博碩士論文 90346004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:52.14.209.100
姓名 紀凱獻(Kai-Hsien CHi)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 戴奧辛於煙道氣及大氣中之氣固相分布特性
(Evaluation of PCDD/F Congener Partitioning between Vapor/Solid Phases in Flue Gases and Ambient Air)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 戴奧辛自污染源排放後係以氣相及固相之方式分布於大氣環境,因此系統性地對污染源煙道排氣及大氣環境中戴奧辛的氣固相分布特性進行深入之研究確有其必要性。就污染物控制的角度審視這個問題,若無法實際釐清氣固相戴奧辛之生成途徑以及控制機制,現場之操作單位或政策主管機關將無法有效控制污染排放並擬定適當之管制策略。本論文嘗試探討煙道氣中戴奧辛之氣固相分布,以釐清戴奧辛各物種於污染源中之去除機制,並瞭解污染源周界大氣中戴奧辛污染物之氣固相分布特性,以釐清大氣環境中戴奧辛之傳輸行為及氣固相轉換特性,藉以評估國內現行之空氣污染控制技術對氣固相戴奧辛物種去除效率之差異,並藉由實廠採樣數據初步建立戴奧辛各物種於煙道氣中之氣固分布推估模式。本篇論文針對國內六座戴奧辛排放源包括二座都市垃圾焚化廠(MWI-1及MWI-2)、二座事業廢棄物焚化廠(IWI-1及IWI-2)、電弧爐煉鋼廠(EAF)以及電弧爐集塵灰資源回收廠(Waelz plant)進行氣固相戴奧辛煙道採樣及分析工作,研究結果指出,各污染源煙道氣中氣固相戴奧辛之去除效率亦隨其使用之APCDs不同產生變化,進而影響戴奧辛於煙道氣中之氣固相分布。當煙道氣分別經過旋風集塵器(CY)及袋濾式集塵器(BF)後,煙道氣中70%以上之戴奧辛分布於氣相,而活性碳注入技術(ACI)搭配BF其對煙道氣中固相戴奧辛之去除效率高於氣相,使得煙道氣中之氣相戴奧辛由70%上升至90%以上,另外使用選擇性還原觸媒反應器(SCR)則可有效將煙道氣中之氣相戴奧辛予以破壞去除。由於污染源控制設備對戴奧辛去除機制之不同,將改變煙道氣流中戴奧辛之氣固分布特性進而對整廠之戴奧辛排放量造成影響,使用SCR作為戴奧辛控制設備之MWI-2其整廠戴奧辛排放量僅為使用ACI之MWI-1的三分之二,而都市垃圾焚化廠之戴奧辛排放量95%以上皆分布於飛灰及反應灰中,這些含有戴奧辛污染物固體廢棄物可能成為未來環境污染問題的隱憂。此外使用傳統空氣污染控制設備(CY及BF)的戴奧辛排放源,由於其無法有效控制氣相戴奧辛之排放,其戴奧辛排放量將近47%至66%由煙囪排出,其對鄰近地區環境生態的影響值得重視。污染源煙道排氣及周界大氣中之氣固相戴奧辛樣品採樣結果亦指出MWI-1周界大氣中其戴奧辛物種將近80%以上分布於固相,而EAF周界大氣中戴奧辛物種有35%至55%分布於氣相。造成上述差異的原因除了受污染源與大氣測站的距離遠近、大氣中懸浮微粒濃度高低影響之外,污染源所排放出之氣固相戴奧辛濃度分布亦造成相當程度的影響,由於EAF並未配置可有效控制氣相戴奧辛排放之控制設備,進而造成鄰近地區大氣中戴奧辛物種分布於氣相之比率較MWI-1周界地區高。此外研究結果亦指出大氣溫度下降100C時大氣中戴奧辛物種分布於固相之比率將會增加20%,顯示環境溫度之變化對戴奧辛氣固相分布特性之影響值得注意。MWI-1實廠煙道氣採樣結果指出煙道氣溫度之改變將影響氣固相戴奧辛之去除效率,兩者之間雖不具線性相關,但以ACI+BF技術控制氣固相戴奧辛亦存在一最佳操作溫度(1600C)。而本研究所建立之氣相戴奧辛吸附載體測試系統(PAS)分析結果指出當氣流溫度為1500C時,約50%之氣相戴奧辛轉移至固相,當氣流溫度上升至2000C時戴奧辛由氣相轉移至固相之比率則下降至20%,此外該測試結果亦顯示當煙道氣流溫度介於de novo再合成之溫度窗時(2500C),吸附載體上將會有戴奧辛再生成的現象發生,並揮發至氣流中。
綜觀來說,戴奧辛於煙道氣中之氣固分特性受粒狀物濃度、環境溫度以及空氣污染控制設備形式影響甚巨,故整合實廠採樣結果以及參考相關文獻本論文初步建立戴奧辛污染排放源煙道氣中戴奧辛氣固相之推估模式log (Cv/Cs) =m logP0L+log (c/PM)。該模式可推估煙道氣於高溫爐體出口以及氣流通過旋風集塵器、袋濾式集塵器、乾/濕式靜電集塵器、固定式活性碳吸附塔、活性碳注入以及觸媒反應器後戴奧辛於氣固相之分布係數。經由模式推估結果與實廠採樣分析數據之比對,亦發現其推估結果尚稱理想,但若是煙道氣中粒狀物濃度過高時,其氣固相之分布係數推估結果將明顯高估,此外若煙道氣溫度介於de novo再合成之溫度窗(2500C~4500C)時其氣固相之分布係數推估結果將明顯低估。綜觀來說,此推估模式可初步作為國內探討污染源煙道排氣中氣固相戴奧辛分布特性之參考。
摘要(英) Around 60 to 80% of the seventeen 2,3,7,8-substituted PCDD/F concentrations in the atmosphere are bounded to particles. Partitioning of PCDD/F congeners between vapor and solid phases in flue gas of the PCDD/F emission sources and ambient air in Taiwan are evaluated via stack sampling and analysis in this study. This dissertation emphasizes the understanding of the partitioning and removal efficiency of PCDD/Fs of flue gas at two municipal wastes incinerator (MWI-1 and MWI-2), two industrial wastes incinerators (IWI-1 and IWI-2), one electric arc furnace (EAF) and one Waelz plant equipped with different types air pollution control devices (APCDs). The results indicate that the vapor-phase PCDD/Fs can be emitted from the stack by penetrating through cyclone (CY), bag filter (BF) and electrostatic precipitator (EP) if no effective control device is applied. Vapor-phase PCDD/Fs can be removed by various means including adsorption with carbon-based adsorbents, and catalytic destruction. Compared to the activated carbon injection technology which only transfers vapor-phase PCDD/Fs to the fly ash and would make ash disposal even more complicated, selective catalytic reduction (SCR) system can destroy PCDD/Fs and serves as a better control technology for removing PCDD/Fs from gas streams. The results of the emission from several facilities demonstrate that 99.7% and 0.3% of PCDD/F output in MWI-2 is discharged with EP ash (98.3 µg-TEQ/ ton waste) and stack gas, respectively. SCR system removes and destroys most of the PCDD/F congeners. The emission rate of MWI-1 is much higher than that of MWI-2 caused by the PCDD/F removal efficiencies achieved with different APCDs adopted, resulting in different PCDD/F removal mechanisms. It is noted that total PCDD/F discharge in Waelz plant is 840.3 µg-TEQ/ton EAF-dust, among which 33.3% is discharged with fly ash and needs to effectively reduce PCDD/F formation and install better PCDD/F control devices for the perspective of total environmental management. The results obtained from the ambient air sampling indicate that the mean PCDD/F concentration measured in the vicinity area of the MWI (56~348 fg-I-TEQ/m3) and EAF (61~312 fg-I-TEQ/m3) investigated are lower than the ambient air standard proposed in Japan (600 fg-I-TEQ/m3). The results obtained on vapor/solid partitioning of PCDD/Fs in ambient air indicate that the solid-phase portion accounts for more than 80% of the total concentration in the vicinity area of MWI investigated. Besides, the vapor-phase PCDD/Fs account for 35% to 55% in the vicinity area of EAF investigated. In addition, the temperature and the distance between emission source and sampling site would also affect the partitioning of PCDD/Fs between vapor and solid phases. The results of MWI-1 flue gas sampling indicate that there is optimal operating temperature for PCDD/F removal with ACI. In addition, the results of pilot-scale adsorption system (PAS) experimentation indicate that about 50% and 20% vapor-phase PCDD/Fs transferred to solid phase at Group 1 (1500C) and Group 2 (2000C), respectively. As the temperature is increased to 2500C, de novo synthesis significantly affects the partitioning of PCDD/Fs between vapor/solid phases.
