博碩士論文 90343007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.145.196.150
姓名 沈晉輝(Chin-Hui Shen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 汽車輕量化車體結構用6000系鋁合金之研究
(The Study on the Weight Reduction for Body Structure of Automobile Uses 6000 Series Aluminum Alloys)
相關論文
★ 鋁電解電容器用陽極鋁箔電蝕時電化學舉動之研究★ 汽車車體用鋁合金板材、擠型材之研究
★ 汽車車體骨架用6000系鋁合金低溫時效與擠型條件之研究★ 材料製程對汽車車體用鋁合金彎曲加工特性之影響研究
★ 鋁電解電容器用低壓陽極箔鋁箔之研發★ 鋁原箔對鋁電解電容器用高壓陽極鋁箔電解腐蝕舉動之影響研究
★ 電蝕條件對鋁電解電容器用高壓陽極鋁箔電蝕時電化學舉動之影響研究★ 鋁原箔製程參數對低壓鋁電解電容器用陽極鋁箔電解腐蝕舉動影響之研究
★ 微量元素對高壓鋁電解電容器用 陽極鋁箔電解腐蝕舉動影響之研究★ 微量元素對低壓鋁電解電容器用 陽極鋁箔電解腐蝕舉動影響之研究
★ 製程履歷對汽車車體用6022 鋁合金析出舉動之影響研究★ 製程條件對汽車車體用6022鋁合金析出擧動之影響
★ 均質化處理及時效處理條件對航空用鋁合金金屬疲勞舉動之影響★ 鋁電解電容器用高純度鋁箔直流電蝕擧動之模型分析
★ 腐蝕環境對航空用7050鋁合金金屬疲勞擧動之影響★ 低壓鋁電解電容器用鋁箔之電蝕條件最佳化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要研究汽車用6000系(Al-Mg-Si)鋁合金,如何降低自然時效的負面影響,有效提升鋁合金的烤漆硬化性(烤漆後合金強度的增加值)。本論文中以板材用鋁合金6022使用於汽車車板,擠型材鋁合金6063使用於汽車車體骨架,於熱處理製程時,預時效和預應變會直接影響後續自然時效及烤漆硬化之析出擧動,所以預時效和預應變條件之擬定,微小析出粒子組織結構之建立,具有深入探討之價值,將有助於改善汽車用6000系鋁合金板材之成形性及烤漆硬化性,使汽車用6000系鋁合金板材有更大的使用空間。
本論文的主要研究方法如下,利用高分解能穿透式電子顯微鏡(HRTEM)、穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM),進行組織結構的觀察及分析;利用高靈敏度熱分析儀(DSC)、電阻量測、導電率量測,分析各析出相的析出次序、熱安定性析出時相互之間的影響;利用微小硬度機、拉伸試驗機和彎曲試驗機測量鋁合金其硬度和拉伸強度。
本論文研究第一部分主要在於低溫預時效對擠型用6063鋁合金高溫時效時析出舉動之影響,結果顯示,鋁合金經固溶.淬水處理,溫度範圍於-10~30℃長時間預時效處理時,鋁合金基地內因有GP zone (I)形成,會抑制高溫時效時β′強化相析出,致使高溫時效後強度增加量減少,此負面現象會因低溫時效溫度的提升或時間增長而更明顯。溫度範圍於40~70℃長時間預時效處理時,基地內已生成β′′相,再經高溫人工時效時並不會回溶且會繼續成長,增加材料的強度,此正面現象會因低溫預時效溫度的提升或時間增長而更明顯。
第二部分主要在研究淬水後塑性變形(預應變)對車體用6022鋁合金時效過程之影響,結果指出差排不但抑制鋁合金在自然時效期間GP Zones (I)的生成,而且提供異質的成核位置,這將會幫助它們在人工時效處理期間,提高原子的傳送使成長成為中間相β′。經預應變的鋁合金自然時效處理後,在高溫的人工時效處理初期,鋁合金硬度會直接增加,因此導入合適差排量,可以降低GP Zones (I) 回溶所引起鋁合金強度和硬度不穩定問題,也有提升時效硬化的速度,結果指出2%預應變能有效減少鋁合金自然時效30days後,對170℃人工時效30 min後強度的影響。
摘要(英) The present thesis main research has focused in particular on the heat-treatable Al-Mg-Si Aluminum alloys automobile uses 6000 series of Aluminum alloys, how to reduce the effect of this delay for natural aging (NA) on the mechanical properties of Al-Mg-Si alloys have been carried out. In addition, the hardening response to the rather short industrial paint-bake cycle is less than desired and may be further impaired by natural aging (at room temperature storage) after the solution treatment. Hence, Al-Mg-Si sheet samples were pre-strained in tension shortly after the solution treatment to improve the paint-bake response of Aluminum alloys by employing artificial aging between the solution treatment and the paint-bake cycle.
