博碩士論文 89341004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.145.58.158
姓名 楊閎舜(Hong-sung Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 薄膜反應器與變壓吸附整合程序及填充塊狀吸附床變壓吸附程序之研究
(Study of Membrane Reactor Integrated Pressure Swing Adsorption Process and Monolithic Adsorber Applied to Pressure Swing Adsorption)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 工業快速的發展,造成了化石能源短缺與空氣污染嚴重。尋找替代可行能源及減少污染氣體的排放已為當前迫切之問題。而其中氫能為一種兼具環保與永續概念的能源,因此由於人類對於氫能的渴望及新技術的開發,擴大對氫能源的使用。因此本論文第一部分為整合Pd複合薄膜反應器與變壓吸附程序,進行甲醇水蒸汽重組產氫數值模擬研究。藉由兩者結合發現於薄膜反應器中增加進料流量時不利甲醇進行水蒸汽重組反應,甲醇轉化率下降,且對於滲透層內氫氣回收率亦減少,對於滲透層側氫氣的純度則會先升高後下降。當增加進料層壓力與降低滲透層壓力時無論氫氣純度及回收率皆越大。對於反應器之滲透層產物進入變壓吸附程序中顯示回沖洗比與進料吸附壓力愈大時,對於氫氣純化越好,而相對將減少其氫氣回收率。排氣壓力降低時,有助於得到純度90%H2,但相對的較不利於氫氣的回收。
結構性吸附劑相較於傳統填充吸附床系統可有效增加其分離能力,而塊狀結構為一種具有流動低壓降特性,因此非常適合發展應用變壓吸附程序。本論文第二至四部分為發展出塊狀結構吸附床模擬程式,首先第二部分為利用數值模擬丁烷與空氣混和氣於碳塗層陶瓷塊狀吸附床(carbon-coated ceramic monoliths)進行其貫流曲線,研究顯現貫流所需時間與長度成正比關係。增加流速不利於流體徑向質量傳送,因此貫流時間縮短。增加碳塗佈層厚度使質傳進入碳塗佈層進行吸附達到吸附相內濃度飽和時間也增加,因此也使得貫流時間增加。
第三部分為將碳塗層陶瓷塊狀吸附床應用於變壓吸附程序中分離丁烷與空氣混和氣及二氧化碳與氮氣混和氣,其結果顯示於純化丁烷/空氣應用於三步驟程序中增加碳塗佈層厚度可有效增加丁烷的純度。利用增加各步驟時間皆能增加純度,但回收率僅在逆向減壓產氣步驟時間增加時增加。對於純化二氧化碳/氮氣變壓吸附程序應用中碳塗佈層有較大之質傳阻力不利二氧化碳質傳擴散。因此利用增加停滯步驟的五步驟程序為最佳。
由於溫室氣體中二氧化碳的排放主要來自於燃燒化石燃料,而移除回收二氧化碳為減緩溫室效應之首要工作。本論文第四部分為探討利用塊狀碳吸附床(carbon monolithic adsorber)快速變壓吸附程序進行煙道氣中二氧化碳回收。模擬結果顯示於改變步驟時間中,藉由產氣潤濕步驟時間的增長能有效增進二氧化碳回收純度。此外對於相同壓力循環時間程序可藉由增加儲槽體積及縮短吸附床長度來提升二氧化碳回收純度。
摘要(英) As the industry fastly developed, it made shortage of fossile energy and serious air pollution. It is important to find out the renewable energy and reduce the emission of gas pollutant. Hydrogen energy is one kind of non-polluting and renewable fuel. As the people demend for more hydrogen energy and discoved new hydrogen production technology, it increased the utilization of hydrogen energy. The first part of study is to simulate hydrogen purification by applying composite palladium membrane reactor combined with pressure swing adsorption (PSA) hybrid process. This membrane reactor is adapted to produce hydrogen from methanol steam-reforming, where the permeated membrane hydrogen is mixed with sweep gas. The gas mixture from the membrane reactor is then fed into a dual-bed six-step pressure swing adsorption process, filled with zeolite 5A for hydrogen purification.