Based on results of the partition of vapor/solid-phase PCDD/F achieved with the APCDs applied upstream and the particulate matter concentration in flue gas, this dissertation applies the equation log(Cv/Cs) =m logP0L+log(c/PM) for predicting vapor/solid-phase PCDD/F partition in flue gases downstream various APCDs including CY, EP, BF, wet electrostatic precipitator (WEP), fixed activated carbon bed (FCB), ACI and SCR. As the PM concentration is over 20,000 mg/Nm3 or temperature in flue gas is within the temperature window of de novo synthesis, the log(Cv/Cs) of observed data is significantly higher or lower than the result predicted, respectively. Accordingly, the equation can be used to predict the partitioning of PCDD/Fs between vapor and solid phases in flue gas if de novo synthesis is not significant.
關鍵字(中) ★ 戴奧辛
★ 呋喃
★ 焚化爐
★ 電弧爐煉鋼廠
★ 集塵灰回收廠
★ 排放量
★ 控制效率
★ 推估模式
關鍵字(英) ★ electric arc furnace
★ waelz plant
★ emission
★ removal efficiency
★ prediction model
★ incinerator
★ Dioxin
★ furan
論文目次 Evaluation of PCDD/F Congener Partitioning between Vapor/Solid Phases in Flue Gases and Ambient Air
Table of Contents
Abstract
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Research Motivation and Purposes 2
Chapter 2 Literature Review 4
2.1 The Characteristic and Structure of PCDD/Fs 4
2.2 PCDD/F Formation during Combustion Process 6
2.2.1 Formation in incinerator/furnace 7
2.2.2 Formation of PCDD/Fs from precursor compounds 7
2.2.3 De novo synthesis 9
2.3 PCDD/F Removal during Combustion Process 15
2.3.1 Traditional air pollutant control devices 15
2.3.2 Effective PCDD/F control methods 19
2.4 Partitioning of PCDD/Fs between Vapor and Solid Phases 27
2.4.1 Vapor/solid partitioning of PCDD/Fs from stack gas sampling 27
2.4.2 Vapor/solid partitioning of PCDD/Fs from ambient air sampling 29
Chapter 3 Experimental Methods 56
3.1Reserch flow chart 56
3.2 Experimental 56
3.2.1 Flue gas sampling 56
3.2.2 Ambient air sampling 59
3.2.3 Pilot-scale adsorption system (PAS) experimentation 60
3.3 PCDD/F Sampling Method 60
3.3.1 Stack gas sampling 60
3.3.2 Ambient air sampling 62
3.4 PCDD/F Samples Preparation Procedure 64
3.4.1 Sample extraction 64
3.4.2 Cleanup procedure 65
3.5 PCDD/Fs Analytical Methods 68
3.5.1 Stack gas sample analyze 68
3.5.2 Ambient air sample analyze 68
Chapter 4 Results and Discussion 91
4.1 Characteristics of PCDD/F Congener Distributions in Vapor and Solid Phases from Different Facilities 91
4.1.1 PCDD/F concentrations and congeners distribution in flue gas of six facilities 91
4.1.2 Comparison of vapor/solid-phase PCDD/F removal efficiency with different APCDs 95
4.2 PCDD/F Emissions from Four Facilities with Different APCDs 101
4.2.1 PCDD/F concentrations in stack gas of four facilities 101
4.2.2 PCDD/F concentrations in fly ash of four facilities 103
4.2.3 PCDD/F flows with different APCDs in four facilities 104
4.3 Vapor and Solid Phases PCDD/F Distributions in Flue Gas and Ambient Air 106
4.3.1 PCDD/F concentrations and congeners distribution in stack gas and ambient air 106
4.3.2 Comparison of vapor/solid phase partitioning of PCDD/F congener in stack gas and ambient air 107
4.3.3 Variation in vapor/solid phase partitioning of PCDD/Fs in stack gas and ambient air 109
4.4 PCDD/F Partitioning between Vapor and Solid Phases Affected by Environment Factors 112
4.4.1 PCDD/F concentrations in flue gas at different sampling points of MWI-1 with temperature variation 113
4.4.2 Vapor/solid-phase PCDD/F removal efficiencies in ACI+BF with temperature variation 115
4.4.3 Formation and transferring between vapor/solid-phase PCDD/Fs by PAS experimentation 116
4.5 Model Prediction of PCDD/F Partitioning between Vapor and Solid Phases in Flue Gas 118
4.5.1 Vapor/solid phase partitioning of PCDD/F congeners in flue gases of six facilities 118
