參考文獻 |
[1] Maria A. J. D., Stetser D. A. and Heynau H., “Self mode-locking of lasers with
saturable absorbers,” Appl. Phys. Lett., 8, pp. 174–176 (1966).
[2] U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T.
Asom, “Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: an
antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett., 17, pp.
505–507 (1992).
[3] U. Keller, K. Weingarten, F. Kartner, D.Knopf, B.Braun, I. Jung, R. Fluck, C.
Honninger, N. Matuschek and J. aus der Au, “Semiconductor saturable absorber
mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state
lasers,” IEEE J. Sel. Top. Quantum Electron., 2, pp. 435–453 (1996).
[4] Keller U., Nonlinear Optics in Semiconductors, (eds. Garmire, E. & Kost, A.)
211–286 (Academic Press, Boston, 1999).
[5] Spence D. E., Kean P. N. and Sibbett, W., “60-fsec pulse generation from a
self-mode-locked Ti: sapphire laser,” Opt. Lett., 16, pp. 42–44 (1991).
[6] E. Innerhofer, T. Sdmeyer, F. Brunner, R. Hring, A. Aschwanden, R. Paschotta, C.
Hnninger, M. Kumkar, and U. Keller, “60 W average power in 810-fs pulses from a
thin-disk Yb:YAG laser,” Opt. Lett., 28, pp. 367–369 (2003).
[7] L. Kramer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingaiten, and U. Keller,”
Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J.
Quantum Electron., 38, pp. 1331–1338 (2002).
[8] Shah, J., Ultrafast spectroscopy of semiconductors and semiconductornanostructures, (Springer-Verlag, Berlin, 1996).
[9] Zewail A. H.,” Femtochemistry: Recent progess in studies of dynamics and
control of reactions and their transition states,” J. Phys. Chem., 100, pp. 12701
(1996).
[10] Zewail A. H.,” Femtochemistry: atomic-scale dynamics of chemical bond,” J.
Phys. Chem. A., 104, pp. 5660–5694 (2000).
[11] Valdmanis, J. A. and Mourou, G. A.,” Subpicosecond electrooptic sampling:
principles and applications,” IEEE J. Quantum Electron., 22, pp. 69–78 (1986).
[12] Weingarten, K. J., Rodwell, M. J. W. and Bloom, D. M.,” Picosecond optical
sampling of GaAs integrated circuits,” IEEE J. Quantum Electron., 24, pp. 198–220
(1988).
[13] Ramaswami, R. and Sivarajan, K., Optical Networks: A Practical Perspective,
(Morgan Kaufmann, 1998).
[14] L. F. Mollenauer, P. V. Mamyshev, J. Gripp, M. J. Neubelt, N. Mamysheva, L.
Grüner-Nielsen, and T. Veng, “Demonstration of massive wavelength-division
multiplexing over transoceanic distances by use of dispersion-managed solitons,” Opt.
Lett., 25, pp. 704–706 (2000).
[15] Miller D. A. B., “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum
Electron., 6, pp. 1312–1317 (2000).
[16] Krishnamoorthy, A. V. and Miller D. A. B.,” Scaling optoelectronic-VLSI
circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum
Electron., 2, pp. 55–76 (1996).
[17] Hatziefremidis, A., Papadopoulos, D. N., Fraser, D. and Avramopoulos H.,”
Laser sources for polarized electron beams in cw and pulsed accelerators,” Nucl.
Instrum. Meth. A, 431, pp. 46–52 (1999).
[18] Mollenauer, L. F. and Mamyshev P. V.,”Massive wavelength-division
multiplexing with solitons,” IEEE J. Quantum Electron., 34, pp. 2089–2102 (1998).
[19] L. Krainer, R. Paschotta, G. J. Spühler, I. Klimov, C. Y. Teisset, K. J. Weingarten
and U. Keller, ” Tunable picosecond pulse-generating laser with a repetition rate
exceeding 10 GHz,” Electron Lett., 38, pp. 225–227 (2002).