The new-shape-structured materials, carbon monoliths, are characterized by straight parallel channels separated by thin wall, high void fraction and large geometric surface area, resulting in a low pressure drop under high flow rate and large contact area. These properties make carbon monoliths have the advantage on adsorption application.
The second part of this study simulates the dynamic adsorption of butane on carbon-coated ceramic monoliths under isothermal condition. The parameters considered in the mathematical model include the mass transfer coefficient to the channel wall, effective diffusion within the pore structure and the axial dispersion model. The adsorption is expressed by the Dubinin-Radushkevich isotherm. The effect on increasing thickness of carbon-coated layer could raise the amount of adsorbate, although the thicker carbon layer would take longer time for stream diffusion to reach the saturated adsorption and breakthrough.
Then the third part of this study develops mathematic model and simulates the adsorption separation of butane/air and CO2/N2 on carbon-coated ceramic monoliths for pressure swing adsorption processes under isothermal condition. In the three-step butane/air PSA process simulation study, increasing the thickness of carbon coated layer can increase the butane purity and recovery at the same valve value operation, but increasing the feed pressure will decrease the butane purity and recovery. For the other five-step pressure swing adsorption process for CO2/N2 on carbon-coated monoliths, when the mass transfer resistance between the gas and solid phase is small than that in the carbon coated layer, using an idle step is useful to improve the CO2 purity with an appropriate idle step time.
The fourth part of study simulates the adsorption separation of CO2 from flue gas with 17% CO2 and 83% N2 on a carbon monolithic adsorber for a three-step rapid pressure swing adsorption process, which operates in the sequence of adsorption, rinse and desorption, under isothermal condition. The simulation results exhibit that the rinse step with a CO2 rich stream should be employed to enhance product purity. As to the effect of step time, increasing the rinse step time shows the greatest effect on increasing purity and decreasing recovery of CO2. Additinally, decreasing adsorber length and increasing rinse pressure are beneficial to improving the CO2 purity in production, but the CO2 recovery decreases at the same time.
關鍵字(中) ★ 變壓吸附程序
★ 塊狀碳
★ 薄膜反應器
關鍵字(英) ★ carbon monolith
★ membrane reactor
★ pressure swing adsorption
論文目次 摘要 I
Abstract III
目錄 V
圖目錄 X
表目錄 XVIII
第一章 緒論 1
1.1 潔淨氫能源的發展與應用 1
1.2 薄膜反應器之介紹及文獻回顧 5
1.3 變壓吸附原理之介紹 12
1.4 變壓吸附程序之文獻回顧 22
1.5 塊狀碳之介紹及文獻回顧 29
1.6 研究動機與目的 35