The main research approach of this thesis is as follows, the precipitation behaviors of samples of the alloy were analyzed using differential scanning calorimetry (DSC) as well as by measuring the electrical conductivity and confirmed by microstructure observation using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Tensile tests and microhardness measurements were performed to determine the mechanical properties of the samples.
This thesis studies the first part mainly to lie in the influence of low temperature pre-aging on the artificial age-hardening of a Aluminum Alloy 6063 (Al-0.72Mg-0.42Si) has been investigated in this study. The results indicate that GP zones (I) are formed in the Aluminum Alloy 6063 at 0~30℃ during a long pre-aging period. The formation of GP zones (I) will retard the precipitation of the intermediate β′ phase during artificial aging and will result in the decreasing of the strength of the alloy after the artificial aging process. Increasing either the pre-aging temperature or the holding period will significantly decrease the strength after artificial aging. The results indicate that β′′ are formed in the Aluminum Alloy 6063 at a pre-aging temperature of 40~70℃ but this has no influence on age-hardening after artificial aging, even for a long period. Increasing either the pre-aging temperature or the holding period will significantly increase the strength after artificial aging. However, for pre-aging at -10℃, the negative effect on age-hardening is still not clear and should be investigated in the future.
The second part mainly in the study of the effect of pre-straining on the natural aging and artificial aging of an Aluminum Alloy 6022 (Al-0.6Mg-1.0Si) has been investigated in this study. The results indicate that the dislocations would not only suppress clustering during natural aging but also provide heterogeneous nucleation sites. There are particularly noteworthy results, that 2% pre-straining leads to a significant reduction in the detrimental effects of 30 days of natural aging on the artificial aging at 170℃ for 30 min and provide sufficient formability to make the part, and a high strength after the artificial aging.
關鍵字(中) ★ 預應變
★ 自然時效
★ 析出硬化
★ 人工時效
★ 預時效
★ 6063鋁合金
★ 6022鋁合金
關鍵字(英) ★ Pre-straining
★ Pre-aging
★ AA6022
★ Natural ag
★ AA6063
論文目次 中文摘要 …..…………………………………………………..…… i
英文摘要 …..………………………………………………..……… iii
誌謝 ………………………………...…..…….……..…………. v
目錄 ……………………………...……………...…..…………. vi
圖目錄 …………………………...…..………….….…..………… x
表目錄 …………………………...……..……….…...……...……. xvi
一、 前 言……..………...………………..…….……...……… 1
1-1 研究背景…………….....……….……...………………… 1
1-2 研究動機和目的………...….……….….....…..…………. 4
1-3 國內外有關之研究情況….……….........…………..……. 5
1-4 研究方法………………...……………..……….………... 7
二、 理論基礎與論文回顧………………...………………...... 9
2-1 鋁及鋁合金…………..…...……….………………..……. 9
2-1-1 鋁合金的分類………………...……...…………..………. 9
