博碩士論文 89343010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:3.141.21.18
姓名 楊文龍(Wen-Lung Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 顆粒剪力流體之傳輸現象探討
(Transport Phenomena in Sheared Granular Flows)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究關於顆粒體於剪力流場中動態行為,這種流動方式在流體機械稱之為Couette flow,本論文主要研究兩種不同的顆粒體Couette flow型態,一種是無內聚力的顆粒流,另一種是加入微量水或矽油的顆粒流。
實驗裝置是一環狀剪力槽,以玻璃珠當顆粒體,並且使用高速攝影機拍攝顆粒體運動情形,再運用影像處理技術與追蹤顆粒體程式,算出剪力流場中水平跟垂直方向的平均速度與變動速度,並借由長時間的追蹤粒子畫出粒子均方擴散位移量與時間的關係圖,進而求得自我擴散係數,使用三枚雙向應力規,裝置在實驗設備的上壁面,用以量測上壁面所受到的應力大小。
在粒子顆粒流中,顆粒體間相互的碰撞造成顆粒流動行為並且導致顆粒體的隨機運動,再本論文的第一部份將探討粒子佔有體積比對顆粒流傳輸性質的影響,在較密的顆粒流場中,剪率、粒子溫度、壁面應力值、有效黏滯係數以及能量的損失都會比較大,然而在較密的顆粒流場中有較小的自我擴散係數值。
在顆粒流中粒子間的內聚力包含凡得瓦力、燒結力、液橋力以及靜電力,然而在一個高濕度的系統中,液橋力相較於其他的作用力就變的很重要,我們做了一系列的實驗在顆粒流中加入不同含量的水,在本論文中的第二部份探討水的無因次化液體體積對顆粒流場的影響,由於周圍濕度影響下,粒子間的摩擦非彈性碰撞以及黏性阻力增加造成剪力槽內能量的消散,因此能量消散隨著增加無因次液體體積而增加。
因為剪力槽內能量消散是由於黏滯阻力造成,因此外加液體的黏性強度影響著濕粒子系統的行為,所以在本論文的第三部分探討加入不同黏度矽油的影響,此外粒子Bond Number與Collision Number也將被用來討論濕粒子流系統的行為。本研究結果有助於發展研究剪力顆粒流的內部流場,特別是濕粒子流系統,期待本論文研究可以提供新的資訊給予研究界甚至是工業界。
摘要(英) This thesis examines the dynamic behavior of a granular material sheared in a shear cell. This type of flow is known as a Couette flow in fluid mechanics. In this thesis, we study two different kinds of granular Couette flows. One is the cohesionless granular material flow and the other is the cohesive granular material flow with adding little amount of water or silicone oils.
Experiments are performed in a shear cell device. The glass spheres are used as granular materials. The motions of the granular materials are recorded by a high-speed camera. The image processing technology and particle tracking method are employed to measure the average and fluctuation velocities in the streamwise and the transverse directions. By tracking the movements of particles continually, the variation in the mean-square diffusive displacements with time is plotted and the self-diffusion coefficient is determined. Three bi-directional stress gages are installed to measure the normal and shear stresses along the upper wall.
In granular material flows, the interactive collisions between particles are the dominant mechanism affecting the flow behavior and cause the random motions of particles. In the first part of this thesis, the influence of solid fraction of granular material on the transport properties is discussed. For the denser granular flows, the shear rate, the granular temperature, the wall stresses, the effective viscosity and the energy dissipation are greater. However, the denser granular flow has the smaller self-diffusion coefficient.
In granular flow, the cohesive forces between particles include Van Der Waals force, sintering force, liquid bridge force and electrical force. The liquid bridge force is more important than the other forces in a high moisture system. A series of experiments were performed by adding different amount of water to the granular material system. The influence of the dimensionless liquid volumes of water added is studied in the second part of this thesis. The energy dissipations in the shear cell device are generated from the friction and inelasticity between particles and viscous resistance due to surrounding moisture. The energy dissipation increases monotonously with the increase of the dimensionless liquid volume.
Because the energy dissipations in the shear cell are also contributed from the viscous resistance, thus the viscosity of the adding liquids have strongly influence on the behavior of wet granular system. The third part of this thesis discusses the influence of adding different silicone oils with different viscosities. The Granular Bond Number and the Collision Number are used to discuss the behaviors of the wet granular flow system.