[20] Zeller S. C., Krainer L., Spühler G. J., Weingarten K. J., Paschotta R. and Keller
U.,” Passively modelocked 40-GHz Er: Yb: glass laser,” Appl. Phys. B, 76, pp.
787–788 (2003).
[21] Huang D., Swanson E. A. and Lin C. P.,” Optical coherence tomography,”
Science, 254, pp. 1178–1181 (1991).
[22] Fujimoto J. G.,” Optical coherence tomography,” C. R. Acad. Sci. Paris Serie IV
2, pp. 1099–1111 (2001).
[23] Boivin L., Wegmueller M., Nuss M. C. and Knox W. H, ” 110 Channels x 2.35Gb/s from a single femtosecond laser,” IEEE Photonics Technology Lett., 11, pp.
466–468 (1999).
[24] Souza E. A. D., Nuss M. C., Knox W. H. and Miller, D. A. B,”
Wavelength-division multiplexing with femtosecond pulses,” Opt. Lett., 20, pp.
1166–1168 (1995).
[25] Spühler G. J., Golding P. S., Krainer L., Kilburn I. J., Crosby P. A., Brownell M.,
Weingarten K. J., Paschotta R., Haiml M., Grange R. and Keller U., ” Novel
multi-wavelength source with 25-GHz channel spacing tunable over the Cband,”
Electron. Lett., 39, pp. 778–780 (2003).
[26] Holzwarth R., Udem Th. and Hänsch T. W., ” Optical frequency synthesizer for
precision spectroscopy,” Phys. Rev. Lett., 85, pp. 2264–2267 (2000).
[27] Holzwarth, R., Zimmermann, M., Udem, T. and Hänsch, T. W., ” Optical
clockworks and the measurement of laser frequencies with a mode-locked frequency
comb,” IEEE J. Quantum Electron., 37, pp. 1493–1501 (2001).
[28] Stenger J., Binnewies T., Wilpers G., Riehle F., Telle H. R., Ranka J. K., Windeler
R. S. and Stentz A. J.,” Phase-coherent frequency measurement of the Ca
intercombination line at 657 nm with a Kerr-lens mode-locked femtosecond laser,”
Phys. Rev. A, 63, pp. 802 (2001).
[29] Udem, T., Holzwarth, R. and Hänsch, T. W.,” Optical frequency metrology,”Nature, 416, pp. 233–237 (2002).
[30] Telle H. R., Steinmeyer G., Dunlop A. E., Stenger J., Sutter D. H. and Keller U.,”
Carrier-envelope offset phase control: A novel concept for asolute optical frequency
measurement and ultrashort pulse generation,” Appl. Phys. B, 69, pp. 327–332 (1999).
[31] Helbing F. W., Steinmeyer G., Stenger J., Telle H. R. and Keller, U.,”
Carrier-envelope-offset dynamics and stabilization of femtosecond pulses,” Appl.
Phys. B, 74, pp. S35–S42 (2002).
[32] G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori,
and S. De Silvestri,” Absolute-phase phenomena in photoionization with few-cycle
laser pulses,” Nature, 414, pp. 182–184 (2001).
[33] A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch.
Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch and F. Krausz,”
Attosecond control of electronic processes by intense light fields,” Nature, 421, pp.
611–615 (2003).
[34] Drescher Markus, Hentschel Michael and Kienberger Reinhard,” X-ray pulses
approaching the attosecond frontier,” Science, 291, pp. 1923–1927 (2001).
[35] Liu, X., Du, D. and Mourou, G.,” Laser ablation and micromachining with
ultrashort laser pulses,” IEEE J. Quantum Electron., 33, pp. 1706–1716 (1997).
[36] S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B.Wellegehausen and H. Welling.,” Ablation of metals by ultrashort laser pulses,” J. Opt.
Soc. Am. B, 14, pp. 2716–2722 (1997).
[37] von der Linde, D., Sokolowski-Tinten, K. and Bialkowski, J.,” Laser-solid
interaction in the femtosecond time regime,” Appl. Surf. Sci., 109/110, pp. 1–10
(1997).
