參考文獻 |
1. D. C. Harris, “Materials for infrared windows and domes” , SPIE, Washington, (1999).
2. J. A. Savage , “Reparation and properties of hard crystalline materials for Optical applications” , Journal of Crystal Growth 113 (1991) 698.
3. R. M. Sova , M. J. Linevsky , M. E. Thomas and F. F. Mark , “High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel” , Infrared Physics & Technology 39 (1998) 251.
4. B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath and P. M. Ajayan, “Organized assembly of carbon nanotubes” , Nature 416 (2002) 495.
5. M. K. Singh, P. P. Singh, E. Titus, D. S. Misra and F. LeNormand, “High density of multiwalled carbon nanotubes observed on nickel electroplated copper substrates by microwave plasma chemical vapor deposition” , Chemical Physics Letters 354 (2002) 331.
6. B. Rezek, C. E. Nebel and M. Stutzmann, “Polycrystalline silicon thin films by interference laser crystallization of amorphous silicon” , Japanese Journal of Applied Physics 38 (1999) L1083.
7. B. Rezek, C. E. Nebel and M. Stutzmann, “Laser beam induced currents in polycrystalline silicon thin films prepared by interference laser crystallization” , Japanese Journal of Applied Physics 91 (2002) 4220.
8. P. V. Santos, A. R. Zanatta, U. Jahn, A. Trampert, F. Dondeo and I. Chambouleyron, “Laser interference structuring of a-Ge films on GaAs” , Journal of Applied Physics 91 (2002) 2916.
9. S. Y. Chou, C. Keimel and J. Gu, “Ultrafast and direct imprint of nanostructures in silicon” , Nature 417 (2002) 835.
10. H. Tan, A. Gilbertson and S. Y. Chou, “Roller nanoimprint lithography” , Journal of Vacuum Science and Technology- Section B - Microelectronics Nanometer Structure 16 (1998) 3926.
11. S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Nanoimprint lithography” , Journal of Vacuum Science and Technology- Section B - Microelectronics Nanometer Structure 14 (1996) 4129.
12. S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution” , Science 272 (1996) 85.
13. S. K. Hong , B. J. Kim , H. S. Park , Y. Park , S. Y. Yoon and T. I. Kim , “Evaluation of nanopipes in MOCVD grown (0001) GaN/Al2O3 by wet chemical etching” , Journal of Crystal Growth 191 (1998) 275.
14. S. Nakamura , T. Mukai and M. Senoh , “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes” , Applied Physsics Letters 64 (1994) 1687.
15. K. Xu , J. Xu , P. Z. Deng , Y. Z. Zhou , G. G. Zhou , R. S. Qiu and Z. Fang , “Gamma;-LiAlO2 single crystal: a novel substrate for GaN epitaxy” , Journal of Crystal Growth 193 (1998) 127.
16. 余樹楨, “晶體之結構與性質” , 國立編譯館, 台北, (民國85年11月).
17. E. A. Marguire Jr. and R. L. Gentilman, “Press forging small domes of spinel”, American Ceramic Society Bulletin 60 (1981) 255.
18. D. W. Roy and J. L. Hastert, “Polycrystalline MgAl2O4 spinel for high temperature windows” , Ceramic Engineering and Science Proceedings l4 (1983) 502
19. B. V. Spitsyn, L. L. Bouilov and B. V. Deryagin, “Vapor growth of diamond on diamond and other surfaces” , Journal of Crystal Growth 52 (1981) 219.
20. P. A. Dennig and D. A. Stevenson, “Influence of substrate topography on the nucleation of diamond thin films” , Applied Physsics Letters 59 (1991) 1562.
21. P. A. Dennig, H. Shiomi and D. A. Stevenson, “Influence of substrate treatments on diamond thin film nucleation” ,Thin Solid Films 212 (1992) 63.
22. J. R. Cao, W. Kuang, Z. J. Wei, S. J. Choi, H. X. Yu, M. Bagheri, J. D. O'Brien and P. D. Dapkus, “Sapphire-bonded photonic crystal microcavity lasers and their far-field radiation patterns” , IEEE Photonics Technology Letters 17 (2005) 4.
23. W. Gobel, A. Nimmerjahn and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti : sapphire laser through a hollow-core photonic crystal fiber” , Optics Letters 29 (2004) 1285.
24. F. Schmid and D. C. Harris , “ Effects of crystal orientation and temperature on the strength of sapphire ” , Journal American Ceramic Society 81 (1998) 885.
25. D. C. Harris , F. Schmid , D. R. Black , E. Savrun and H. E. Bates , “Factors that influence mechanical failure of sapphire at high temperature” , SPIE Window and Dome Technologies and Materials V 3060 (1997) 226.