2-1-2 Al-Mg-Si(6000 系)鋁合金………………...……….… 10
2-2 析出強化熱處理……………….………………....…........ 11
2-2-1 固溶熱處理(solution treatment) ………..….........…..…... 12
2-2-2 快速淬火(quenching)……..…...…………..…….…… 12
2-2-3 時效處理(aging treatment)……………...…..………… 12
2-3 時效處理對析出硬化型鋁合金性質的影響….………… 13
2-3-1 機械性質的變化………...……...….………....….………. 13
2-3-2 析出強化機構………..……...….…...…………………… 15
2-3-3 物理性質和耐腐蝕性…………………….……………… 18
2-4 固體相變態(成核理論) ………………...….……..……... 19
2-5 過飽和固溶體分解的熱力學…………….....…………… 23
2-5-1 過飽和固溶體分解的驅動力…..…………......…………. 23
2-5-2 Spinodal分解………………...………..…..…..…………. 24
2-5-3 準安定固溶體的分解………………………….………… 24
2-6 時效析出型態…………….….……...…………....……… 25
2-7 6000 系鋁合金的時效硬化過程……….…….…...……... 26
2-7-1 鋁合金的時效析出序列與機構………………......……... 26
2-7-2 影響析出過程的因素……......…………….…..…..…….. 27
2-7-3 自然時效析出機構…………...…...……………….…….. 30
2-7-4 人工時效析出機構………………....………….………… 30
2-7-5 自然時效對人工時效的影響…………..…...….……....... 30
2-7-6 合金的兩段時效………………………..……….……….. 32
2-7-7 時效前的處理…..….………….………….…..………….. 34
三、 實驗方法及設備………..……....….…………………….. 49
3-1 合金準備與鑄造……………......…………….…..….….. 49
3-2 鋁板材之製作………………......……………….……….. 49
3-2-1 擠型板材6063 鋁合金…....………...…..…….……….… 49
3-2-2 輥軋板材6022鋁合金…....………….……………...…… 49
3-3 鋁板材試片之熱處理…....…...…..….……...…...………. 50
3-3-1 擠型板材6063 鋁合金熱處理…....……………...…..….. 50
3-3-2 輥軋板材6022鋁合金熱處理…....…..…….….………… 50
3-4 差式掃描熱量測定法( Differential Scanning
Calorimetry, DSC)………………...…..….…….………. 51
3-5 機械性質測試…….………….…….......…...…….……… 51
3-5-1 拉伸試驗(Tensile Test)….……….…………………… 51
3-5-2 硬度試驗…….……….…….……………….…….……… 52
3-6 顯微組織觀察….…………….……..….…..….…………. 52
3-6-1 穿透式電子顯微鏡觀察(TEM)….……..…….………. 52
3-6-2 掃描式電子顯微鏡(SEM) …………….…….…….…….. 53
3-7 物理性質測試 ….…..….……………..…….……..…… 53
3-7-1 電阻率測試………………………………..….….………. 53
3-7-2 導電率測試………………………………………............. 54
四、 低溫預時效對擠型用6063 鋁合金高溫時效析出舉動
之影響…………………..……..……………….…………
57
4-1 本章摘要……….....……………...………..……………... 57
4-2 本章前言…………..……………..………………………. 58
4-3 本章實驗方法…………..…………......………..………... 59
4-4 結果與討論………….………..…………...……….…..… 60
4-4-1 預時效處理對6063鋁合金人工時效後抗拉強度之影響 60
4-4-2 預時效處理對6063 鋁合金人工時效前後DSC 熱分析
之影響…………………………………………………….
65
4-4-3 預時效處理對6063 鋁合金電阻率量測值之影響….….. 69
4-4-4 預時效處理對6063 鋁合金人工時效後微結構之影響... 75
4-5 本章結論..…………..…………..….……….….………… 80
五、 預拉伸(預應變)對車體用6022 鋁合金時效過程之影響 106
5-1 本章摘要…..……………………..….……..…..…..…..… 106
5-2 本章前言…..………………………………...……..…..… 106
5-3 本章實驗方法…..…………………...………......……..… 107
5-4 結果與討論…..…………………..………….......……….. 108
5-4-1 自然時效對6022 鋁合金析出反應的影響…..….……… 108
5-4-2 預拉伸(預應變)對6022 鋁合金自然時效過程的影響… 110
5-4-3 預應變對車體用6022鋁合金高溫人工時效過程之影響 115
5-5 本章結論…..………………....…...…..……....….………. 119
六、 總結論……………………………..…………...……….... 155
七、 未來研究方向………………………………..………….. 157
參考文獻 ………………………………..……...………..……….… 158
附錄 作者簡歷………………………….………...………..….. 168
參考文獻 1. A. Kelkar, R. Roth and J. Clark, “Automobile Bodies: Can Aluminum be an Economical Alternative to Steel”, Journal of the Minerals, Metals & Materials Society, Vol.53, no.8, pp.28-32, 2001.