The works in this thesis are relatively fundamental. However, these issues are important for developing the insides of sheared granular flows, especially wet systems. We wish that the results will bring some new information to the research field and also be contributed to the related industries.
關鍵字(中) ★ 內聚力
★ 應力規
★ 剪力槽
★ 顆粒流
關鍵字(英) ★ stress gage
★ granular flows
★ shear cell
★ cohesion
論文目次 Abstract IV
List of Figures IX
List of Tables XIVNomenclature XV
1 Introduction ……………………………………………………………1
1.1 Motivation ………………………………….……………………...1
1.2 Experiment ...…………….…………………….…………………..4
1.3 Overview of Thesis ...…………………………………………...6
2 Experimental Setup and Technique ………………………………...8
2.1 Shear Cell Setup ……………………………………....…………...8
2.2 Stress Gage ……………………………………..………………..9
2.3 Image Processing Technology ………………………………….10
2.4 Velocity Measurement Techniques ….………………..………..11
2.5 Self-Diffusion Analysis ……………………………...…………12
2.6 Wall Friction Effect of the Plexiglass Walls ………….……..14
2.7 Radial Effect Measurement …………….....………………..….14
3 Solid Fraction Effect in Granular Sheared Flows …...…….…….20
3.1 Introduction …………………………………………………….20
3.2 Experimental Control and Technique ……..……...…………..21
3.3 Results of Solid Fraction Effect ……………..………………22
3.4 Summary ……………………………………………………….33
4 Moisture Effect in Granular Sheared Flows ………...……………….51
4.1 Introduction ……………..……………………………………….51
4.2 Experimental Techniques ………………......……………….….54
4.3 Granular Bond Number and Collision Number ………….….56
4.4 Results and Discussions of Wet Granular Flows ………...…57
4.5 Summary ……………………………………………….……….66
5 Viscosity Effect in Granular Shear Flows …………………………….76
5.1 Introduction ……………………………………………………..76
5.2 New Shear Cell Device …………………….…...…………….79
5.3 Results of Viscous Particles …..………………………………81
5.4 Summary ………………………………………….…………….89
6 Conclusion …………………………………………………………105
Bibliography 108
Appendix 116
參考文獻 Adams, M. J., Parchard, V., 1985. The cohesive forces between particles with interstitial fluid. Inst. Chemical Engineering Symp., Vol. 91, 147-160.
Aidanpää, J. O., Shen, H. H., Gupta, R. B., 1996. Experimental and numerical studies of shear layers in granular shear cell. Journal of Engineering Mechanics, Vol. 122, 187-196.
Bagnold, R. A., 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. London Ser. A, Vol. 225, 49-63.
Barker, G. C., Mehta, A., 1993. Transient phenomena, self-diffusion and orientational effects in vibrated powders. Physical Review E, Vol. 47, 184-188.
Bilgili, E., Yepes, J., Stephenson, L., Johanson, K., Scarlett, B., 2004. Stress inhomogeneity in powder specimens tested in the Jenike shear cell: myth of fact? Particle and Particle System Characterization, Vol. 21, 293-302.
Buggish, H., Löffelmann, G., 1989. Theoretical and experimental investigation into local granulate mixing mechanism. Chemical Engineering Process, Vol. 26, 193-200.
Campbell, C. S., 1989. The stress tensor for simple shear flow of a granular material. Journal of Fluid Mechanics, Vol. 203, 449-473.
Campbell, C. S., 1990. Rapid granular flows. Annual Reviews in Fluid Mechanics, Vol. 22, 57-92.
Campbell, C. S., 1997. Self-diffusion in granular shear flows. Journal of Fluid Mechanics, Vol. 348, 85-101.
Campbell, C. S., Brennen, C. E., 1985. Computer simulation of granular shear flows. Journal of Fluid Mechanics, Vol. 151, 167-188.
Campbell, C. S., Gong, A., 1986. The stress tensor in a two-dimensional granular shear flow. Journal of Fluid Mechanics, Vol. 164, 107-125.
Craig, K., Buckholz, R. H., Domoto, G., 1986. An experimental study of the rapid flow of dry cohesionless metal powders. Journal of Applied Mechanics, Vol. 53, 935-942.
Drake, T. G., 1991. Granular flow: physical experiment and their implications for microstructural theories. Journal of Fluid Mechanics, Vol. 225, 121-152.
Einstein, A., 1956. Investigations on the Theory of Non-Uniform Gases. New York: Dover Publ. Co. Chapter 1, 12-27.
