以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:17 、訪客IP:3.145.7.187
姓名 蘇國銓(Kuo-Chuan Su) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 鈦合金之超塑性成形研究
(Study on Superplastic Forming of Titanium Alloys)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 關於鈦合金的超塑性成形研究已經有很長的一段時間,Ti-6Al-4V在這個領域當中,因其具有優越的超塑性與擴散接合的特性,使得它是目前使用最為廣泛的鈦合金超塑性材料。而厚度分布在超塑性成形中,又具有其重要性;當在發生塑性變形時,厚度分布可以提供成形過程中的相關資訊,因此分析厚度分布有其必要性。
本實驗主要研究主題在於長方形盒成形後的厚度分布分析,為了知道如何使得厚度分布均勻一致,將從三個部分著手;分別為文獻資料、試誤法、MARC軟體模擬分析,以獲得其有效成形壓力與時間曲線。而且依照MARC模擬出來之有效成形壓力與時間曲線所吹製出來的實驗,其最大厚度差可以控制在11%以內(不含入模角)。另外將潤滑液改採用石墨液混合氮化硼代替先前所使用的石墨液與氮化硼,可以將最大厚度差由11%下降到4%左右,以改善其厚度分布的均勻性。比較MARC模擬的厚度分布與實驗吹製出來的厚度分布,其最大誤差率約為8%(不含入模角)。簡而言之,我們可以透過MARC精準的預測實驗結果,並且達到節省成本的目的。摘要(英) Superplastic forming of titanium alloys has been studied popularly for a long time. Ti-6Al-4V has two characteristics, superior superplastic forming and diffusion bonding, which dominate the result in its wide application in titanium alloys. To analyze the distribution of thickness in superplastic forming is significant, because it can provide the information about the process of plastic deformation of Ti-6Al-4V.
The main subject is to study on the distribution of thickness of rectangular box. In order to know how to obtain the uniform thickness, it’s necessary to analyze pressure profiles. By adopting two methods, try and error and finite element-MARC, pressure profiles are easily obtained. Besides, we can also get pressure profiles by consulting documentary data. From the result of experiment, it shows the tolerance of thickness is less than 11% when disregarding the factor of die entry radius. The tolerance of thickness can reduce from 11% to 4% when mixture of graphite and boron nitride is substituted for the original lubrication. According to the comparison of distribution of thickness between MARC and experiment, we can get the error rate is less than 8% when disregarding the factor of die entry radius. In a word, we can predict the result of experiment by MARC and save the cost.關鍵字(中) ★ 鈦合金
★ 超塑性關鍵字(英) ★ Titanium
★ Ti-6Al-4V
★ Superplastic Forming論文目次 第一章 前言 1
第二章 文獻回顧 3
2.1鈦的背景 3
2.2鈦及鈦合金的分類 3
2.2.1合金元素的影響 4
2.3鈦的物理性質與機械性質 4
2.4鈦的變形性質 5
2.5超塑性的歷史背景 6
2.6超塑性材料分類 7
2.6.1細晶超塑性 7
2.6.2環境超塑性 9
2.7超塑性成形理論基礎 9
2.8超塑性力學基本原理 10
2.9 m值與伸長率之關係 12
2.10長方形盒的超塑性成形 13
2.11選用Ti-6Al-4V為超塑性材料的原因 14
2.12超塑性成形溫度 15
2.13晶粒大小對超塑性成形的影響 15
2.14高速超塑性 16
第三章 實驗步驟 24
3.1實驗設備 24
3.2實驗材料 26
3.3模具設計及材料 27
3.4吹氣系統之配置 28
3.4.1階梯式增壓控制方式 28
3.5腐蝕液配方 29
3.6試片切割與鑲埋 29
3.7試片研磨與拋光 30
3.8 MARC軟體模擬元素之特性 31
3.8.1 平面應變元素 31
3.8.2 薄膜元素 32
3.8.3 殼元素 32
3.8.4 MARC軟體模擬參數之假設 32
第四章 結果與討論 40
4.1有效成形壓力 40
4.2依據文獻參數之超塑性成形厚度分布分析 42
4.3試驗法之超塑性成形厚度分布分析 43
4.4 MARC軟體模擬與超塑性實驗厚度分布比較 46
4.5潤滑液對厚度分布之影響 52
4.6純鈦的超塑性分析 55
4.7低溫的超塑性成形 56
4.8不同晶粒大小之影響 57
第五章 結論 88
參考文獻 90參考文獻 1、William F., Smith “Structure and Properties of Engineering Alloys”, New York, McGraw-Hill, (1981), pp411-457.