2. J. Decicco and M. Ross, “Recent Advances in Automotive Technology and the Cost-Effectiveness of Fuel Economy Improvement”, Transportation Research Part D, Vol.1, no.2, pp.79-96, 1996.
3. A.I. Taub, “Automotive Materials: Technology Trends and Challenges in the 21st Century”, MRS Bulletin, Vol.31, pp.336-343, Apr., 2006.
4. A. Gesing and R. Wolanski, “Recycling Light Metals from End-of-Life Vehicles”, Journal of the Minerals, Metals & Materials Society, Abi/Inform Trade & Industry, Vol.53, no.11, pp.21-23, 2001.
5. D. Carle and G. Blount, “The Suitability of Aluminum as an Alternative Material for Car Bodies”, Materials and Design, Vol.20, pp.267-272, 1999.
6. G.S. Cole and A.M. Sherman, “Lightweight Materials for Automotive Applications”, Materials Characterization, Vol.35, pp.3-9, 1995.
7. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P.D. Smet, A. Haszler and A. Vieregge, “Recent Development in Aluminium Alloys for the Automotive Industry”, Materials Science and Engineering A, Vol.280, pp.37-49, 2000.
8. Andrew and M. Sherman, “Trends in Automotive Applications for Aluminum”, Materials Science Forum, Vol.331-337, pp.3-4, 2000.
9. Hayashi and Hisashi, “Trend of Weight Reduction of Automobile and Expectation for Aluminum Alloys as Light Weight Materials”, Journal of Institute of Light Metals, Vol.55, no.8, pp.371-376, 2005.
10. Aluminum in the Automotive Industry, European Aluminum Association, pp.1-14, 1996.
11. H. Yoshida and S. Hirano, Sumitomo Light Metal Industries, Ltd. Research & Development Center, Vol.32, no.20, 1991.
12. Y. Komatsu, “Development and Practical Use of all Aluminum Body Vehicle NSX”, Journal of Japan Institute of Light Metals, Vol.41, no.4, pp.276, Apr., 1991.
13. T. Inaba, “Aluminum Alloy Sheet for Automotive Body Panel”, Kobe Steel Engineering Reports, Vol.52, no.3, 2002.
14. Practices for the Repair of Automotive Sheet Aluminum, Publication AT 4, The Aluminum Association, Copyright, 1998.
15. Swiss Federal Institute of Technology Zurich, “Paint Bake Response of Aluminium Car Body Sheet Alloy”, ETHZ Materials, Kurzfassungen, ETH Zurich, 2001.
16. O. Engler and J. Hirsch, “Texture Control by Thermomechanical Processing of AA6xxx Al-Mg-Si Sheet Alloys for Automotive Applications-A Review”, Materials Science and Engineering A, Vol.336, pp.249-262, 2002.
17. L. Zhen, S.B. Kang and H.W. Kim, “Effect of Natural Ageing and Pre-Ageing on Subsequent Precipitation Process of an Al-Mg-Si Alloy with High Excess Silicon”, Materials Science and Technology, Vol.13, no.11, pp.905-910, 1997.
18. L. Zhen and S.B. Kang, “DSC Analyses of the Precipitation Behavior of Two Al-Mg-Si Alloys Naturally Aged for Different Times”, Materials Letters, Vol.37, no.6, pp.349-353, 1998.
19. J. Dutkiewicz and L. Litynska, “The Effect of Plastic Deformation on Structure and Properties of Chosen 6000 Series Aluminum Alloys”, Materials Science and Engineering A, Vol.324, pp.239-243, 2002.
20. 徐業良,「淺談汽車結構設計」,汽車購買指南雜誌,史丹福專欄,八月號,2002.
21. 曾寶貞譯,「鎂合金在汽車零組件之應用動向,鎂合金產業專欄」,工業材料,160期,pp.149-152.
