博碩士論文 89541006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.135.194.138
姓名 吳岱儒(Tai-zu Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 線性系統與非線性模糊系統之可變結構控制設計
(Variable Structure Control Design for Linear Systems and Nonlinear Fuzzy Systems)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 應用投影法作受擾動奇異系統之強健性分析★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究
★ 結合高斯混合超級向量與微分核函數之 語者確認研究★ 敏捷移動粒子群最佳化方法
★ 改良式粒子群方法之無失真影像預測編碼應用★ 粒子群演算法應用於語者模型訓練與調適之研究
★ 粒子群演算法之語者確認系統★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究
★ 利用語者特定背景模型之語者確認系統★ 智慧型遠端監控系統
★ 正向系統輸出回授之穩定度分析與控制器設計★ 混合式區間搜索粒子群演算法
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,首先針對多輸出多輸入的線性系統,提出一個公式來設計積分型可變結構控制器,這個公式是基於互質矩陣分式表示來發展設計積分型滑動平面和可變結構控制器,所提的方法不僅避免需要轉換型式,而且能夠使要設計的系統能有想要的性能。
然後接著我們針對T-S模糊系統基於李亞普若夫函數來設計模糊可變結構控制器,此方法並不需要假設每個子系統的輸入矩陣是相同的,並顯示了李亞普若夫函數可以被用來建立模糊滑動平面藉著解出一組雙線性矩陣不等式,我們提出一個反覆迭代的線性矩陣不等式演算法來解決雙線性矩陣不等式的問題,並且我們針對T-S模糊時間延遲系統基於模糊李亞普若夫函數來設計模糊可變結構控制器,並顯示了模糊李亞普若夫函數也可以被用來建立模糊滑動平面藉著解出一組雙線性矩陣不等式,我們提出另一個演算法來解決雙線性矩陣不等式的問題。
摘要(英) In this thesis, we present an approach to design an integral variable structure controller for linear multi-input/multi-output (MIMO) systems. A closed-form formula based on the coprime matrix fraction description (MFD) is developed to solve integral sliding surface for a class of linear MIMO systems and the control function is determined. The proposed method not only avoids transforming the original plant into a companion form, but also enables the designed system to exhibit the desired dynamic properties. Then, we design a variable structure controller for the T-S fuzzy systems based on the Lyapunov function. It is not necessary to assume that each local system shares the same input matrix. It is shown that the Lyapunov function can be used to establish a sliding surface by solving a set of bilinear matrix inequalities (BMIs). We propose an iterative linear matrix inequality (ILMI) algorithm to solve the BMIs problem. Moreover, we design a variable structure controller for the T-S fuzzy time-delay systems based on a fuzzy Lyapunov function. It is also shown that the fuzzy Lyapunov function can be used to establish a sliding surface by solving a set of bilinear matrix inequalities (BMIs). We also propose alternative algorithm to solve the corresponding BMIs problem. Furthermore, it is shown that the proposed scheme ensures the trajectory of the system under the variable structure control can reach the sliding surface and stay on it thereafter. And we show that the motion of the system on the sliding surface is asymptotically stable.
關鍵字(中) ★ 積分型可變結構控制
★ 可變結構控制
關鍵字(英) ★ integral variable structure control
★ variable structure control
論文目次 Abstract………………………………………………………………II
List of Figures……………………………………………………VII
Chapter 1 Introduction…………………………………………………1
1.1 Motivation and Background………………………………………………1
1.2 Contributions and Outlines of this Thesis……3
Chapter 2 Integral Variable Structure Control for MIMO Systems...5
2.1Introduction…………………………………………………5
2.2 Preliminaries………………………………………………7
2.3 Problem Formuation……………………………………12
2.4 Design IVSC for MIMO Systems……………………………13
2.5 Design IVSC for Statically Decoupling MIMO Systems17
2.6 Numerical Examples…………………………………………18
Chapter3 Variable Structure Control for T-S fuzzy Systems.26
3.1 Introduction…………………………………………………26
3.2 Problem Formulation………………………………………28
3.3 Variable Structure Control for T-S Fuzzy Systems……30
3.4 An Iterative Linear Matrix Inequality Algorithm……34
3.5 Numerical Examples…………………………………………36
Chapter 4 Variable Structure Control for T-S fuzzy Time-Delay Systems……………………………………………………48
4.1 Introduction…………………………………………………48
4.2 Problem Formulation…………………………………………50
4.3 Variable Structure Control for T-S Fuzzy Time-Delay Systems……52
4.4 Algorithm………………………………………………………59
4.5 A Numerical Example…………………………………………65
Chapter 5 Conclusions and Suggestions for Future Research……...70
5.1 Conclusions…………………………………………………70
5.2 Suggestions for Future Research………………………71
References………………………………………………………72
Publication List………………………………………………82
參考文獻 1. J. Ackermann, and V. Utkin, “Sliding mode control design based on Ackermann’s formula,” IEEE Trans. Automat. Control, Vol. 43, pp. 234-237, 1998.
