博碩士論文 89343013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.17.110.119
姓名 呂立鑫(Li-Shin Lu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以DEM模擬振動床及剪力流之顆粒混合研究
(Study of granular mixing in vibrated beds and sheared flows by DEM simulations)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要運用軟球模式的三維離散元素法(DEM)來模擬顆粒體在振動床和剪力設備中的運動,探討主題包含速度場分佈、迴流運動、擴散運動及各種與顆粒混合有關的流動性質。
本文首先系統性地提出六項簡單碰撞系統的測試,以動量守恆定律和動能守恆定律來驗證DEM程式的準確性。同時,再模擬振動床中的顆粒運動,其中明顯的對稱迴流現象與相關文獻的實驗結果極為吻合。其實,因為邊壁摩擦作用所產生的顆粒迴流運動,是振動顆粒床中非常重要的運動機制,所以本文詳細探討振動條件(包含振動加速度及振動頻率)對於對稱迴流形成的影響。文中為了有效描述顆粒對流運動和擴散運動的特性,分別定義無因次化對流率Jconv和垂直方向自我擴散係數Dyy,並且以培利數Pe來作為這兩種效應的比值。培利數在對稱迴流的形成過程中,扮演非常重要而有趣的角色,因此文中有詳盡的討論。另外,為了探討顆粒的混合行為,兩群等量而顏色不同的的玻璃珠以上下分置的初始擺放方式,放入振動床中。同時,為了衡量不同顆粒的混合狀態,本文使用Lacey index來作為混合度M以量化混合狀態,而且還可以利用最小平方法的線性擬合,從M隨時間的變化歷程中獲知混合速率。模擬的結果顯示,混合速率隨Dyy的加大而變快,且呈現指數關係的增快趨勢。另外一方面,為了衡量靜電力對顆粒流動的效應,本文定義靜電力和顆粒重量的比值為靜電數Es。模擬的結果發現,粒子溫度隨靜電數的加大而線性上升,而且混合速率常數是以冪次法則隨靜電數的加大而增快。在顆粒剪力流的模擬中,顏色不同的玻璃珠隨機堆積且上下分置,下邊壁等速移動後就會造成顆粒的混合。對於混合層厚度隨時間的變化歷程,DEM的模擬結果與利用擴散方程式的計算結果頗為吻合,這亦表示擴散運動是剪力流內顆粒混合的重要機制。
摘要(英) This thesis examines the mixing behaviors of granular materials subjected to external vertical vibration and sheared force. Three-dimensional discrete element computer simulation is used to study the velocity distribution, convective flow, diffusive motion and granular mixing in both vibrated granular bed and sheared granular flow.
A series of systematic validation tests for the DEM program, including six tests of simple collision system and a test of macroscopic phenomenon. The conservation laws of momentum and kinetic energy are used to verify tests of collisions between particles or between particles and boundaries. Also, the simulation result of symmetric convection rolls are compared with the experimental result. With frictional sidewalls, the convection flow is a very important phenomenon in the vibrated granular bed. The influence of vibrating conditions, including vibration acceleration and frequency, on the formation of symmetric convection flow is investigated in this work. In order to characterize the convective flow and the diffusive motion of granular materials, the dimensionless convection flow rate, Jconv, and the vertical self-diffusion coefficient, Dyy, are defined, respectively. The Péclet number, Pe, is employed to characterize the ratio of the convective flow to the diffusive motion in vertical direction. The role of Pe in the formation of symmetric convection flow is discussed in detail. Moreover, the top-bottom initial loading pattern of two groups of glass beads with different colors is employed to investigate mixing behavior of granular materials. The well-known Lacey index is employed as the mixing degree, M, to quantify the mixing quality. The mixing rate is calculated from a least-square fit using the time evolution of M. The simulation results demonstrate that the mixing rate increases with increasing Dyy in exponential relation. In order to characterize the effect of electrostatic force on the granular flow, the Electrostatic Number Es is defined as the ratio of the electrostatic force to the particle weight. The simulation results demonstrate that the granular temperatures increase linearly with the increasing Es number. Meanwhile, the mixing rate constants increase with the increasing Es number in power law relations. In the simulation of sheared granular flow, the initial loading of identical glass beads with different colors is also arranged in a top-bottom loading pattern. The transverse mixing of particles is caused by the moving bottom wall with a constant velocity along the x direction. The mixing layer thicknesses are compared with the calculations from a simple diffusion equation using the data of apparent self-diffusion coefficients obtained from the simulation measurements. The calculations and simulation results showed good agreements, demonstrating that the mixing process of granular materials occurred through the diffusion mechanism.