第二章 薄膜反應器與變壓吸附整合程序 38
2.1 基本假設 38
2.2統制方程式 40
2.3 甲醇水蒸汽重組反應 53
2.4 參數推導 55
2.4.1軸向擴散係數 55
2.4.2 薄膜支撐層有效擴散係數 55
2.5求解與數值方法 57
2.5.1 閥公式 57
2.5.2 求解方法 58
2.6 結果與討論 61
2.6.1薄膜反應器中進料量與沖洗量之影響 61
2.6.2 薄膜反應器中進料層壓力與滲透層壓力之影響 68
2.6.3 薄膜反應器中Pd薄膜厚度及微孔性支撐層孔洞大小之影響 73
2.5.4 薄膜反應器中進料水蒸汽/甲醇比之影響 75
2.5.5 變壓吸附程序中進料濃度之影響 75
2.5.6 變壓吸附程序中 80
2.5.7 變壓吸附程序中進料壓力之影響 80
2.5.8 變壓吸附程序中排氣壓力之影響 80
2.6 結論 85
第三章 丁烷吸附於碳塗層陶瓷塊狀貫流曲線之研究 86
3.1 基本假設 86
3.2 統制方程式 88
3.3 吸附平衡關係式 91
3.4參數推導 93
3.4.1 軸向分散係數及有效擴散係數 93
3.4.2 質量傳送係數 93
3.5 求解與數值方法 94
3.6 結果與討論 94
3.6.1 驗證與碳塗層陶瓷塊狀長度影響 94
3.6.2 進料濃度之影響 96
3.6.3 進料孔隙速率之影響 101
3.3.4 進料溫度之影響 104
3.3.5 塗佈碳層厚度之影響 104
3.6 結論 110
第四章 碳塗層陶瓷塊狀吸附床之變壓吸附程序研究 111
4.1 基本假設 111
4.2 統制方程式 112
4.3 吸附平衡關係式 116
4.4求解與數值方法 118
4.5 結果與討論(一) 120
4.5.1塗佈碳層厚度之影響 121
4.5.2 第一步驟時間之影響 124
4.5.3 第二步驟時間之影響 125
4.5.4 第三步驟時間之影響 132
4.5.5 進料濃度之影響 132
4.5.6 進料壓力之影響 137
4.5.7 吸附床長度之影響 137
4.6 結果與討論(二) 147
4.6.2塗佈碳層厚度之影響 150
4.6.3 第二步驟時間之影響 157
4.6.4 第三步驟時間之影響 157
4.6.5 第四步驟時間之影響 162
4.6.6 第五步驟時間之影響 162
4.6.7進料濃度之影響 166
4.6.8進料壓力之影響 171
4.6.9 吸附床長度之影響 171
4.7 結論 176
第五章 塊狀碳吸附床之快速變壓吸附程序回收及純化煙道氣中二氧化碳研究 177
5.1 基本假設 177
5.2 統制方程式 179
5.3 吸附平衡關係式及參數推導 181
5.4 求解與數值方法 183
5.5 結果與討論 184
5.5.1 第一步驟時間之影響 185
5.5.2 第二步驟時間之影響 192
5.5.3 第三步驟時間之影響 192
5.5.4 進料壓力及潤濕壓力之影響 196
5.5.5 吸附床長度及儲槽體積之影響 196
5.5 結論 205
六、總結 206
符號說明 210
參考文獻 214
附錄A 流速之估算方法 224
附錄B 各基本變壓吸附程序中壓力及濃度分佈圖 228
參考文獻 Ahn H. and S. Brandani, “Dynamics of carbon dioxide breakthrough in a carbon monolith over a wide concentration range”, Adsorpt., Vol. 11, pp. 473-477, 2005.
Ali, J.K. and D.W.T. Rippin, “Comparing mono- and bimetallic noble-metal catalysts in a catalytic membrane reactor for methylcyclohexane dehydrogenation”, Ind. Eng. Chem. Res, Vol. 34, pp. 722-729, 1995.
Aris, A., “On the dispersion of a solute in a fluid through a tube”, Proceedings of the Royal Society A, Vol. 235, pp. 67-77, 1956.
Batta, L. B., to Union Carbide Corporation, U.S. Patent 3,636,679, 1972.
Barbieri, G., V. violante, F.P. Dimaio, A. Criscuoli and E. Drioli, “Methane steam reforming analysis in a palladium-based catalytic membrane reactor”, Ind. Eng. Chem. Res., Vol. 36, pp. 3369-3374, 1997.
Barg, C., A. R. Secchi, J. O. Trierweiler and J. M. P. Ferreira, “Simulation of an industrial PSA unit”, Latin American Applied Research, Vol. 31, pp. 469-475, 2001.
Becker, Y.L., A.G. Dixon, W.R. Moser and Y.H. Ma, “Modeling of ethylbenzene dehydrogenation in a catalytic membrane reactor”, J. Membr. Sci., Vol. 77, pp. 223-244, 1993.
Berlin, N. H., to Esso Research and Engineering Company, U.S. Patent 3,280,536, 1966.
Bird, R.B., W.E. Stewart and E.N. Lightfoot, Transport Phenomena, Wiley, New York, 1960.
Blanco, J., P. Avila, J.M.R. Blas, E. Alvarez and M.P. Martin, Proc. 9th Int. Conf. Coal. Sci., Essen, Germany, 1997.