2. S. G. Cao, N. W. Rees, and G. Feng, “Analysis and design for a class of complex control systems-Part I: Fuzzy modeling and identification,” Automatica, Vol. 33, pp.1017-1028, 1997.
3. Y.Y. Cao, and P.M. Frank, “Analysis and synthesis of Nonlinear Time-Delay systems via Fuzzy Control Approach,” IEEE Trans. Fuzzy Syst., Vol. 8, pp.200-211, 2000
4. Y.Y. Cao, and P.M. Frank, “Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models,” Fuzzy Sets Syst., Vol. 124, pp.213-229, 2001.
5. J. L. Chang, and Y. P. Chen, “Sliding vector design based on the pole-assignment method,” Asian Journal of Control, Vol. 2, pp. 10-15, 2000.
6. W. Chang, J. B. Park, Y. H. Joo, and G. Chen, “Design of robust fuzzy-model-based controller with sliding mode control for SISO nonlinear systems,” Fuzzy Sets Syst., Vol. 125, pp.1-22, 2002.
7. C. L. Chen, and M. H. Chang, “Otimal design of fuzzy sliding mode control: A comparative study,” Fuzzy Sets Syst., Vol. 93, pp.37-48, 1998.
8. C. T. Chen, Linear system theory and design, Oxford University Press, New York, 1984.
9. J. Y. Chen, “Rule regulation of fuzzy sliding mode controller design: Direct adaptive approach,” Fuzzy Sets Syst., Vol. 120, pp.159-168, 2001.
10. C. C. Cheng, I. M. Liu, “Design of MIMO integral variable structure controllers,” Journal of Franklin Institute, Vol. 336, pp. 1119-1134, 1999.
11. T. L. Chern, Y. C. Wu, “Design of integral variable structure controller and application to electrohydraulic velocity servo systems,” IEE Proc., Control Theory Appl, Vol. 41, pp. 439-444, 1991.
12. T. L. Chern, Y. C. Wu, “Integral variable structure control approach for robot manipulators,” IEE Proc., Control Theory Appl, Vol. 139, pp. 161-166, 1992.
13. H. H. Choi, “A new method for variable structure control system design: a linear matrix inequality approach,” Automatica, Vol. 33, pp. 2089-2092, 1997.
14. H. H. Choi, “On the existence of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties,” Automatica, Vol. 35, pp. 1707–1715, 1999.
15. H. H. Choi, “Variable structure control of dynamical systems with mismatched norm-bounded uncertainties: an LMI approach,” International Journal of Control, Vol. 74, pp. 1324-1334, 2001.
16. H. H. Choi, “An LMI-based switching surface design method for a class of mismatched uncertain systems,” IEEE Trans. Automat. Control, Vol. 48, pp. 1634–1638, 2003.
17. R. A. Decarlo, S. H. Zak, and G. P. Mathews, “Variable structure control of nonlinear multivariable system: a tutorial,” IEEE proceedings, Vol. 76, pp.212-232, 1988.
18. R. A. Decarlo, S. H. Zak, and S. Drakunov, Variable structure sliding mode controller design, In W. Levine (Ed.) The Control Handbook (Boca Raton: CRC Press Inc.), 1996.
19. R. A. Decarlo, S. Drakunov, and X. Li, “A unifying characterization of robust sliding mode control: a Lyapunov approach,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 122, pp. 708-718, 2000.
20. C. M. Dorling, and A. S. I. Zinober, “Two approaches to hyperplane design in Multivariable variable structure control Systems,” International Journal of Control, Vol. 44, pp. 65-82, 1986.
21. C. M. Dorling, and A. S. I. Zinober, “Robust hyperplane dsign in multivariable variable structure control,” International Journal of Control, Vol. 48, pp. 2043-2053, 1988.
22. O. M. E. Elghezawi, A. S. I. Zinober, S. A. Billings, “Analysis and design of variable structure systems using a geometric approach,” International Journal of Control, Vol. 38, pp. 657-671, 1983.