關鍵字(中) ★ 對流
★ 擴散
★ 剪力流
★ 振動床
★ 顆粒混合
★ 離散元素法
關鍵字(英) ★ convection
★ diffusion
★ sheared flow
★ vibrated bed
★ granular mixing
★ DEM
論文目次 Contents
Abstract I
Acknowledgements IV
List of Figures VIII
List of Tables XIII
Nomenclature XIV
Chapter 1 Introduction 1
1.1 Motivation……………………………………………………………………..1
1.2 Mechanisms of granular mixing……………………………………………….4
1.3 Granular materials in vibrated beds and shear cells……………………7
1.4 Computer simulations of granular materials……………………………9
1.5 Topics of the present research………………………………………………..11
Chapter 2 Simulation Method 14
2.1 Particle forces………………………………………………………………..14
2.1.1 Contact forces………………………………………………………..15
2.1.2 Gravitational force……………………………………………………18
2.1.3 Electrostatic charge force…………………………………………….18
2.2 Equations of motion………………………………………………………….19
2.3 Determination of simulation parameters……………………………………..20
2.4 Implementation……………………………………………………………….22
Chapter 3 Validation tests of DEM Simulation for Particle Collisions 28
3.1 Introduction…………………………………………………………………..28
3.2 Validation tests of simple collision systems…………………….29
3.2.1 Test 1: tests of normal collisions between two particles……………..30
3.2.2 Test 2: tests of the oblique collision between two particles….31
3.2.3 Test 3: test of three-particle collision………………………………...31
3.2.4 Test 4: test of oblique collision between particle and boundary..32
3.2.5 Test 5: pseudo-static test between particle and boundary……………32
3.2.6 Errors in the conservation of kinetic energy with various Vrmax…..33
3.3 Validation test of velocity field in a vibrated bed……………………33
3.4 Summary………………………………………………………………...…...36
Chapter 4 Mixing in a vibrated granular bed: convective and diffusive effects47
4.1 Introduction…………………………………………………………………..47
4.2 Simulated system……………………………………………………………..49
4.3 Mixing index…………………………………………………………………50
4.4 Results and discussion……………………………………………………….52
4.4.1 Sidewall convection………………………………………………….52
4.4.2 Convection flow rate…………………………………………………52
4.4.3 Self-diffusion coefficient……………………………………………..54
4.4.4 Péclet number………………………………………………………...56
4.4.5 Solid-like state………………………………………………………..57
4.4.6 Phase diagram of convection forming………………………………..58
4.4.7 The time evolution of mixing degree……………………………...…59
4.4.8 Mixing rate…………………………………………………………...60
4.5 Summary……………………………………………………………………..62
Chapter 5 Mixing in a vibrated granular bed with the effect of electrostatic force 85
5.1 Introduction…………………………………………………………………..85
5.2 Simulated system……………………………………………………………..87
5.3 Electrostatic number………………………………………………………….88
5.4 Results and discussion………………………………………………………..89
5.4.1 Granular temperature…………………………………………………89
5.4.2 The time evolution of mixing degree……………………………...…91
5.4.3 Mixing rate constant………………………………………………….93
5.5 Summary…………………………………………..…………………………95
Chapter 6 Mixing in a Sheared granular Flow 103
6.1 Introduction…………………………………………………………...…….103
6.2 Simulated system……………………………………………………………105
6.3 Mixing layer thickness……………………………………………………...106
6.4 Results and discussion………………………………………………………107
6.4.1 Velocity distributions and solid fraction profiles………………..….108
6.4.2 Development of mixing thickness…………………………………..109
6.4.3 Diffusion equation and apparent self-diffusion coefficient……….111
6.5 Summary…………………………………………………………………….114
Chapter 7 Conclusion 129
7.1 Summary of results………………………………………………………….129
7.2 Broader issues…………………………………..…………………………..132
Bibliography 134
Appendix 144
參考文獻 Bibliography
Akiyama, T., Iguchi, T., Aoki, K., Nishimoto, K., 1998. A fractal analysis of solids mixing in two-dimensional vibrating particles beds. Powder Technol. 97, 63-71.