Carno M.J. and J.C. Gubulin, “Ethanol-Water Separation in the PSA Process”, Adsorpt., Vol. 8, pp. 235-248, 2002.
Champagnie, A.M., T.T. Tsotsis, R.G. Minet and I.A. Webster, “A high temperature catalytic membrane reactor for ethane dehydrogenation”, Chem. Eng. Sci., Vol. 45, pp. 2423-2429, 1990.
Chen, C. Y., K. C. Lee, and C. T. Chou, “Concentration and recovery of carbon dioxide from flue gas by vacuum swing adsorption”, J. Chin. Inst. Chem. Eng., Vol. 34, pp. 135-142, 2003.
Choi, W. K., T. I. Kwon, Y. K. Yeo, H. Lee, H. K. Song, and B. K. Na, “Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery”, Korean J. Chem. Eng., Vol. 20, pp. 617-623, 2003.
Chou, C. T. and C. Y. Chen, “Carbon dioxide recovery by vacuum swing adsorption”, Sep. Purif. Technol., Vol. 39, pp. 51-65, 2004.
Chue, K.T., J.N. Yoo, S.H. Cho, and R.T. Yang, “Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption”, Ind. Eng. Chem. Res., Vol. 34, pp. 591-598, 1995.
Collins, J. J., to Union Carbide Corporation, U.S. Patent 4,026,680, 1977.
Crittenden, B., A. Patton, C. Jouin and S. Perera, “Carbon monoliths: A comparison with granular materials”, Adsorpt., Vol. 11, pp. 537-541, 2005.
DaLiso, E.M., I.M. Lanchman, M.D. Patil and K.E. Zaun, US Patent 5,356,852, 1994.
Davidson, A.P. and M. Salim, British Ceram., Proc., Vol. 43, pp. 119, 1988.
Diagne D., M. Goto and T. Hirose, “Parametric studies on CO2 separation and recovery by a dual reflux PSA process consisting of both rectifying and stripping sections ”, Ind. Eng. Chem. Res., Vol. 34, pp. 3083-3089, 1995.
Diagne, D., M. Goto, and T. Hirose, “Numerical analysis of a dual refluxed PSA process during simultaneous removal and concentration of carbon dioxide dilute gas from air”, J. Chem. Tech. Biotechnol., Vol. 65, pp. 29-38, 1996.
Doong, S. J. and R. T. Yang, “Bulk separation of multicomponent gas mixtures by pressure swing adsorption: pore/surface diffusion and equilibrium models”, AIChE J., Vol. 32, pp. 397-410, 1986.
Doong, S. J. and R. T. Yang, “Bidisperse pore diffusion model for zeolite pressure swing adsorption”, AIChE J., Vol. 33, pp. 1045-1049, 1987.
Esteves, I.A.A.C., and J.P.B. Mota “Simulation of a new hybrid membrane/pressure swing adsorption process for gas separation”, Desalination, Vol. 148, pp. 275-280, 2002.
Farooq, S. and D.M. Ruthven, “A comparison of linear driving force and pore diffusion models for a pressure swing adsorption bulk separation process”, Chem. Eng. Sci., Vol. 45, pp. 107-115, 1990.
Fu, C.H. and J.C.S.Wu, “Mathematical simulation of hydrogen production via methanol steam reforming using double-jacketed membrane reactor”, Int. J. Hydrogen Energy, Vol. 32, pp.4830-4839, 2007.
Gadkaree, K.P., “Carbon honeycomb structures for adsorption applications”, Carbon, Vol. 36, pp.981-989, 1998.
Gatica, J.M., J.M. Rodriguez-Izequierdo, D. Sanchez, T. Chafik, S. Harti, H. Zaitan and H. Vidal, “Originally prepared carbon-based honeycomb monoliths with potential application as VOCs adsorbents”, C. R. Chimie, Vol. 9, pp. 1215-1220, 2006.