Ennis, B. J., Li, J., Tardos, G., Pfeffer, R., 1990. The influence of viscosity on the strength of an axially strained pendular liquid bridge. Chemical Engineering Science, Vol. 45, 3071-3088.
Ennis, B. J., Tardos, G., Pfeffer, R., 1991. A microlevel-based characterization of granulation phenomena. Powder Technology, Vol.65, 257-272.
Halsey, T. C., Levine, A. J., 1998. How sandcastles fall. Physical Review Letter, Vol. 80, 3141-3144.
Hanes, D. M., Inman, D. L., 1985. Observations of rapid flowing granular-fluid flow. Journal of Fluid Mechanics, Vol. 150, 357-380.
Hopkins, M. A., Shen, H. H., 1992. A Monte-Carlo solution for rapidly shearing granular flows based on the kinetic-theory dense gases. Journal of Fluid Mechanics, Vol. 244, 477-491.
Hsiau, S. S., Hunt, M. L., 1993a. Shear-induced particle diffusion and logitndinal velocity fluctuations in a granular-flow mixing layer. Journal of Fluid Mechanics, Vol. 251, 299-313.
Hsiau, S. S., Hunt, M. L., 1993b. Kinetic theory analysis of flow-induced particle diffusion and thermal conduction in granular material flows. Journal of Heat Transfer, Vol. 115, 541-548.
Hsiau, S. S., Jang, H. W., 1998. Measurements of velocity fluctuations of granular materials in a shear cell. Experimental Thermal and Fluid Science, Vol. 17, 202-209.
Hsiau, S. S., Shieh, Y. H., 1999. Fluctuations and self-diffusion of sheared granular material flows. Journal of Rheology, Vol. 43, 1049-1066.
Hsiau, S. S., Wu, M. S., Chen, C. H., 1998. Arching phenomena in a vibrated granular bed. Powder Technology, Vol. 99, 185-193.
Hsiau, S. S., Yang, W. L., 2002. Stresses and transport phenomena in sheared granular flows with different wall conditions. Physics of Fluids, Vol. 14, 612-621.
Hsiau, S. S., Yang, W. L., 2005. Transport property measurements in sheared granular flows. Chemical Engineering Science, Vol. 60, 187-199.
Hunt, M. L., Hsiau, S. S., Hong, K. T., 1994. Particle mixing and volumetric expansion in a vibrated granular bed. Journal of Fluids Engineering, Vol. 116, 785-791.
Hwang, C. L., Hogg, R., 1980. Diffusive mixing in flowing powders. Powder Technology, Vol. 26, 93-101.
Jenike, A. W., 1964. Storage and flow of solids. Bulletin of the University of Utah, Vol. 53.
Jenkins, J. T., Richman, M. W., 1985. Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Physics of Fluids, Vol. 28, 3485-3494.
Jenkins, J. T., Savage, S. B., 1983. A theory for the rapid flow of identical, smooth, nearly elastic, particles. Journal of Fluid Mechanics, Vol. 130, 187-202.
Johnson, P. C., Jackson, R., 1987. Frictional-collisional constitutive relations for granular materials, with application to plane shearing. Journal of Fluid Mechanics, Vol. 176, 67-93.
Lan, Y., Rosato, A. D., 1995. Macroscopic behavior of vibrating beds of smooth inelastic spheres. Physics of Fluids, Vol. 7, 1818-1831.
Lian, G., Thornton, C., Adams, M. J., 1993. A theoretical study of liquid bridge forces and stability between two rigid spherical bodies. Journal of Colloid Interface Science, Vol. 161, 138-147.
Lohse, D., Bergmann, R, Mikkelsen, R., Zeilstra, C. Meer, D., Versluis, M., Weele, K., Hoef, M., Kuipers, H., 2004. Soft matter, biological, and interdisciplinary physics - impact on soft sand: void collapse and jet formation. Physical Review Letters, Vol. 93, 198003-198100.
Lun, C. K. K., 1991. Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. Journal of Fluid Mechanics, Vol. 233, 539-559.
Lun, C. K. K., Savage, S. B., 1987. A simple kinetic theory for granular flow of rough, inelastic, spherical particles. Journal of Applied Mechanics, Vol. 54, 47-53.
Lun, C. K. K., Savage, S. B., Jeffrey, D. J., Chepurniy, N., 1984. Kinetic theories for granular flow: inelastic particles in Couette Flow and slightly inelastic particles in a flow field. Journal of Fluid Mechanics, Vol. 140, 233-256.