26. D. C. Harris , “Overview of progress in strengthening sapphire at elevated temperature” , SPIE Window and Dome Technologies and Materials VI 3705 (1999) 2.
27. E. Savrun , C. Toy , W. S. Scott and D. C. Harris , “The effect of titanium doping on the rhombohedral twinning of sapphire” , SPIE Window and Dome Technologies and Materials VI 3705 (1999) 28.
28. W. W. Chen and N.H. Harris, “Method of making thermal shock resistant sapphire for IR windows and domes” , U.S. Patent 5,702,654 (1997).
29. L. F. Johnson and M. B. Moran, “Compressive coatings for strengthened sapphire” , SPIE Window and Dome Technologies and Materials VI 3705 (1999) 130.
30. W. T. Li, D. R. Mckenzie, W. D. Mcfall and Q. C. Zhang, “Effect of sputtering-gas pressure on properties of silicon nitride films produced by helicon plasma sputtering” , Thin Solid Films 384 (2001) 46.
31. M. Serenyi, M. Racz and T. Lohner, “Refractive index of sputtered silicon oxynitride layers for antireflection coating” , Vacuum 61 (2001) 245.
32. E. Savrun , C. Toy , W. S. Scott and D. C. Harris , “Is sapphire inherently weak in compression at high temperatures ?” , SPIE Window and Dome Technologies and Materials VI 3705 (1999) 12.
33. F. Schmid, K. Schmid and C. P. Khattak, “High temperature compression and ring-on-ring testing of sapphire” , SPIE Window and Dome Technologies and Materials VI 3705 (1999) 17.
34. F. Schmid, K. Schmid, C.P.Khattak and P. R. Duggan, “Increasing the strength of sapphire by heat treatments” , SPIE Window and Dome Technologies and Materials VI 3705 (1999) 36.
35. C. J. Ting and H. Y. Lu, “Defect reactions and the controlling mechanism in the sintering of magnesium aluminate spinel” , Journal of the American Ceramic Society 82 (1999) 841.
36. L. Navias, “Preperation and properties of spinel made by vapor transport and diffusion in the system MgO-Al2O3” , Journal of the American Ceramic Society 44 (1961) 434.
37. H. Sieber, D. Hesse, X. pan, St. Senz and J. Heydenreich, “TEM investigations of spinel-forming solid state reactions: reaction mechanism, film orientation, and interface structure durning MgAl2O4 formation on MgO (001) and Al2O3 (11.2) single crystal substrates” , Zeitchrift fur anorganishe und allgemeine Chemie 622 (1996) 1658.
38. P. Kumar and K. H. Sandhage, “The fabrication of near net-shaped spinel bodies by the oxidative transformation of Mg/Al2O3 precursors” , Journal of Materials Research 13 (1998) 3423.
39. R. E. Carter, “Mechanism of solid-state reaction between magnesium oxide and alumina oxide and between magnesium oxide and ferric oxide” , Journal of the American Ceramic Society 44 (1961) 116.
40. W. P. Whitney II and V. S. Stubican, “Interdiffusion studies in the system MgO-Al2O3” , Journal of Physics and Chemistry of Solids 32 (1971) 305.
41. P. Zhang, T. Debroy and S. Seetharaman, “Interdiffusion in the MgO-Al2O3 spinel with or without some dopants” , Metallurgical and Materials Transactions 27A (1996) 2105.
42. K. J. D. Mackenzie and M. J. Ryan, “Effect of electric fields on solid-state reactions between oxides” , Journal of Materials Science 16 (1981) 579.
43. E. B. Watson and J. D. Price, “Kinetics of the reaction MgO + Al2O3 → MgAl2O4 and Al-Mg interdiffusion in spinel at 1200 to 2000℃ and 1.0 to 4.0 GPa” , Geochimica et Cosmochimmica Acta 66 (2002) 2123.
44. R. C. Rossi and R. M. Fulrath, “Epitaxial growth of spinel by reaction in the solid state” , Journal of the American Ceramic Society 64 (1963) 368.
45. D. X. Li, P. Pirouz, A. H. Heuer, S. Yadavalla and C. P. Flynn, “A high-resolution electron microscopy study MgO/Al2O3 interfaces and MgAl2O4 spinel formation” , Philosophical Magazine A 65 (1992) 406.
46. P. Kumar, S. A. Dregia and K. H. Sandhage, “Epitaxial growth of magnesia and spinel on sapphire during incongruent reduction in molten magnesium” , Journal of Materials Research 14 (1999) 3312.
47. C. M. Liu, J. C. Chen and C. J. Chen, “The growth of an epitaxial Mg-Al spinel layer on sapphire by solid-state reactions” , Journal of Crystal Growth 285 (2005) 275.