[38] C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Tóth, T. Guo, M. Kammler,
M. Horn von Hoegen, K. R. Wilson, D. von der Linde and C. P. J. Barty,” Detection
of nonthermal melting by ultrafast X-ray diffraction,” Science, 286, pp. 1340–1342
(1999).
[39] Rousse, A. et al.,” Non-termal melting in semiconductors measured at
femtosecond resolution,” Nature, 410, pp. 65–68 (2001).
[40] D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U.
Keller, V. Scheuer, G. Angelow, and T. Tschudi,” Semiconductor saturable-absorber
mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the
two-cycle regime,” Opt. Lett., 24, pp. 631–633 (1999).
[41] R. Ell, U. Morgner, and F. X. Kärtner,” Generation of 5-fs pulses and
octave-spanning spectra directly from a Ti: sapphire laser,” Opt. Lett., 26, pp.
373–375 (2001).
[42] M. Nisoli, S. De Silvestri, and O. Svelto,” Compression of high energy laserpulses below 5 fs,” Optics Lett., 22, pp. 522–524 (1997).
[43] Shirakawa, A., Sakane, I., Takasaka, M. and Kobayashi, T.,” Sub-5-fs visible
pulse generation by pulsefront-matched noncollinear optical parametric
amplification,” Appl. Phys. Lett., 74, pp. 2268–2270 (1999).
[44] L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis,
and I. A. Walmsley,” Characterization of sub-6-fs optical pulses with spectral phase
interferometry for direct electric-field reconstruction,” Opt. Lett., 24, pp. 1314−1316
(1999).
[45] B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S.
De Silvestri, and O. Svelto,” Generation of 3.8-fs pulses from adaptive compression
of a cascaded hollow fiber supercontinuum,” Opt. Lett., 28, pp. 1987-1989 (2003).
[46] Fork, R. L., Martinez, O. E. and Gordon, J. P.,” Negative dispersion using pairs
of prisms,” Opt. Lett., 9, pp. 150–152 (1984).
[47] Andreas Stingl, Christian Spielmann, and Ferenc Krausz,” Generation of 11-fs
pulses from a self-mode-locked Ti: sapphire laser,” Opt. Lett., 18, pp. 977–979
(1993).
[48] P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, and A. J. Schmid,”
Operation of a femtosecond Ti: sapphire solitary laser in the vicinity of zero
groupdelay dispersion,” Opt. Lett., 18, pp. 54–56 (1993).[49] Zhou Jianping, Taft Greg, Huang Chung-Po, Murnane Margaret M., Kapteyn
Henry C. and Christov Ivan P.,” Pulse evolution in a broad-bandwidth Ti: sapphire
laser,” Opt. Lett., 19, pp. 1149–1151(1994).
[50] Szipöcs, R., Ferencz, K., Spielmann, C. and Krausz, F.,” Chirped multilayer
coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett., 19, pp.
201–203 (1994).
[51] Stingl, A., Lenzner, M., Ch. Spielmann, Krausz, F. and Szipöcs, R.,” Sub-10-fs
mirror-dispersioncontrolled Ti: sapphire laser,” Opt. Lett., 20, pp. 602–604 (1995).
[52] F. X. Krtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf,
V. Scheuer, M. Tilsch, and T. Tschudi,” Design and fabrication of double-chirped
mirrors,” Opt. Lett., 22, pp. 831–833 (1997).
[53] Matuschek, N., Kärtner, F. X. and Keller, U.,” Analytical design of
double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J.
Quantum Electron., 35, 129−137 (1999).
[54] N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer and U. Keller,”
Back-side coated chirped mirrors with ultra-smooth broadband dispersion
characteristics,” Appl. Phys. B, 71, pp. 509-522 (2000).
[55] Ya-Ping Li, Sheng-Hui Chen, and Cheng-Chung Lee,” Chirped-cavity
dispersion-compensation filter design,” Applied Optics, 45, 1525-1529 (2006)
[56] Steinmeyer, G., Sutter, D. H., Gallmann, L., Matuschek, N. and Keller, U.,”
Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear
optics,” Science, 286, pp. 1507–1512 (1999). |