Gobina, E., and R. Hughes,“Ethane dehydrogenation using a high temperature catalytic membrane reactor”, J. Membr. Sci., Vol. 90, pp. 11-19, 1994.
Gomes, V. G. and M. M. Hassan “Coalseam methane recovery by vacuum swing adsorption”, Sep. Purif. Technol., Vol. 24, pp. 189-196, 2001.
Gorbach, A.B., M. Stegmaier, G. Eigenberger, J. Hammer and H.G. Fritz, ”Compact pressure adsorption processes-impact and potential of new-type adsorbent-polymer monolith”, Adsorpt., Vol. 11, pp. 515-520, 2005.
Grande, C.A. and A.E. Rodrigues, “Adsorption of Binary Mixtures of Propane−Propylene in Carbon Molecular Sieve 4A”, Ind. Eng. Chem. Res., Vol. 43, pp. 8057-8065, 2004.
Guan J. and X. Hu, “Simulation and analysis of pressure swing adsorption: ethanol drying process by the electrical analogue”, Sep. Purif. Techol., Vol. 31, pp. 31-35, 2003.
Guerin de Montgareuil, P. and D. Domine, to Societe L' Air Liquide, Paris, U.S. Patent 3,155,468, 1964.
Gulati, S.T., A. Cybulski and J.A. Moulijn, Structured Catalyst and Reactors, Marcel Dekker, New York, pp. 15-58, 1998.
Hassan, M.M., D.M. Ruthven, and N. S. Raghavan, “Air separation by pressure swing adsorption on a carbon molecular sieve”, Chem. Eng. Sci., Vol. 41, pp. 1333-1343, 1986.
Hassan, M.M. and N.S. Raghavan, “Pressure swing adsorption air separation on a carbon molecular seive-II. investigation of a modified cycle with pressure equalization and no purge”, Chem. Eng. Sci., Vol. 42, pp. 2037-2043, 1987.
Harold, M.P., B. Nair and G. Kolios, “Hydrogen generation in a Pd membrane fuel processor: assessment of methanol-based reaction systems”, Chem. Eng. Sci., Vol. 58, pp. 2551-2571, 2003.
Hermann, C., P. Quicker and R. Dittmeyer, “Mathematical simulateion of catalytic dehydrogenateion of ethylbenzene to styrene in a composite palladium membrane reactor”, J. Membr. Sci., Vol. 136, pp. 161-172, 1997.
Huang, W.C. and C.T. Chou, “Comparison of radial- and axial-flow rapid pressure swing adsorption processes”, Ind. Eng. Chem. Res., Vol. 42, pp. 1998-2006, 2003.
Itoh, N., Y. Kaneko and A. Igarashi, “Efficient hydrogen production via methanol steam reforming by preventing back-permeation of hydrogen in a palladium membrane reactor”, Ind. Eng. Chem. Res., Vol. 41, pp. 4702-4706, 2002.
Jee, J.G., M. B. Kim and C. H. Lee, “Adsorption characteristics of hydrogen mixtures in a layered bed: binary, ternary, and five-component mixtures”, Ind. Eng. Chem. Res., Vol. 40, pp. 868-878, 2001.
Keller II, G.E. and R.L. Jones, “A new process for adsorption separation of gas stream in adsorption and ion exchange with synthetic zeolites”, ACS Symposium Series, 135, pp. 275-286, 1980.
Kikkinides, E.S., and R.T. Yang, “Simultaneous SO2/NOx removel and SO2 recovery from flue gas by pressure swing adsorption ”, Ind. Eng. Chem. Res., Vol. 30, pp. 1981-1989, 1991.
Kikkinides, E.S., R.T. Yang and S.H. Cho, “Concentration and recovery of CO2 from flue gas by pressure swing adsorption”, Ind. Eng. Chem. Res., Vol. 32, pp. 2714-2720, 1993.
Kim, J. N., K. T. Chue, K. I. Kim, S. H. Cho, and J. K. Kim, “Non-isothermal adsorpiton of nitrogen-carbon dioxide mixture in a fixed bed of zeolite-X”, J. Chem. Eng. Jpn., Vol. 27, pp. 45-51, 1994.