23. C. H. Fang, F. R. Chang, “A new approach for calculating doubly coprime matrix descriptions,” IEEE Trans. Automat. Control, Vol. 37, pp. 138-141, 1992.
24. C. Fantuzzi and R. Rovatti, “On the approximation capabilities of the homogeneous Takagi-Sugeno model,” in Proc. 5th IEEE Int. Conf. Fuzzy Systems, New Orleans, LA, 1996, pp. 1067-1072.
25. G. Feng, S. G. Cao, N. W. Rees, and C. K. Chak, “Design of fuzzy control systems with guaranteed stability,” Fuzzy Sets Syst., Vol. 85, pp.1-10, 1997.
26. S. Glower and J. Munighan, “Designing fuzzy controllers from a variable structures standpoint,” IEEE Trans. Fuzzy Syst., vol. 5, pp. 138-144, 1997.
27. F. Gouaisbaut, M. Dambrine, and J. P. Richard, “Robust control of delay systems: a sliding mode control design via LMI,” System and Control Letters, Vol. 46, pp. 219-230, 2002.
28. Q. P. Ha, Q. H. Nguyen, D. C. Rye, and H. F. Durrant-Whyte, “Fuzzy sliding mode controllers with applications,” IEEE Trans. Ind. Electron., vol. 48, pp. 38-46, 2001.
29. Y. J. Huang, and H. K. Way, “Design of sliding surfaces in variable structure control via a direct pole assignment scheme,” International Journal of Systems Science, Vol. 32, pp. 963-969, 2001.
30. J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: A survey,” IEEE Trans. Ind. Electron, Vol. 40, pp. 2-22, 1993.
31. G. C. Hwang, S. C. Lin, “ A stability approach to fuzzy control design for nonlinear systems,” Fuzzy Sets Syst., Vol. 48, pp.179-287, 1992.
32. Y. R. Hwang, and S.C. Lin, “Fuzzy smoothing algorithms for variable structure systems,” Fuzzy Sets Syst., Vol. 2, pp.277-284, 1994.
33. Y. Itkis, “Dynamic switching of type-I/type II structures in tracking servosystems,” IEEE Trans. Autom. Control, Vol. 28, pp. 531–534, 1983.
34. T. A. Johansson, R. Shorten, and R. Murray-Smith, “On the interpretation and identification of dynamic Takagi-Sugeno models,” IEEE Trans. Fuzzy Syst., vol. 8, pp. 297-313, 2000.
35. J. J. Lee, and Y. Xu, “A new method of switching surface design for multivariable variable structure systems,” IEEE Trans. Automat. Control, Vol. 39, pp. 414-419,1994.
36. C. Lin, Q.G. Wang, and T.H. Lee, “Stabilization of uncertain fuzzy time-delay systems via variable structure control approach,” IEEE Trans. Fuzzy Syst., vol. 13, pp. 787-798, 2005.
37. J. A. Meda-Campana, and B. Castillo-Toledo, “On the output regulation for TS fuzzy models using sliding modes,” in Proc. Amer. Control Conf., Portland, OR, pp.4062-4067, 2005.
38. C. N. Nett, C. A. Jacobson, M. J. Balas, “A connection between state-space and doubly coprime fractional representations,” IEEE Trans. Automat. Control, Vol. 29, pp. 831-832, 1984.
39. R. Palm, “Robust control by fuzzy sliding mode,” Automatica, vol. 30, pp. 1429-1437, 1994.
40. B.J. Rhee, and S.C. Won, “A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design,” Fuzzy Sets Syst., Vol. 157, pp.1211-1228, 2006.
41. S. K. Spurgeon, “Choice of discontinuous control component for robust sliding mode performance,” International Journal of Control, Vol. 53, pp. 163-179, 1991.
42. J. P. Su, T. M. Chen, and C. C. Wang, “Adaptive fuzzy sliding mode control with GA-based reaching laws,” Fuzzy Sets Syst., Vol. 120, pp.145-158, 2001.
43. W. C. Su, S. V. Drakunov, Ü. Özgüner, “Constructing discontinuity surfaces for variable structure system: a Lyapunov approach,” Automatica, Vol. 32, pp. 925-928, 1996.
44. M. Sugeno, and G. T. Kang, “Structure identification of fuzzy model,” Fuzzy Sets Syst., vol. 28, pp. 15-33, 1988.
45. T. Takagi, and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man Cybern. Vol. 15, pp. 116-132, 1985.
46. K. Tanaka, T. Ikeda, and H.O. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Syst., vol. 6, pp. 250-265, 1998.
47. K. Tanaka, T. Hori, and H.O. Wang, “A fuzzy Lyapunov approach to fuzzy control system design,” in Proc. American Control Conf., Arlington, VA, pp. 4790-4795, 2001.