McCarthy, J. J., 2003. Micro-modeling of cohesive mixing processes. Powder Technology, Vol. 138, 63-67.
Munson, B. R., Young, D. F., Okiishi, T. H., 2002. Fundamentals of fluid mechanics 4th edition. New York: John Wiley & Sons, Inc. Table 1.5.
Nase, S. T., Vargas, W. L., Abatan, A. A., McCarthy, J. J., 2001. Discrete characterization tools for cohesive granular material. Powder Technology, Vol. 116, 214-223.
Natarajan, V. V. R., Hunt, M. L., Taylor, E. D., 1995. Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow. Journal of Fluid Mechanics, Vol. 304, 1-25.
Newitt, D. M., Conway J. M., 1958. A contribution to the theory and practice of granulation. Trans. Inst. Chemical Engrs., Vol. 36, 422-442.
Ogawa, S., 1978. Multi-temperature theory of granular materials. In Proceedings of US-Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Tokyo 208-217.
Ottino, J. M., Khakhar, D. V., 2000. Mixing and segregation of granular materials. Annual Reviews in Fluid Mechanics, Vol. 32, 55-91.
Oulahna, D., Cordier, F., Galet, L., Dodds, J. A., 2003. Wet granular: the effect of shear on granule properties. Powder Technology, Vol. 130, 238-246.
Savage, S. B., Dai, R., 1993. Studies of granular shear flows: Wall slip velocities, ‘layering’ and self-diffusion. Mechanics of Materials, Vol. 16, 225-238.
Savage, S. B., Jeffrey, D. J., 1981. The stress tensor in a granular flow at high shear rates. Journal of Fluid Mechanics, Vol. 110, 255-272.
Savage, S. B., Mckeown, S., 1983. Shear stress developed during rapid shear of dense concentrations of large spherical particles between concentric cylinders. Journal of Fluid Mechanics, Vol. 127, 453-472.
Savage, S. B., Sayed, M., 1984. Stresses developed by dry cohesionless granular materials sheared in an annular shear cell. Journal of Fluid Mechanics, Vol. 142, 391-430.
Scott, A. M., Bridgewater, J., 1976. Self-diffusion of spherical particles in a simple shear apparatus. Powder Technology, Vol. 14, 177-183.
Shamlou, P. A., 1988. Handling of Bulk Solids. Butterworth, London.
Smid, J., 1980. Pressure cell for the measurement of normal and shear stresses of particulate solids. Czech. Patent, Vol. 213, 844.
Tardos, G. I., Hapgood, K. P., Ipadeola, O. O., Michaels, J. N., 2003. Stress measurements in high-shear granulators using calibrated “test” particles: application to scale-up. Powder Technology, Vol. 140, 217-227.
Tardos, G. I., Khan, M. I., Mort, P. R., 1997. Critical parameters and limiting conditions in binder granulation of fine powder. Powder Technology, Vol. 94, 245-258.
Tegzes, P., Albert, R., Paskvan, M., Barabási, A. L., Vicsek, T., Schiffer, P., 1999. Liquid-induced transitions in granular media. Physical Review E, Vol. 60, 5823-5826.
Walton, O. R., Braun, R. L., 1986. Stress calculations for assemblies of inelastic spheres in uniform shear. Acta Mechanics, Vol. 63, 73-86.
Wang, D. G., Campbell, C. S., 1992. Reynolds analogy for a shearing granular materials. Journal of Fluid Mechanics, Vol. 244, 527-546.
Warr, S., Jacques, G. T. H., Huntley, J. M., 1994. Tracking the translational and rotational motion of granular particals: use of high-speed for photography and image processing. Powder Technology, Vol. 81, 41-56.
Yang, S. C., Hsiau, S. S., 2001. The simulation of powders with liquid bridges in a 2D vibrated bed. Chemical Engineering Science, Vol. 56, 6837-6849.
Yang, W. L., Hsiau, S. S., 2005. Wet granular materials in sheared flows. Chemical Engineering Science, Vol. 60, 4265-4274.
Zhang, Y., Cambell, C. S., 1992. The interface between fluid-like and solid-like behaviour in two-dimensional granular flows. Journal of Fluid Mechanics, Vol. 237, 541-568.
Zik, O., Stavans, J., 1991. Self-diffusion in granular flows. Europhysics Letters, Vol. 16, 255-258.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2005-9-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明