Knaebel, S. P., D. Ko and L. T. Biegler,”Simulation and optimization of a pressure swing adsorption system: recovering hydrogen from methane”, Adsorpt., Vol. 11, pp. 615-620, 2005.
Ko, D., R. Siriwardane and L. T. Biegler, “Optimization of a pressure-swing adsorption process using zeolite 13X for CO2 sequestration”, Ind. Eng. Chem. Res., Vol. 42, pp. 339-348, 2003.
Kowler, D. E. and R. H. Kadlec, “The optimal control of a periodic adsorber”, AIChE J., Vol. 18, pp. 1207-1212, 1972.
Lee, C. H., J. Yang, and H. Ahn, “Effects of carbon-to-zeolite ratio on layered bed H2 PSA for coke oven gas”, AIChE J., Vol. 45, pp. 535-545, 1999.
Li, A., W. Liang and R. Hughes, “The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless-steel membrane”, J. Membr. Sci., Vol. 165, pp. 135-141, 2000.
Lin, Y. M. and M.H. Rei, “Study on The Hydrogen Production from Methanol Stream Reforming in Supported Palladium Membrane Reactor”, Catal. Today, Vol. 67, pp. 77-84, 2001.
Malek, A., and S. Farooq, “Study of a six-bed pressure swing adsorption process”, AIChE J., Vol. 43, pp. 2509-2523, 1997.
Marsh, W. D., F. S. Pramuk, R. C. Hoke, and C. W. Skarstrom, to Esso Research and Engineering Company, U. S. Patent 3,142,547, 1964.
McCombs, N. R., to Union Carbide Corporation, U.S, Patent 3,738,087, 1973.
Mendes, A.M.M., C.A.V. Costa and A. E. Rodrigues, “Oxygen separation from air by psa: modelling and experimental results part I: isothermal operation”, Sep. Purif. Technol., Vol. 24, pp. 173-188, 2001.
Menard, D., X. Py and N. Mazet, “Activated carbon monolith of high thermal conductivity for adsorption process improvement Part A: Adsorption step”, Chem. Eng. Proc., Vol.44, pp. 1029-1038, 2005.
Na, B. K., H. Lee, K. K. Koo and H. Song, “Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Gas Using Activated Carbon”, Ind. Eng. Chem. Res., Vol. 41, pp. 5498-5503, 2002.
Nakao, S. and M. Suzuki, “Mass transfer coefficient in cyclic adsorption and desorption”, J. Chem. Eng. Jpn., Vol. 16, pp. 114-119, 1983.
Park, J. H., J. N. Kim, and S. H. Cho, “Performance analysis of four-bed H2 PSA process using layered beds”, AIChE J., Vol. 46, pp. 790-802, 2000)
Park, J. H., H. T. Beum, J. N. Kim and S. H. Cho, “Numerical analysis on the power consumption of the PSA process for recovering CO2 from Flue Gas”, Ind. Eng. Chem. Res., Vol. 41, pp. 4122-4131, 2002.
Peng, Y.L., T. Tao and J.L. Williams, in: Proceedings of the 24th Biennial Conference on Carbon, 1997.
Peppley, B. A., J. C. Amphlett, L. M. Kearns and R. F. Mann, “Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1.: The reaction network”, Appl. Catal. A: Gen., Vol. 179, pp. 21-29, 1999.
Pugsley T.S., F. Berruti and A, Chakma, “Computer simulation of a novel circulating fluidized bed pressure-temperature swing adsorption for recovering carbon dioxide from flue gases”, Chem. Eng. Sci., Vol. 49, pp. 4465-4481, 1994.
Rege, S. U. and R. T. Yang, “Propane/propylene separation by pressure swing adsorption: sorbent comparison and multiplicity of cyclic steady states”, Chem. Eng. Sci., Vol. 57, pp. 1139-1149, 2002.