Allen, M.P. and Tildesley, D.J., 1987. Computer Simulation of Liquids. Oxford University Press, UK.
Aoki, K.M., Akiyama, T., Maki, Y., Watanabe, T., 1996. Convective roll patterns in vertically vibrated beds of granules. Phys. Rev. E 54, 874-883.
Asmar, B.N., Langston, P.A., Matchett, A.J., 2002. A generalized mixing index in distinct element method simulation of vibrated particulate beds. Granular Matter 4, 129-138.
Asmar, B.N., Langston, P.A., Matchett, A.J. and Walters, J.K., 2002. Validation tests on a distinct element model of vibrating cohesive particle systems. Comp. Chem. Engng. 26, 785-802.
Bicerano, J., Douglas, J.F., Brune, D.A., 1999. Model for the viscosity of particle dispersions. J. Macromol. Sci., Rev. Macromol. Chem. Phys. C39, 561–642.
Bridgwater, J., 1976. Fundamental powder mixing mechanism. Powder Technol. 15, 215-236
Brone, D., Alexander, A., Muzzio, F.J., 1998. Quantitative characterization of mixing of dry powders in V-blenders. AIChE. J. 44, 271-278.
Buffisch, H. and Löffelmann, G., 1989. Theoretical and experimental investigations into local granulate mixing mechanisms. Chem. Eng. Proc. 26, 193-200.
Campbell, C. S., 1989. The stress tensor for simple shear flow of a granular material. J. Fluid Mech. 203, 449-473.
Campbell, C.S., 1990. Rapid granular flows. Annu. Rev. Fluid Mech. 22, 57-92.
Campbell, C.S., 1993. Boudary interactions for two-dimensional granular flows. Part 1. Flat boundaries, asymmetric stresses and couple stresses. J. Fluid Mech. 247, 111-136.
Campbell, C.S., 1997. Self-diffusion in granular shear flows. J. Fluid Mech. 348, 85-101.
Chou, C.S., Tseng, C.Y., Smid, J., Kuo, J.T., Hsiau, S.S., 2000. Numerical simulation of flow patterns of disks in the asymmetric louvered-wall moving granular filter bed. Powder Technol. 110, 239-245.
Cleary, P.W., 2000. DEM simulation of industrial particle flows: case sthdies of dragline excavators, mixing in tumblers and centrifugal mills. Powder Technol. 109, 83-104.
Clément, E., Duran, J., Rajchenbach, J., 1992. Experimental study of heaping in a two-dimensional sandpile. Phys. Rev. Lett. 69, 1189-1192.
Clément, E., Rajchenbach, J., 1991. Fluidization of a bidimensional powder, Europhys. Lett. 16, 133-138.
Clément, E., Vanel, L., Rajchenbach, J., Duran, J., 1996. Pattern formation in a vibrated granular layer. Phys. Rev. E 53, 2972-2975.
Craig, K., Buckholz, R.H., Domoto, G., 1986. Anexperimental study of the rapid flow of dry cohesionless metal powder. J. Appl. Mech. 53, 935-942.