22. 「鎂合金在汽車產業之創新應用」,輕金屬先進技術發展與應用國際研討會,2003.
23. Aluminum Alloy Selection and Applications, Published by The Aluminum Association, Inc., Washington, D.C., Dec., 1998.
24. I.J. Polmear, Light Alloys-Metallurgy of the Light Metals, 3nd ed., Edward Arnold, London, England, pp.118-143, 1995.
25. J.E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, pp.351-359, 1984.
26. J.E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, pp.320-350, 1984.
27. Askeland and R. Donald, The Science and Engineering of Materials, Boston, PWS Publishing, 1994.
28. Smith and F. William, Structure and Properties of Engineering Alloys, New York, Mc Graw-Hill Inc., 1981.
29. Society's Committee Member of Japan Light Metal, Aluminum Alloy of Organize with Property, Japan Light Metal Association, pp.278, 1991.
30. L. Zhen, W.D. Fei, S.B. Kang and H.W. Kim, “Precipitation Behavior of Al-Mg-Si Alloys with High Silicon Content”, Journal of Materials Science, Vol.32, no.7, pp.1895-1902, 1997.
31. M. Takeda, F. Ohkubo, T. Shirai and K. Fukui, “Precipitation Behavior of Al-Mg-Si Ternary Alloys”, Materials Science Forum, Vol.217-222, no.2, pp.815-820, 1996.
32. D. Apelian, S. Shivkumar and G. Sigworth, “Fundamental Aspects of Heat Treatment of Cast Al-Si-Mg Alloys”, AFS Transactions, Transactions of the American Foundrymen's Society, San Antonio, Texas, USA, Vol.97, pp.727-742, May, 1990.
33. J.R. Davis, editor, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International, Materials Park, OH, 1993.
34. H.K. Hardey, Journal of the Institute of Metals, Vol.79, pp.231, 1951.
35. R.F. Mehl, Introduction and Summary in Precipitation from Solid Solution, American Society for Metals, Cleveland, Ohio, pp.1-5, 1959.
36. C.R. Brooks, Materials Handbook, Vol.4: Heat Treating, ASM International Materials Park, Ohio, p.823, 1991.
37. D.L. Zhang, L.H. Zheng and D.H. St John, “Effect of Solution Treatment Temperature on Tensile Properties of Al-7Si-0.3Mgwt% Alloy”, Materials Science and Technology, Vol.14, pp.619-625, Jul., 1998.
38. L. Pedersen and L. Arnberg, “The Effect of Solution Heat Treatment and Quenching Rates on Mechanical Properties and Microstructure in Al-Si-Mg Foundry Alloys”, Metallurgical and Materials Transactions A, Vol.32, no.3, pp.525-532, Mar., 2001.
39. G.F. Dirras, P. Donnadieu and J. Douin, “Dislocation/Precipitate Interaction Mechanisms in 6xxx Aluminium Alloys”, Problems of Materials Science, Vol.1, pp.33, 2003.
40. J.M. Silcook, T.J. Heal and H. K. Hardy, Journal of the Institute of Metals, Vol. 82, pp.239, 1953-4.
41. C.R. Brooks, Heat Treatment: Structure and Properties of Nonferrous Alloys, ASM, pp.18 and 106-114, 1992.
42. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., Boston, PWS Publishing Company, pp.515-535, 1991.
43. C.E. Deiter, Mechanical Metallurgy, 3rd ed., McGraw-Hill, pp. 65-158, 1986.
44. 劉國雄、林樹均、李勝隆、鄭晃忠和葉均蔚,工程材料科學,全華科技圖書出版,台灣,pp.433-486,1993.
45. J.W. Martin, Micromechanisms in Particle-Hardened Alloys, Cambridge University Press, pp.1-78, 1980.
46. T. Hirata and S. Matsuo, “Two-Step Ageing Behaviors of Al-1.2 wt % Mg2Si Alloy”, Transactions Japan Institute of Metals, Vol.13, no.4, pp.231-237, Jul., 1972.
47. M.H. Mulazimoglu, R.A.L. Drew and J.E. Gruzelski, “Electrical Conductivity of Aluminum-Rich Al-Si-Mg Alloys”, Journal of Materials Sciences Letters, Vol.8, pp.297-300, 1989.
48. C. Panseri and T. Federighi, “A Resistometric Study of Precipitation in an Aluminium-1.4 % Mg2Si Alloy”, Journal of the Institute of Metals, Vol.94, no.3, pp.99-107, Mar., 1966.
49. I. Kovacs, J. Lendvai and E. Nagy, “Mechanism of Clustering in Supersaturated Solid Solutions of Al-Mg2Si Alloys”, Acta Metallurgica, Vol.20, no.7, pp.975-983, Jul., 1972.
50. N. Mott and H. Jones, The Theory of the Properties of Metals and Alloys, Clarendon, Oxford, 1936.
51. J.W. Christian, The Theory of Transformations in Metals and Alloys, 2nd ed., Part I, Pergamon Press, Oxford, 1975.
52. P. Haasen, Physical Metallurgy, Cambridge University Press, Cambridge, 1978.
53. J.W. Christion, The Theory of Transformations in Metals and Alloys, Chapter XVI, Pergamon Press, Oxford, pp.106-169, 1965.
54. D.W. Pashley, M.H. Jacobs and J.T. Vietz, “The Basic Processes Affecting Two-Step Ageing in an Al-Mg-Si Alloy”, Philosophical Magazine, Vol.16, no.139, pp.51-76, Jul., 1967.
55. G. Thomas, “The Ageing Characteristics of Aluminum Alloys”, Journal of the Institute of Metals, Vol.90, pp.57-63, 1961.
56. B.L. Ou, Y. Tsuzuki, K. Kishino, K. Sasaki and H. Watanabe, “Age-Hardenability of a 6000-SeriesAl-Mg-Si Alloy”, Furukawa Review, no.14, pp.157-162, 1995.
57. Y. Baba and A. Takashima, “Influence of Composition on the Two-Stage Ageing of Al-Mg-Si Alloys”, Transactions Japan Institute of Metals, Vol.10, no.3, pp.196-204, May, 1969.
58. H. Suzuki, M. Kanno and Y. Shiraishi, “Effects of Excess Magnesium or Silicon on the Two-Step Ageing Behavior of Al-Mg2Si Alloys”, Journal of Japan Institute of Light Metals, Vol.29, no.5, pp.197-203, 1979.
59. H. Suzuki, M. Kanno, Y. Shirashi and K. Hanawa, “Effects of Copper Addition on Ageing Phenomena in Al-Mg-Si Alloys”, Journal of Japan Institute of Light Metals, Vol.29, no.12, pp. 575-581, Dec., 1979.
60. R. Giege, J.D. Ng, B. Lorber, A. Theobald-Dietrich, D. Kern, and J. Witz, “The Crystallization of Biological Macromolecules from Precipitates: Evidence for Ostwald Ripening”, Journal of Crystal Growth, Vol.168, no.1, pp.50-62, 1996.
61. R Boistelle and J.P. Astier, “Crystallization Mechanisms in Solution”, Journal of Crystal Growth, Vol.90, pp.14-30, 1988.
62. R.J. Livak, “The Effects of Copper and Chromium on the Ageing Response of Dilute Al-Mg-Si Alloys”, Metallurgical Transactions A, Vol.13, no.7, pp.1318-1321, Jul., 1982.
63. M. Tamizifar and G.W. Lorimer, “The Effect of Copper on the Ageing Response of an Aluminum-Magnesium-Silicon Alloy”, The 3rd International Conference on Aluminum Alloys: Their Physical and Mechanical Properties, Trondheim, Norway, Vol.22-26, pp. 220-225, Jun., 1992.
64. T. Sakurai and T. Eto, “Effect of Copper Addition on Mechanical Properties of Al-Mg-Si Alloys”, Kobe Research and Development Japan, Vol.43, no.2, pp.95-98, Apr.,1993.
65. D.W. Pashley, J.W. Rhodes and A. Sendorek, “Delayed Ageing in Al-Mg-Si Alloys: Effect on Structure and Mechanical Properties”, Journal of the Institute of Metals, Vol.94, no.2, pp.41-49, Feb., 1966.
66. R.C. Dorward, “Pre-Ageing Effect in Al-Mg-Si Alloys Containing 0.6 to 0.9 % Mg2Si”, Metallurgical Transactions, Vol.4, no.2, pp.507-512, Feb., 1973.
67. S.B. Kang, L. Zhen, H.W. Kim and S.T. Lee, “Effect of Cold Rolling and Ageing Treatment on Mechanical Property and Precipitation Behavior in a Al-Mg-Si Alloy”, Materials Science Forum, Vol.217-222, no.2, pp.827-832, 1996.
68. G.W. Lorimer and R.B. Nicholson, “Further Results on the Nucleation of Precipitates in the Al-Zn-Mg System”, Acta Metallurgica, Vol.14, no.8, pp.1009-1013, Aug., 1966.
69. M. Kanno and H. Suzuki, “Transmission Electron Micrographs Caused by Some Unfavorable Factors in Aluminum Base Alloys”, Journal of Japan Institute of Light Metals, Vol.30, no.11, pp.653-663, 1980.
70. L. Zhen and S.B. Kang, “Effect of Pre-Deformation on Microstructure and Tensile Properties of Al-Mg-Si Alloys with High Silicon Content”, Materials Science and Technology, Vol. 14, no.4, pp.317-321, Apr., 1998.
71. P. Ratchev and B. Verlinden ,“Effect of Cooling Rate and Pre-Deformation on the Precipitation Hardening of an Al-4.2wt.%Mg-0.6wt.%Cu Alloy”, Script Materialia, Vol.38, no.8, pp.1195-1201, 1998.
72. Y. Birol, “Pre-Straining to Improve the Bake Hardening Response of a Twin-Roll Cast”, Scripta Materialia, Vol.52, no.3, pp.169-173, Feb., 2005.
73. G.K. QuaiNoo and S. Yannacopoulos, “The Effect of Prestrain on the Natural Ageing and Fracture Behavior of AA6111 Aluminum”, Journal of Materials Science, Vol.39, no.15, pp.4841-4847, Aug., 2004.
74. A. Deschamps, “Analytical Techniques for Aluminum Alloys, LTPCM”, Institute National Polytechnique de Grenoble, Domaine Universitaire, France, pp.1-30.
75. J.M. Papazian, “Effects of SiC Whiskers and Particles on Precipitation in Aluminum Matrix Composites”, Metallurgical Transactions A, Vol.19, no.12, pp.2945-2953, Dec., 1988.
76. S.P. Chen, K.M. Mussert and S. van der Zwaag, “Precipitation Kinetics in Al 6061 and in an Al 6061-Alumina Particle Composite”, Journal of Materials Science, Vol.33, no.13, pp.4477-4483, Sep., 1998.
77. R.F. Schwenker and P.D. Garn, Thermal Analysis, Vol.1, New York, Academic Press, pp.68-70, 1969.
78. 林敬二審譯,儀器分析,第五版,美亞書版股份,pp.752-761,1997.
79. P. Olafsson and R. Sandstrom, “Calculations of Electrical Resistivity for Al-Cu and Al-Mg-Si Alloys”, Materials Science and Technology, Vol.17, no.6, pp.655-662, Jun., 2001.
80. S. Esmaeilia, D.J. Lloyd and W.J. Poole, “Effect of Natural Ageing on the Resistivity Evolution during Artificial Ageing of the Aluminum Alloy AA6111”, Materials Letters, Vol.59, no.5, pp. 575-577, Feb., 2005.
81. N. Luiggi, J.P. Simon and P. Guyot, “Residual Resistivity of Clusters in Solid Solutions”, Journal of Physique F, Vol.10, no.5, pp.865-872, May, 1980.
82. Y. Birol, “Pre-Ageing to Improve Bake Hardening in a Twin-roll Cast Al-Mg-Si Alloy”, Materials Science and Engineering A, Vol.391, no.1-2, pp.175-180, 2005.
83. M. Saga, Y. Sasaki, M. Kikuchi, Z. Yan, and M. Matsuo, “Effect of Pre-Ageing Temperature on the Behavior in the Early Stage of Ageing at High Temperature for Al-Mg-Si Alloy”, Materials Science Forum, Vol.217-222, no.2, pp.821-826, 1996.