48. C. M. Liu, J. C. Chen and C. J. Chen, “The morphology of an epitaxial Mg-Al spinel layer on a sapphire surface” , Journal of Crystal Growth, in review.
49. T. Kubo and H. Nozoye, “Morphology and structure of Mg-Ti-O spinel (100) epitaxially grow on MgO(100): effect of solid state reactions” , Thin Solid Film 394 (2001) 151.
50. T. Kubo and H. Nozoye, “Physical properties of spinel nano-structure epitaxially grow on MgO (100)” , Applied Surface Science 188 (2002) 545.
51. N. Sugiyama, T. Tezuka and A. Kurobe, “Fabrication of nano-crystal silicon on SiO2 using the agglomeration process” , Journal of Crystal Growth 192 (1998) 395.
52. Y. Uehara, T. Fujita, M. Iwami and S. Ushioda, “Single NbO nano-crystal formation on low temperature annealed Nb (001) surface” , Surface Science 472 (2001) 59.
53. X. J. Guo, C. Y. Wen and H. C. Shih, “A new phase with nano-rod structure evolved from ferroelectric thin film” , Materials Letters 41 (1999) 215.
54. S. V. Yanina and C. Barry Cartera, “Precipitation from a reactive silicate on MgO” , Journal of Materials Research 17 (2002) 3056.
55. S.V. Yanina, Ph.D thesis, “Surface studies of ceramic materials” , Bell&Howell Information and Learning Company, Minnesota, USA.
56. A. Ismach, L. Segev, E. Wachtel and E. Joselevich, “Atomic-step-templated formation of single wall carbon nanotube patterns” , Angewandte Chemie International Edition 43 (2004) 6140.
57. A. Ismach, D. Kantorovich and E. Joselevich, “Carbon nanotube graphoepitaxy: highly oriented growth by faceted nanosteps” , Journal of the American Chemical Society 127 (2005) 11554.
58. J. C. Chen and C. Hu, “Measurement of the float-zone interface shape for lithium niobate” , Journal of Crystal Growth 149 (1995) 87.
59. J. C. Chen, Y. C. Lee and C. Hu, “Observation of the growth mechanisms of lithium niobate single crystal during a LHPG process” , Journal of Crystal Growth 174 (1997) 313.
60. Y. C. Lee and J. C. Chen, “The effect of temperature distribution on the barium titanate crystal growth in an LHPG system” , Optical Materials 12 (1999) 83.
61. 周國清, 徐軍, 鄭佩珍, 徐科, 周永宗, 于福熹, 朱人元, 田玉蓬, 蔣建華, 王洲光, “溫梯法Al2O3晶體位錯形貌分析” , 人工晶體學報 28:3 (1999).
62. F. Theodore , T. Duffar and F. Louchet, “Modelling plastic stress relaxation in shaped sapphire crystal growth ” , Journal of Crystal Growth 198/199 (1999) 232.
63. R. E. Reed-hill, “Physical metallurgy principles” , PWS Publishing Company, Boston, (1994), p534-535
64. J. G. John and G. J. William, in: J. C. Fisher, W. G. Johnston, R. Thomson and T. Vreeland, Jr.(Eds.), Dislocations and mechanical properties of crystal, John Wiley & Sons, Inc., New York, (1956), Chap. 1.
65. R. Scheuplein and P. Gibbs, “Surface structure in corundum. I. Etching of dislocations” , Journal of the American Ceramic Society 43 (1960) 458.
66. D. J. Barber and N. J. Tighe, “Observations of dislocations and durface features in corundum crystals by electron transmission microscopy” , Journal of Research of the National Bureau of Standards. 69A (1965) 271.
67. W. J. Alford and D. L. Stephens, “Chemical polishing and etching techniques for AL2O3 single crystals” , Journal of the American Ceramic Society 46 (1963) 193.
68. R. G. Vardiman, “The chemical polishing and etch pitting of sapphire” , Journal of the Electrochemical Society 118 (1971) 1804.
69. M. Tatsumi, I. Shinya and I. Mitsuru, “Dislocation etch pits on the (1-102) surface of sapphire crystals” , Japanese Journal of Applied Physics 15 (1976) 2011.
70. W. W. Mullins, “Theory of linear facet growth during thermal etching” , Philosophical Magazine 6 (1961) 1313.
71. A. J. W. Moore, “The influence of surface energy on thermal etching”, Acta Metallurgica 6 (1958) 293.
72. B. Chalmers, R. King and R. Shuttleworth, “The thermal etching of silver” , Proceedings of the Royal Society of London Series A193 (1948) 465.
73. R. J. Phaneuf and E. D. Williams, “Surface phase separation of vicinal Si(111)” , Physical Review Letters 58 (1987) 2563.
74. R. J. Phaneuf, N. C. Bartelt, E. D. Williams, W. Swiech and E. Bauer, “Low-energy electron-microscopy investigations of orientational phase separation on vicinal Si(111) surfaces” , Physical Review Letters 67 (1991) 2986.
75. J. R. Heffelfinger, M. W. Bench and C. B.Carter, “On the faceting of ceramic surfaces” , Surface Science 343 (1995) L1161.
76. J. R. Heffelfinger, M. W. Bench and C. B. Carter, “Steps and the structure of the (0001) a-alumina surface” , Surface Science 370 (1997) L168.
77. C. Herring, “Some theorems on the free energies of crystal surfaces” , Physical Review 82 (1951) 87.
78. J. S. Koehler, “Imperfections in nearly perfect crystals” , John Wiley and Sons, Inc., New York, (1952).
79. A. Granato and K. Lucke, “Theory of mechanical damping due to dislocations” , Journal of Applied Physics 27 (1956) 583.
80. M. Vivas and P. Lours, “Determination of precipitate strength in aluminium alloy 6056-T6 from transmission electron microscopy in situ straining date” , Philosophical Magazine A 76 (1997) 921.
81. D. Haussler, M. Bartsch, U. Messerschmidt and B. Reppich, “HVTEM in situ observations of dislocation motion in the oxide dispersion strengthened superalloy MA 754” , Acta Materialia 49 (2001) 3647.
82. S. J. Bennison and B. R. Lawn, “Role of interfacial grain-bridging sliding friction in the crack-resistance and strength properties of nontransforming ceramics” , Acta Metallurgica 37 (1989) 2659.
83. B. Budiansky, J. W. Hutchinson and A. G. Evans, “Matrix fracture in fiber-reinforced ceramics” , Journal of the Mechanics and Physics of Solids 34 (1986) 167.
84. Y. J. Kim, R. Tateno, T. Ikura, K. Matsuda and H. Kawai, “Electron cyclotron resonance (ECR) sputtered antireflection coatings on laser facets for optical memory applications” , Japanese Journal of Applied Physics 37 (1998) 2201.
85. W. Xu, B. Li, T. Fulimoto and I. Kojima, “Suppressing the surface roughness and columnar growth of silicon nitride films” , Surface and Coatings Technology 135 (2001) 274.
86. Y. L. Li, Y. Liang, F. Zheng, X.F. Ma, S.J. Cui and L. Sun, “Enhanced crystallization and phase transformation of amorphous silicon nitride under high pressure” , Journal of Materials Research 16 (2001) 67.
87. J. Szepvolgyi and I. Mohai, “Crystallization of an amorphous silicon nitride powder produced in a radiofrequency thermal plasma” , Ceramics International 25 (1999) 711.
88. C. P. Khattak and F. Schmid, “Growth of near-net-shaped sapphire domes using the heat exchanger method (HFM™)” , Materials Letters 7 (1989) 318.
89. F. Schmid, C. P. Khattak and D. M. Felt, “Producing large sapphire for optical applications”, American Ceramic Society Bulletin 73 (1994) 39.
90. R. Sarkar and G. Banerjee, “Effect of compositional variation and fineness on the densification of MgO–Al2O3 compacts” , Journal of the European Ceramic Society 19 (1999) 2893.
91. C. H. Chun, “Experiments on steady and oscillatory temperature distribution in a floating zone due to the marangoni convection” , Acta Astronautica 7 (1980) 479.
92. J. C. Chen and C. Hu, “Measurement of the surface temperature in the float zone of LiNbO3” , Journal of Crystal Growth 158 (1996) 289.
93. C. E. Chang and W. R. Wilcox, “Inhomogeneities due to thermocapillary flow in floating zone melting” , Journal of Crystal Growth 28 (1975) 8.
94. C. E. Chang and W. R. Wilcox, “Analysis of surface tension driven flow in floating zone melting” , International Journal of Heat and Mass Transfer 19 (1976) 355.
95. M. C. Flemings, “Solidification process” , McGraw-Hill, New York, (1974), p. 58-64.
96. W. A. Tiller, K. A. Jackson, J. W. Rutter and B. Chalmer, “The redistribution of solute atoms during the soilification of metals” , Acta Metallurgica 1 (1953) 428.
97. J. A. Burton, R. C. Prim and W. P. Slichter, “The distribution of solute in crystals grown from the melt. Part I. theoretical” , Journal of Chemical Physics 21 (1953) 1987.
98. W. G. Pfann, “Zone melting” , John Wiley & Sons, New York, (1958), p. 7-17.
99. D. T. J. Hurle, “Constitutional supercooling during crystal growth from stirred melt-I” , Solid-State Electronics 3 (1961) 37.
100.H. E. Labelle and A. I. Mlavsky, “Growth of sapphire filaments from the melt” , Nature 216 (1967) 574. |