Cundall, P.A., Strack, O.D.L., 1979. A discrete numerical model for granular assemblies. Géotechnique 29, 47-65.
Douady, S., Fauve, S., Larouche, C., 1989. Subharmonic instabilities and defects in a granular layer under vertical vibrations. Europhys. Lett. 8, 621-627.
Duran, J., Rajchenbach, J., Clement, E., 1993. Arching effect model for particle size segregation. Phys. Rev. Lett. 70, 2431-2434.
Džiugys, A., Peters, B., 2001. An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers. Granular matter 3, 231-265.
Ehrichs, E.E., Jaeger, H.M., Karczmar, G..S., Knight, J.B., Kuperman, V.Y., Nagel, S. R., 1995. Granular convection observed by magnetic resonance imaging. Science 267, 1632-1634.
Evesque, P. and Rajchenbach, J., 1989. Instability in a sand heap. Phys. Rev. Lett. 62, 44-46.
Faraday, M., 1831. On a peculiar class of acoustical figures and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. Roy. Soc. London 52, 299-340.
Gallas, J.A.C., Herrmann, H.J., Sokolowski, S., 1992. Convection cells in vibrating granular media. Phys. Rev. Lett. 69, 1371-1374.
Geromichalos, D., Kohonen, M.M., Mugele, F., Herminghaus, S., 2003. Mixing and condensation in a wet granular medium. Phys. Rev. Lett. 90, 168702.
Goldshtein, A., Shaprio, M., Moldavsky, L., Fichman, M., 1995. Mechanics of collisional motion of granular materials. Part 2. Wave propagation through vibrofluidized granular layers. J. Fluid Mech. 287, 349-382.
Grossman, E.L., 1997. Effects of container geometry in granular convection. Phys. Rev. E 56, 3290-3300.
Gotoh, K., Masuda, H., Higashitani, K.,1997. Powder Technology Handbook. Marcel Dekker, New York.
Gutman, E.J. and Hartmann, G.C., 1992. Triboelectric properties of two-component developers for xerography. J. Imaging Sci. Technol. 36, 335-349.
Gyenis, J., 1999. Assessment of mixing mechanism on the basis of concentration pattern. Chem. Eng. Proc. 38, 665-674.
Haile, J.M., 1992. Molecular Dynamics Simulation: Elementary Methods. John Wiley & Sons, Canada.
Hazzard, J.F. and Mair, K., 2003. The impotance of the third dimension in granular shear. Geophys. Res. Lett. 30(13), 10.1029/2003GL017534.
Henrique, C., Batrouni, G., Bideau, D., 2000. Diffusion as a mixing mechanism in granular materials. Phys. Rev. E 63, 011304.
Higashiyama, Y., Ujiie, Y., Asano, K., 1997. Triboelectrification of plastic particles on a vibrating feeder laminated with a plastic film. J. Electrostat. 42, 63-68.
Hoomans, B.P.B., Kuipers, J.A.M., Briels, W.J., Van Swaaij, W.P.M., 1996. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized bed: A hard-sphere approach. Chem. Eng. Sci. 51, 99-108.
Hsiau, S.S. and Chen, C.H., 2000. Granular convection cells in a vertical shaker. Powder Technol. 111, 210-217.
Hsiau, S.S. and Hunt, M.L., 1993. Shear-induced particle diffusion and longitudinal velocity fluctuations in a granular mixing layer. J. Fluid Mech. 251, 299-313.
Hsiau, S.S., Lu, L.S., Chen, J.C., Yang, W.L., 2005. Particle mixing in a sheared granular flow. Int. J. Multiphase Flow 31, 793-808.
Hsiau, S.S., Shieh, Y.H., 1999. Fluctuations and self-diffusion of sheared granular material flows. J. Rheol. 43, 1049-1066.
Hsiau, S.S., Wu, M.H., Chen, C.H., 1998. Arching phenomena in a vibrated granular bed, Powder Technology 99, 185- 193.
