K., Osmotic coefficients of aqueous solutions of calcium chloride and calcium perchlorate at 25.deg., J. Chem. Eng. Data, 16(1971b) 203-204.
[55] Robinson, R.A.; Platford, R.F.; Childs, C.W., Thermodynamics of Aqueous Mixtures of Sodium Chloride, Potassium Chloride, Sodium Sulfate, and Potassium Sulfate at 250C. Journal of Solution Chemistry, 1(1972) 167-172.
[56] Seldel, J.; Rossner, K. and Kuschel, F., Isopiestic determination of the osmotic and activity coefficients of aqueous mixtures of potassium chloride and magnesium sulfate up to high concentrations at 25.degree.C. J. Chem. Eng. Data, 30(1985) 289-292.
[57] Shatkay, A.; Lerman, A., Individual activities of sodium and chloride ions in aqueous solutions of sodium chloride. Anal. Chem. 41 (1969) 514-517.
[58] Stokes, R.H.; Robinson, R.A., Ionic Hydration and Activity in Electrolyte Solutions. J. Am. Chem. Soc. 70(1948) 1870-1878
[59] Taghikhani, V.; Modarress, H.; Vera, J.H., Individual anionic activity coefficients in aqueous electrolyte solutions of LiCl and LiBr. Fluid Phase Equilibria. 166 (1999) 67-77.
[60] Taghikhani, V.; Modarress, H.; Khoshkbarchi, M.K.; Vera, J.H., Application of the MSA to the modeling of the activity coefficients of individual ions. Fluid Phase Equilibria. 167 (2000) 161-171.
[61] Taghikhani, V.; Modarress, H.; Vera, J.H., Measurement and Correlation of the Individual Ionic Activity Coefficients of Aqueous Electrolyte Solutions of KF, NaF and KBr. Can. J. Chem. Eng. 78 (2000) 175-181.
[62] Tasaka, M.; Kiyono, R.; Taniguchi, A., Experimental evaluation of single ion activities. J. Membr. Sci. 185 (2001) 245-251
[63] Todorović, M. and Ninković, R., Osmotic and activity coefficients of {xMg(NO3)2+ (1−x)MgSO4}(aq) at the temperature 298.15 K. J. Chem. Thermodynamics, 27(1995) 369-375.
[64] Todorović, M. and Ninković, R., Osmotic and activity coefficients of {xK2SO4 + (1−x)MgSO4}(aq) at the temperature 298.15 K. J. Chem. Thermodynamics, 28(1996) 491-496.
[65] Vera, G.W.; Rodil, E.; Vera, J.H., On the activity of ions and the junction potential: Revised values for all data. AIChE J. 50 (2004) 445–462.
[66] Vera, G.W.; Vera, J.H., On the measurement of individual ion activities. Fluid Phase Equilibria. 236 (2005) 96-110.
[67] Wu, Y.C.; Rush, R.M.; Scatchard, G., Osmotic and activity coefficients for binary mixtures of sodium chloride, sodium sulfate, magnesium sulfate, and magnesium chloride in water at 25.deg.. I. Isopiestic measurements on the four systems with common ions. J. Phys. Chem. 72(1968) 4048-4053.
[68] Wu, Y.C.; Rush, R.M. and Scatchard, G., Osmotic and activity coefficients for binary mixtures of sodium chloride, sodium sulfate, magnesium sulfate, and magnesium chloride in water at 25.deg.. II. Isopiestic and electromotive force measurements on the two systems without common ions. J. Phys. Chem., 73(1969) 2047-2053.
[69] Yan, W., Measurement and correlation of activity coefficients for (sodium bromide + lithium bromide + water) at T = 298.15 K. J. Chem. Thermodynamics, 32(2000) 631-637.
[70] Zaytsev, I. D.; Aseyev, G. G., Properties of Aqueous Solutions of Electrolytes, CRC Press, Boca Raton, FL (1992).
[71] Zhang, J.; Gao, S.Y.; Xia., S.P., Thermodynamic Study on Mixed Electrolyte KCl and K2SO4 Aqueous Systems from EMF Measurements at 298.15 K, J. Chem. Eng. Data. 49(2004) 444-448.
指導教授 李亮三(Liang-Sun Lee) 審核日期 2005-12-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明