Rezac, M.E., W.J. Koros and S.J. Miller, “Membrane-assisted dehydragenation of n-butane influence of membrane properties on system performance”, J. Membr. Sci., Vol. 93, pp. 193-201, 1994.
Ribeiro, R. P., T. P. Sauer, F. V. Lopes, R. F. Moreira, C. A. Grande and A. E. Rodrigues, “Adsorption of CO2, CH4, and N2 in activated carbon honeycomb monolith” J. Chem. Eng. Data, Vol. 53, pp. 2311-2317, 2008,
Rubel A.M. and J.M. Stencel, “The effect of low-coneentration SO2 on the adsorption of NO from gas over activated carbon”, Fuel, Vol. 76, pp. 521-526, 1997.
Ruthven, D.M., Principles of Adsorption and Adsorption Processes, John Wiley & Sons Inc., New York, 1984.
Ruthven, D.M. and C. Thaeron, “Performance of parallel passage adsorbent contactor”, Gas. Sep. Purif., Vol. 10, pp. 63-73, 1996.
Ruthven, D.M., “Past progress and future challenges in adsorption research”, Ind. Eng. Chem. Res., Vol. 39, pp. 2127-2131, 2000.
Santos J.C., A.F. Portugal, F.D. Magalhães and A. Mendes, “Simulation and optimization of small oxygen pressure swing adsorption units”, Ind. Eng. Chem. Res., Vol. 43, pp. 8328–8338, 2004.
Shendalman, L.H. and J.E. Mitchell, “A Study of Heatless Adsorption in the Model System CO2 in He”, Chem. Eng. Sci., Vol. 27, pp. 1449-1458, 1972.
Sircar, S. and T. C. Golden, “Purification of hydrogen by pressure swing adsorption”, Sep. Sci. Tech., Vol. 35, pp667-687, 2000
Simo, M., C.J. Brownand and V. Hlavacek, “Simulation of pressure swing adsorption in fuel ethanol production process”, Comput. Chem. Eng., Vol. 32, pp. 1635-1649, 2008.
Siriwardane, R. V., M. Shen, E. P. Fisher and J. A. Poston, “Adsorption of CO2 on Molecular Sieves and Activated Carbon”, Energy Fuels, Vol. 15, pp. 279-284, 2001.
Siriwardane, R. V., M. S. Shen, and E. P. Fisher, “Adsorption of CO2 on zeolites at moderate temperstures”, Energy Fuels., Vol. 19, pp. 1153-1159, 2005.
Skarstrom, C.W., to Esso Research and Engineering Company, U.S. Patent 2,944,627, 1960.
Sun, Y.M., ”Catalytic Membrane Reactor-Modeling and Experimental of a Microporous Membrane Separation-Reaction System”, Ph.D. Dissertation, University of Cincinnati, 1987.
Sun Y. M., and S. J. Khang, "Catalytic Membrane for Simultaneous Chemical Reaction and Separation Applied to a Dehydrogenation Reaction", Ind. Eng. Chem. Res., Vol. 27, pp. 1136-1142, 1988.
Takamura, Y., S. Narita, J. Aoki, S. Hironaka and S. Uchida, “Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas”, Sep. Purif. Technol., Vol. 24, pp. 519-528, 2001.
Tamura, T., to T. Tamura, Tokyo, Japan, U.S. Patent 3,797,20l, l974.
Tennison, S.R., ” Phenolic-resin-derived activated carbons”, Appl. Catal., Vol. 173, pp. 289-311, 1998.
Tsotsis, T.T., A.M. Champagnie, S.P. Vasileiadis, Z.D. Ziaka and R.G. Minet, “Packed-bed catalytic membrane reactors”, Chem. Eng. Sci., Vol. 47, pp. 2903-2908, 1992.
Turnock, P. H., and R. H. Kadlec, “Separation of nitrogen and methane via periodic adsorption”, AIChE J., Vol. 17, pp. 335-342, 1971.
Valdes-Solis, G. Marban and A.B. Fuertes, “Preparation of microporous carbon-cermic cellular monoliths”, Micropor. Mesopor. Mater., Vol. 42, pp. 113-126, 2001.