48. K. Tanaka, T. Hori, and H.O. Wang, “New parallel distributed compensation using time derivative of membership functions: a fuzzy Lyapunov approach,” in Proc. 40th IEEE Conf. on Decision Control, Orland, FL, pp. 3492-3497, 2001.
49. K. Tanaka, T. Hori, and H.O. Wang, “A multiple Lyapunov function approach to stabilization of fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 11, pp. 582-589, 2003.
50. E.Tian, and C. Peng, “Delay-dependent stability analysis and synthesis of uncertain T–S fuzzy systems with time-varying delay,” Fuzzy Sets Syst., Vol. 157, pp.544-559, 2006.
51. R. M. Tong, “ A control engineering review of fuzzy systems,” Automatica, vol. 13, pp. 559-568, 1977.
52. S.C. Tong, and H. H. Li, “Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties,” Fuzzy Sets Syst., Vol. 131, pp.165-184, 2002.
53. V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Automat. Control, Vol. 22, pp. 212-222, 1977.
54. V. I. Utkin, Sliding Modes and Their Application in Variable Structure Systems, Moscow: MIR, 1978.
55. V. I. Utkin, Sliding Modes in Control and Optimization, Berlin, Germany: Springer-Verlag, 1992.
56. H.O. Wang, K. Tanaka, and M.F. Griffin, “An approach to fuzzy control of nonlinear systems: Stability and design issues,” IEEE Trans. Fuzzy Syst., vol. 4, pp. 14-23, 1996.
57. J. D. Wang, Y. T. Juang, “A new approach for Computing the state feedback gains of multivariable systems,” IEEE Trans. Automat. Control, Vol. 40, pp. 1823-1826, 1995.
58. J. D. Wang, T. L. Lee, Y. T. Juang, “New methods to design an integral variable structure controller,” IEEE Trans. Automat. Control, Vol. 41, pp. 140-143, 1996.
59. L. X. Wang, “Stable adaptive fuzzy control of nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 1, pp. 146-155, 1993.
60. W. A. Wolovich, “Static Decoupling,” IEEE Trans. Automat. Control, Vol. 18, pp. 536-537, 1973.
61. Y. Xia and Y. Jia, “Robust sliding-mode control of uncertain time delay systems: An LMI approach,” IEEE Trans. Autom. Control, Vol. 48, pp. 1086–1092, 2003.
62. Z. Yi and P.A. Heng, “Stability of fuzzy control systems with bounded uncertain delays,” IEEE Trans. Fuzzy Syst., vol. 10, pp. 92-97, 2002.
63. H. Ying, “General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators,” IEEE Trans. Fuzzy Syst., vol. 6, pp. 582-587, 1998.
64. K. D. Young, and Özgüner, “Frequency shaping compensator design for sliding mode,” International Journal of Control, Vol. 57, pp. 1005-1019, 1993.
65. X. Yu, Z. Man, and B. Wu, “Design of fuzzy sliding-mode control systems,” Fuzzy Sets Syst., Vol. 95, pp.295-306, 1998.
66. L. A. Zadeh, “Fuzzy sets,” Inform. Control, vol. 8, pp. 338-353, 1965.
67. L. A. Zadeh, “Fuzzy algorithm,” Inform. Control, vol. 12, pp.94-102, 1968.
68. L. A. Zadeh, “Similarity relations and fuzzy orderings,” Inform. Sci, vol. 3, pp.177-200, 1971.
69. L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision process,” IEEE Trans. Syst., Man, Cybern., vol. 3, pp. 28-44, 1973.
70. L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning: I, II, III,” Inform. Sci, vol. 8, pp.199-251, 1975.
71. K. Zeng, N. Y. Zhang, and W. L. Xu, “A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximators,” IEEE Trans. Fuzzy Syst., vol. 8, pp. 773-780, 2000.
72. F. Zheng, Q. G. Wang, and T. H. Lee, “Output tracking control of MIMO fuzzy nonlinear systems using variable structure control approach,” IEEE Trans. Fuzzy Syst., vol. 10, pp. 686-697, 2002.
73. A. S. Zinober, Variable Structure and Lyapunov Control, Berlin, Germany: Spring-Verlag, 1994.
指導教授 莊堯棠(Yau-Tarng Juang) 審核日期 2007-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明