84. B.L. Ou and C.H. Shen, “Effect of Pre-Ageing on Precipitation Behavior in Aluminum Alloy 6063 during High-Temperature Ageing”, Scandinavian Journal of Metallurgy, Vol.33, no.2, pp. 105-112, 2004.
85. J.D. Bryant, “The Effects of Pre-Ageing Treatments on Formability and Paint Bake Response in Aluminum Autobody Sheet Alloys”, Automotive Alloys, S.K. Das, G.J. Kipouros eds., Minerals, Metals & Materials Soc TMS, Warrendale, PA, USA, Warrendale, pp.19-36, Feb., 1997.
86. H. Kambe, Netubunseki (Thermoanalysis), Tokyo, Kodansha, pp.156, 1975.
87. A.H. Geisler and J.K. Hill, “Analyses and Interpretations of X-ray Diffraction Effects in Patterns of Aged Alloys”, Acta Crystallographica, Vol.1, pp.238-252, 1948.
88. T. Miyauch, S. Fujikawa and K. Hirano, “Precipitation Process of Al-Mg-Si Alloys by Ageing”, Journal of Japan Institute Light Metals, Vol. 21, no.9, pp.565-573, Sep., 1971.
89. G.A. Edwards, K. Stiller, G.L. Dunlop and M.J. Couper, “The Precipitation Sequence in Al-Mg-Si Alloys”, Acta Materialia, Vol.46, no.11, pp.3893-3904, Jul., 1998.
90. W.F. Miao and D.E. Laughlin, “Precipitation Hardening in Aluminum Alloy 6022”, Scripta Materialia, Vol.40, no.7, pp. 873-878, 1999.
91. M. Murayama, K. Hono, W.F. Miao and D.E. Laughlin, “The Effect of Cu Additions on the Precipitation Kinetics in an Al-Mg-Si Alloy with Excess Si”, Metallurgical and Materials Transactions A : Physical Metallurgy and Materials Science, Vol.32, no.2, pp. 239-246, Feb., 2001.
92. R.S. Yassar, D.P. Field, and H. Weiland, “The Effect of Pre-Deformation on the β′′ and β′ Precipitates and the Role of Q′ Phase in an Al-Mg-Si Alloy AA6022”, Scripta Metallurgica, Vol.53, no.3, pp.299-303, 2005.
93. M. Murayama and K. Hono, “Pre-Precipitate Clusters and Precipitation Processes in Al-Mg-Si Alloys”, Acta Materialia, Vol.47, no.5, pp.1537, 1999.
94. D.C. Long, Y. Ohmori and K. Nakai, “Effects of Cold Rolling on the Ageing Kinetics in an Al-Mg-Si Based Commercial Alloy”, Materials Transactions, Vol.41, no.6, pp.690-695, 2000.
95. S. Esmaeili, X. Wang, D.J. Lloyd and W.J. Poole, “On the Precipitation Hardening Behavior of Al-Mg-Si-Cu Alloy, AA6111”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol.34, no.3, pp.751, 2003.
96. S. Esmaeili, D.J. Lloyd and W.J. Poole, “Modeling of Precipitation Hardening for the Naturally Aged Al-Mg-Si-Cu Alloy AA6111”, Acta Materialia, Vol.51, no.12, pp.3467-3481, 2003.
97. F.C. Larche, Dislocation in Solids, Vol.4, ed. F.R.N. Nabarro, North Holland, Amsterdam, p.137, 1979.
98. P. Gomiero, A. Reeves, A. Pierre, F. Bley, F. Livet and H. Vichery, “An in Situ Small Angle X-Ray Scattering SAXS: Study of Precipitation in an Al-Zn-Mg-Cu alloy”, The 4th International Conference on Aluminum Alloys, Their Physical and Mechanical Properties. Vol.I, Atlanta, GA, USA, pp.644-651, 1994.
99. A.J. Ardell, “Coarsening of Grain Boundary Precipitates”, Acta Metal, Vol.20, no.4, pp.601-609, 1972.
指導教授 歐炳隆(Bin-Lung Ou) 審核日期 2007-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明