Valdes-Solis, T., M.J.G. Linders, F. Kapteijn, G. Marban and A.B. Fuertes, “Adsorption and breakthrough performance of carbon-coated ceramic monoliths at low concentration on n-butane”, Chem. Eng. Sci., Vol. 59, pp. 2791-2800, 2004.
Vergunst, T., M.J.G. Linders, F. Kapteijn and J.A. Moulijn, “Carbon-based monolithic structures”, Catal. Rev., Vol. 43, pp. 291-314, 2001.
Wagner, J.L., to Union Carbide Corporation, U.S. Patent 3,430,418, l969.
Wen, C.Y. and L.T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
Wieland, S., T. Melin and A. Lamm, “Membrane reactor for hydrogen production”, Chem. Eng. Sci., Vol. 57, pp. 1571-1576, 2002.
Wild P.J. and M.J.F.M. Verhaak, “Catalytic production of hydrogen from methanol ”, Catal. Today, Vol. 60, pp. 3-10, 2000.
Williams, J.L., “Monolith structure, materials, properties and uses”, Catal. Today, Vol. 69, pp. 3-9, 2001.
Xu, X. and J.A. Moulijn, Structured catalyst and reactors, Marcel Dekker, New York, pp. 599-615, 1998.
Yang, R. T., Gas separation by adsorption processes, Butterworth, Boston, 1997.
Yang, J., and C. H. Lee, “Adsorption dynamics of a layered bed PSA for H2 recovery from coke oven gas”, AIChE J., Vol. 44, pp. 1325-1334, 1998.
Yang, R. T. and S. J. Doong, “Gas separation by pressure swing adsorption : a pore diffusion model for bulk separation”, AIChE J., Vol. 31, pp. 1829-1842, 1985.
Yang, W.S., J.C. W and L.W. Lin, “Aplication of membrane reactor for dehydrogenation of ethylbenzene”, Catal. Today, Vol. 25, pp. 315-319, 1995.
Yate, M., J. Blanco, P. Avila and M.P. Martin, ”Honeycomb monoliths of activated carbons for effluent gas purification”, Micropor. Mesopor. Mater., Vol. 37, pp. 201-208, 2000.
Yate, M., J. Blanco, M. A. Martin-Luengo and M.P. Martin, “Vapour adsorption capacity of controlled porosity honeycomb monoliths”, Micropor. Mesopor. Mater., Vol. 65, pp. 219-231, 2003.
Yu, F.D., L.A. Luo and G. Grevillot, “Adsorption isotherm of VOCs onto activated carbon monolith: experimental measurement and correlation with different models”, J. Chem. Eng. Data, Vol. 47, pp. 467-473, 2002.
Yu, F. D., L. Luo, G. Grevillot, “Electrothermal Swing Adsorption of Toluene on an Activated Carbon Monolith Experiments and Parametric Theoretical Study”, Chem. Eng. Process., Vol. 46, pp. 70-81, 2007
Zhou, L., C.Z. Lu, S.J. Bian and Y.P. Zhou,”Pure hydrogen from the dry gas of refineries via a noval pressure swing adsorption process”, Ind. Eng. Chem. Res., Vol. 401, pp. 5290-5297, 2002.
Zhou, L., J. Li, W. Su, Y. Sun, and Y. Zhou, “Experimental studies of a new compact design four-bed PSA equipment for producing oxygen“, AIChE J., Vol. 51, pp. 2695-2701, 2005.
Zhu, Y., R.G. Minet and T.T. Tsotsis, “Isobutane dehydrogenation reaction in a packed-bed catalytic membrane reactor”, Catal. Lett., Vol. 18, pp. 49-58, 1993.
Ziaka, Z.D., R.G. Minet and T.T. Tsotsis, “Prppane dehydrogenation in a packed-bed membrane reactor”, AIChE J., Vol. 39, pp. 526-529, 1993.
指導教授 周正堂(Cheng-tung Chou) 審核日期 2010-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明