Hsiau, S.S., Yang, W.L., 2002. Stresses and transport phenomena in sheared granular flows with different wall conditions. Phys. Fluids 14, 612-621.
Hunt, M.L., Hsiau, S.S., Hong, K.T., 1994. Particle mixing and volumetric expansion in a vibrated granular bed. ASME J. Fluids Eng. 116, 785-791.
Iwai, T., Hong, C.W., Geril, P., 1999. Fast particle pair detection algorithms for particle simulations. Int. J. Mod. Phys. C 10, 823-838.
Jenkins, J.T. and Richman, R., 1985. Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485-3494.
Jenkins, J.T. and Savage, S.B., 1983. A theory for rapid flow of identical, smooth, mearly elastic spherical particles. J. Fluid Mech. 130, 187-202.
Karion, A., 2000. Couette Flows of Granular Materials: Mixing, Rheology, and Energy Dissipation. Ph. D. thesis, California Institute of Technology, CA, U.S.A.
Karion, A. and Hunt, M.L., 2000. Wall stresses in Couette flows of mono-size particles and binary mixtures. Powder Technol. 109, 145-163.
Kawaguchi, T., Sakamoto, T., Tanaka, T., Tsuji, Y., 2000. Quasi-three-dimensional numerical simulation of spouted beds in cylinder. Powder Technol. 109, 3-12.
Kaye, B.H., 1997. Powder Mixing. Chapman & Hall, UK.
Khakhar, D.V., McCarthy, J.J., Shinbrot, T., Ottino, J.M., 1997. Transverse flow and missing of granular materials in a rotating cylinder. Phys. Fluids 9, 31-43.
Kleber, W. and Makin, B., 1998. Triboelectric powder coating: a practical approach for industrial use. Particulate Sci. Technol. 16, 43-53.
Knight, J.B., Ehrichs, E.E., Kuperman, V.Y., Flint, J.K., Jaeger, H.M., Nagel, S.R., 1996. Experimental study of granular convection. Phys. Rev. E 54, 5726-5738.
Knight, J.B., Jaeger, H.M., Nagel, S.R., 1993. Vibration-induced size separation in granular media: the convection connection, Physical Review Letters 70, 3728-3731.
Kudrolli, A., 2004. Size separation in vibrated granular matter. Rep. Prog. Phys. 67, 209-247.
Kuo, H.P., Knight, P.C., Parker, D.J., Adams, M.J., Seville, J.P.K., 2004. Discrete Element Simulations of a High Shear Mixer. Advanced Powder Technol. 15, 297-309.
Lan, Y. and Rosato, A.D., 1995. Microscopic behavior of vibrating beds of smooth inelastic spheres. Phys. Fluids 7, 1818-1831.
Lan, Y., Rosato, A.D., 1997. Convection related phenomena in granular dynamics simulations of vibrated beds. Phys. Fluids 9, 3615-3624.
Langston, P.A., Al-Awamleh, M.A., Fraige, F.Y., Asmar, B.N., 2004. Distinct element modeling of non-spherical frictionless particle flow. Chem. Eng. Sci. 59, 425-435.
Langston, P.A., Tüzün, U., Heyes, D.M., 1995. Discrete element simulation of granular flow in 2D and 3D hoppers: dependence of discharge rate and wall stress on particle interactions. Chem. Eng. Sci. 50, 967-987.
Lätzel, M., Luding, S., Herrmann, H.J., 2000, Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell. Granular Matter 2, 123-135.
Lee, Y., McCarthy, M.J., McCarthy, K.L., 2001. Extent of mixing in a two-component batch system measured using MRI. J. Food Eng. 50, 167-174.
Li, H.M. and McCarthy, J.J., 2003. Controlling cohesive particle mixing and segregation. Phys. Rev. Lett. 90, 184301.