2、Metals Handbook, Vol.8, “Metallography Structures and Phase Diagrams”American Society for Metals, Metals Park, OH. 44073, pp141.
3、T.G. Nieh, J. Wadsworth, O.D. Sherby, “Superplasticity in Metals and Ceramics”, Cambridge University Press, Cambridge, UK, (1997).
4、G.A. Salishchev, R.M. Galeyev, “Development of Ti-6Al-4V Sheet with Low Temperature Superplastic Properties”, Journal of Materials Processing Technology, 116 (2001), pp265-268.
5、S.N. Patankar, J.P. Escobedo, “Superior Superplastic Behavior in Fine-Grained Ti-6Al-4V Sheet”, Journal of Alloys and Compounds, 345 (2002), pp221-227.
6、A.K. Ghosh, C.H. Hamilton, ”Superplastic Forming and Diffusion Bonding of Titanium Alloys”, Def. Sci. J., 36(2) (1986), pp153-177.
7、C.H. Hamilton, “Superplasticity in Titanium Alloys”, Superplastic Forming, ASM International, (1985), pp13-22.
8、Matthew J. Donacehie, JR., “Titanium and Titanium Alloys”, American Society for Metals, Metals Park, OH. 44073.
9、A.K. Ghosh, C.H. Hamilton, “Superplastic Forming of a Long Rectangular Box Section -Analysis and Experiment”, Rockwell International Thousand Oaks, California.
10、Oleg D. Sherby, “Advances in Superplasticity and Superplastic Materials”, ISIJ International, Vol. 29 (1989), No.8, pp698-716.
11、R. Verma, P.A. Friedman, A.K. Ghosh, C. Kim, and S. Kim, ”Characterization of Superplastic Deformation Behavior of a Fine Grain 5083 Al Alloy Sheet”, Metallurgical and Materials Transactions A, (1996), pp1889.
12、R. Verma, P.A. Friedman, A.K. Ghosh, C. Kim, and S. Kim, “Superplastic Forming Characteristics of Fine-Grained Aluminum”, J. Mater. Sci. Eng, (1995), pp543.
13、C.H. Hamilton, A. K. Ghosh, “Characterization of Superplastic Deformation Properties of Ti-6Al-4V”, Rockwell International Science Center Thousand Oaks, California 91360, pp1003-1014.
14、J.S. Shyu, T.H. Chuang, “Comparison of Superplastic Formability between Ti-6Al-4V and Ti-6Al-6V-2Sn Alloy”, Chinese Journal of Materials Science, Vol.27 (1995), pp130-140.
15、D.C. Dunand, C.M. Bedell, “Transformation-Mismatch Superplasticity in Reinforced and Unreinforced Titanium”, Vol.44 (1996), No.3, pp1063-1076, Pergamon Press.
16、J.D. Will, M.G. Kistner and J.D. Cotton, “Characterization of Laser-Welded Ti-62222S/Ti-64 Superplastically-Formed Panels”, Superplasticity and Superplastic Forming (1998), pp321-330.
17、Materials Properties Handbook, “Titanium Alloys”, Materials Park, OH. ASM International, (1994), pp483-636.
18、機械材料, 金重勳著, 復文書局, pp459.
19、洪國程,國立中央大學九十一年機械所碩士論文
20、張書省,國立中央大學八十九年機械所碩士論文
21、張世穎,國立台灣大學八十年材料科學與工程學所碩士論文
22、鎂及鋁合金之超塑性成形, 葉均蔚著, 工業材料雜誌, 174期,
90年6月, pp102-112.指導教授 李雄(Shyong Lee) 審核日期 2003-6-23 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare