參考文獻 |
中文部分:
[1] 基因微陣列之簡介及其應用:國科會微陣列基因體醫學核心實驗室;網址:http://microarray.mc.ntu.edu.tw/
[2] 交大生物科技諮詢網;網址:http://biotech.life.nctu.edu.tw/
英文部分:
[1] Berger, J.O. (1984). The robust Bayesian viewpoint (with discussion). In Robustness in Bayesian Statistics, ed. J. Kadane, Amsterdam: North Holland.
[2] Berger, J.O. (1985). Statistical decision theory and Bayesian analysis. New York: Springer-Verlag.
[3] Berger, J.O. (1986). Robust Bayes and empirical Bayes analysis with -contaminated priors. Annals of Statistics, 14, 461-486.
[4] Carlin, B.P. and Louis, T.A. (2000). Bayes and empirical Bayes methods for data analysis. New York: Chapman and Hall,
[5] Casella, G. (1985). An introduction to empirical Bayes data analysis. The American Statistician, 39, 83-87.
[6] Chen, Y., Dougherty, E.R., and Bittner, M.L. (1997). Ratio-based decisions and the quantitative analysis of cDNA microarray images. Journal of Biomedical Optics, 4, 364–374.
[7] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1-38.
[8] Dennis, B. and Patil, G.P. (1984). The gamma distribution and weighted multimodal gamma distribution as models of population abundance. Mathematical Biosciences, 68, 187-212.
[9] Dudoit, S., Yang, Y.H., Callow, M.J. and Speed, T.P. (2000). Statistical methods for identifing differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica, 12, 111-139.
[10] Efron, B., Tibshirani, R., Goss, V., and Chu, G. (2001). Microarrays and their use in a comparative experiment. Journal of the American Statistical Association, 96, 1151-1160.
[11] Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences, 95, 14863–14868.
[12] Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 6, 721-741.
[13] Gilks, W.R., Richardson, S., and Spiegelhalter, D.J., Eds. (1996). Markov Chain Monte Carlo in practice. London:Chapman and Hall.
[14] Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., and Lander, E.S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science, 286, 531–537.
[15] Greenwood, J.A. and Durand, D. (1960). Aids for fitting the gamma distribution by maximum likelihood. Technometrics, 2, 55-65.
[16] Hastie, T., Tibshirani, R., Eisen, M., Brown, P., Ross, D., Scherf, U., Weinstein, J., Alizadeh, A., Staudt, L., and Botstein, D. (2001). Gene shaving: A new class of clustering methods for expression arrays. Genome Biology, 2(1), research0003.1-0003.12.
[17] Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
[18] Ibrahim, J.G., Chen, M.H. and Gary, R.J. (2002) Bayesian models for genes expression with DNA microarray data. Journal of the American Statistical Association, 457, 88-99.
[19] Kendziorski, C.M., Newton, M.A., Lan, H. and Gould, M.N. (2003) On parametric empirical Bayes methods for the comparing multiple groups using replicated gene expression profiles. Statistics in Medicine, 22, 3899-3914.
[20] Kerr, M.K., Afshari, C.A., Bennett, L., Bushel, P., Martinez, J., Walker, N.J. and Churchill G.A. (2002) Statistical analysis of a gene expression microarray experiment with replication. Statistica Sinica, 12, 203-217.
[21] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953). Educations of stat calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1091.
[22] Morris, C.N., (1983a). Parametric empirical Bayes inference: Theory and applications. Journal of the American Statistical Association, 78, 47-65.
[23] Morris, C.N., (1983b). Natural exponential families with quadratic variance functions: Statistical theory. Annals of Statistics, 11, 515-529
[24] Newton, M.A., Kendziorski, C.M., Richmond, C.S., Blattner, F.R. and Tsui, K.W. (2001). On differrential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology, 8, 37-52.
[25] Robbins, H. (1955). An empirical Bayes approach to statistics. In Proceedings of 3rd Berkeley Symp. Mathematical Statistics And Probability, 1, Berkeley, CA: Univ. of California Press, 157-164.
[26] Sabatti, C. (2001). Inference on gene expression changes as measured with DNA microarrays.
網址:http://www.stat.ucla.edu:16080/~sabatti/statarray/change.pdf
[27] Sapir, M. and Churchill, G.A. (2000). Estimating the posterior probability of differential gene expression from microarray data. Poster, The Jackson Laboratory.
網址:http://www.jax.org/research/churchill/
[28] Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
[29] Shieh and Fan (2003). Analyzing single-slide microarray gene expression data by a Bayesian approach. Manuscript.
[30] Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.B., Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9, 3273–3297.
[31] Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., and Dmitrovsky, E. (1999). Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proceedings of the National Academy of Sciences, 96, 2907–2912.
[32] Tanner, M.A. (1996). Tools for statistical inference: Methods for the exploration of posterior distributions likelihood functions. Third Edition. Springer, New York.
[33] Tibshirani, R., Hastie, T., Eisen, M., Ross, D., Botstein, D., and Brown, P. (2000). Clustering methods for the analysis of DNA microarray data. Stanford University. |