Liffman, K., Muniandy, K., Rhodes, M., Gutteridge, D., Metcalf, G.., 2001. A segregation mechanism in a vertically shaken bed. Granular Matter 3, 205-214.
Liu, S. and Lai, P.Y., 2000. Heaping of granular materials in a cylindrical vibrating bed. J. Phys. A: Math. Gen. 33, 8241-8249.
Losert, W., Bocquet, L., Lubensky, T., Gollub, J., 2000. Particle dynamics in sheared granular matter. Phys. Rev. Lett. 85, 1428-1431.
Lun, C.K.K., 1996. Graular dynamics of inelastic spheres in Couette flow. Phys. Fluids 8, 2868-2883.
Lun, C.K.K. and Bent, A.A., 1994. Numerical simulation of inelastic frictional spheres in simple shear flow. J Fluid Mech. 258, 335-353.
McCarthy, J.J. Khakhar, D.V., Ottino, J.M., 2000. Computational studies of granular mixing. Powder Technol. 109, 72-82.
McCarthy, J.J. and Ottino, J.M., 1998. Particle dynamics simulation: a hybrid technique applied to granular mixing. Powder Technol. 97, 91-99.
Mikami, T., Kamiya, H., Horio, M., 1998. Numerical simulation of cohesive powder behaviour in a fluidized bed. Chem. Eng. Sci. 53, 1927-1940.
Miller, B., O’Hern, C., Behringer, R.P., 1996. Stress fluctuations for continuously sheared granular materials. Phys. Rev. Lett. 77, 3110-3113.
Moakher, M., Shinbrot, T., Muzzio, F.J., 2000. Experimentally validated computations of flows, mixing and segregation of noncohesive grains in 3D tumbling blenders. Powder Technol. 109, 58-71.
Mobius, M.E., Lauderdale, B.E., Nagel, S.R., Jaeger, H.M., 2001. Size separation of granular particles. Nature 414, 270.
Molina-Boisseau, S., Bolay, N.L., 2002. The mixing of polymeric powder and the grinding medium in a shaker bead mill. Powder Technol. 123, 212-220.
Nedderman, R.M., 1992. Statics and Kinematics of granular Materials. Cambridge University Press, UK.
Ottino, J. M. and Khakhar, D.V., 2000. Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55-91.
Porion, P., Sommier, N., Fauègre, A.M., Evesque, P., 2004. Dynamics of size segregation and mixing of granular materials in a 3D-blender by NMR imaging investigation. Powder Technol. 141, 55-68.
Poschel, T. and Herrmann, H.J., 1995. Size segregation and convection. Europhys. Lett. 29, 123-128.
Radjai, F. and Roux, S., 2002. Turbulentlike Fluctuations in Quasistatic Flow of Granular Media. Phys. Rev. Lett. 89, 064302.
Rhodes, M.J., Wang, X.S., Nguyen, M., Stewart, P., Liffman, K., 2001. Study of mixing in gas-fluidized beds using a DEM model. Chem. Eng. Sci. 56, 2859-2866.
Rosato, A.D. and Kim, H., 1994. Particle dynamics calculations of wall stresses and slip velocities for Couette flow of smooth inelastic spheres. Continuum Mech. Thermodyn. 6, 1-20.
Savage, S.B., 1984. The mechanics of rapid granular flows. Advances in Applied Mechanics 24, 289-366.
Savage, S.B., 1988. Streaming motions in a bed of vibrationally fluidized dry granular material. J. Fluid Mech. 194, 457-478.
Savage, S.B. and Sayed, M., 1984. Stresses developed by dry cohesionless granular materials sheared in an annular shear cell. J. Fluid Mech. 142, 391-430.
Schein, L.B., 1996. Electrophotography and Development Physics (2nd ed.). Laplacian Press, Morgan Hill, CA, USA.
Seville, J.P.K, Tüzün, U., Clift, R., 1997. Processing of Particulate Solids, Blackie Academic & Professional, London, UK.
Staniforth, J.N. and Rees, J.E., 1982. Electrostatic charge interactions in ordered powder mixes. J. Pharm. Phamacol. 34, 69-76.
Stewart, R.L., Bridgwater, J., Zhou, Y.C., Yu, A.B., 2001. Simulation and measured flow of granules in a bladed mixer-a detailed comparison. Chem. Eng. Sci. 56, 5457-5471.
Sudah, O.S., Coffin-Beach, D., Muzzio, F.J., 2002. Quantitative characterization of mixing of free-flowing granular material in tote (bin)-blenders. Powder Technol. 126, 191-200.
Taguchi, Y.H., 1992. New origin of convective motion: elastically induced convection in granular materials. Phys. Rev. Lett. 69, 1367-1370.
Tai, C.H., Hsiau, S.S., 2004. Dynamic behaviors of powders in a vibrated bed. Powder Technol. 139, 221-232.
Talu, I., Tardos, G.I., Ommen, J.R., 2001. Use of stress fluctuations to monitor wet granulation of powders. Powder Technol. 117, 149-162.
Tardos, G.I., McNamara, S., Talu, I., 2003. Slow and intermediate flow of a frictional bulk powder in the Couette geometry. Powder Technol. 131, 23-39.
Thomas, B., Mason, M.O., Liu, Y.A., Squies, A.M., 1989. Identifying states in shallow vibrated beds. Powder Technol. 57, 267-280.
Tsuji, Y., Kawaguchi, T., Tanaka, T., 1993. Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77, 79-87.
Utter, B. and Behringer, R.P., 2004. Self-diffusion in dense granular shear flows. Phys. Rev. E 69, 031308.
Venables, H.J. and Wells, J.I., 2001. Powder mixing. Drug Dev. Ind. Pharm. 27, 599-612.
Vu-Quoc, L., Zhang, X., Walton, O.R., 2000. A 3-D discrete-element method for dry granular flows of ellipsoidal particles. Comput. Methods Appl. Mech. Eng. 187, 483-528.
Walton, O.R. and Braun, R.L., 1986. Stress calculations for assemblies of elastic sphere in uniform shear. Acta Mech. 63, 73-86.
Wang, C.H., Jackson, R.J., Sundaresan, S., 1996. Stability of Bounded Shear Flow of Granular Materials. J. Fluid Mech. 308, 31-62.
Wang, C.Y., Lee, C.A., Sheng, J., 1998. A Motion Analysis Model for 3D Ball Congregated Medium. The Chinese Journal of Mechanics 14(2B), 93-107.
Wassgren, C.R., 1997. Vibration of granular materials. Ph. D. thesis, California Institute of Technology, CA, U.S.A.
Wassgren, C.R., Brennen, C.E., Hunt, M.L., 1996. Vertical vibration of a bed of granular material in a container. J. Appl. Mech. 63, 712-719.
Yanar, D.K. and Kwetkus, B.A., 1995. Electrostatic separation of polymer powders. J. Electrostat. 35, 79-87.
Yang, S.C. and Hsiau, S.S., 2000. Simulation study of the convection cells in a vibrated granular bed. Chem. Eng. Sci. 55, 3627-3637.
Zamankhan, P., Tafreshi, H.V., Polashenski, W., Sarkomaa, P., Hyndman, C., 1998. Shear induced diffusive mixing in simulations of dense Couette flow of rough, inelastic hard spheres. J. Chem. Phys. 109, 4487-4491.
Zhang, Y., Campbell, C.S., 1992. The interface between fluid-like and solid-like behaviour in two-dimensional granular flows. J. Fluid Mech. 237, 541-568.
Zhou, Y.C., Yu, A.B., Stewart, R.L., Bridgwater, J., 2004. Microdynamic analysis of particle flow in a balded mixer. Chem. Eng. Sci. 59, 1343-1364.
Zik, O., Stavans, J., 1991. Self-diffusion in granular flows. Europhys. Lett. 16, 255-258.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2006-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明