4.5.2 Equation for predicting PCDD/F portioning between vapor/solid phases in flue gases 122
Chapter 5 Summary & Perspectives 172
5.1 Summary 172
5.2 Perspectives 174
References 176
Appendix
Table Caption
Table 2-1 Structure and characteristics of 2,3,7,8-substituted PCDD congeners 36
Table 2-2 Structure and characteristics of 2,3,7,8-substituted PCDF congeners 38
Table 2-3 The TEF scheme for three types of TEQs 41
Table 2-4 The factors affecting PCDD/F formation during combustion process 42
Table 2-5 Review of the reported studies on the formation of PCDD/F 43
Table 2-6 Reported data on PCDD/F formation rates, expired in µg per g solid phase and per minute solid residence time 43
Table 2-7 Comparison of PCDD/F formation from laboratory experiment and model calculation 44
Table 2-8 Calculated PCDD/F formation levels for typical equipment assuming different flue gas/fly ash residence times 44
Table 2-9 Removal efficiency of PCDD/Fs achieved with ESP 45
Table 2-10 Removal efficiency of PCDD/Fs by WS with/without AC addition in scrubbing solution 45
Table 2-11 Removal of PCDD/Fs from flue gases by the combination of scrubber, bag filter and activated carbon adsorption 46
Table 2-12 Removal efficiency of PCDD/Fs at varying temperatures by SCR 46
Table 2-13 Percent distribution of PCDD/Fs between vapor and solid phases by stack gas sampling 47
Table 2-14 Percentage of each PCDD/F congener associated with the solid phase over time 48
Table 3-1 The condition of flue gas at different sampling points in several facilities 72
Table 3-2 Characteristics of the ACI and FCB system used in the MWI-1, IWI-1 and IWI-2 investigated 74
Table 3-3 Characteristics of the SCR system used in the MWI-2 investigated. 74
Table 3-4 Description of ambient air sampling sites in the vicinity area of the MWI-1 and EAF investigated 75
Table 3-5 Composition of standard solutions (NIEA A808.72B, A810.10B) 76
Table 3-6 Minimum sampling equipment calibration and accuracy requirements (NIEA A807.73C). 76
Table 3-7 Sampling quality requirements (NIEA A807.73C) 77
Table 3-8 Composition of standard solutions (NIEA A810.10B, A808.72B) 77
Table 3-9 HRGC-HRMS operation conditions 78
Table 3-10 Compositions of the initial calibration solutions of labeled and native PCDD/Fs (NIEA A810.10B, A808.70B) 79
Table 3-11 Theoretical ion abundance ratios and control limits for PCDD/Fs (NIEAA810.10B, A808.72B) 80
Table 3-12 QA/QC requirements (NIEA A810.10B, A808.70B). 80
Table 3-13 Minimum requirements for initial and daily calibration response factors (NIEA A810.10B, A808.70B) 81
Table 4-1 The PCDD/F concentrations in ambient air in four seasons in the vicinity area of the MWI-1 investigated 125
Table 4-2 PCDD/F concentration in stack gas and ambient air at vicinity area of the EAF investigated 125
Table 4-3 Percentage of vapor/solid phase PCDD/F concentrations in ambient air and stack gas of the MWI-1 and EAF investigated 126
Table 4-4 The operating conditions of the MWI-1 investigated 127
Table 4-5 The condition of flue gas at two sampling points in the MWI-1 investigated 127
Table 4-6 The experimental conditions of PAS experimentation 127
Table 4-7 Vapor pressure (Pa) of seventeen 2,3,7,8-substituted PCDD/F congener in flue gas at different operating temperature 128
Table 4-8 Equation for predicting PCDD/F partitioning between vapor and solid phases in flue gas of incinerator/furnace outlet 129
Table 4-9 Equation for predicting PCDD/F partitioning between vapor and solid phases in flue gas downstream cyclone 130
Table 4-10 Equation for predicting PCDD/F partitioning between vapor and solid phases in flue gas downstream bag filter 131
Table 4-11 Equation for predicting PCDD/F partitioning between vapor and solid phases in flue gas downstream electrostatic precipitator 132
Table 4-12 Equation for predicting PCDD/F partitioning between vapor and solid phases in flue gas downstream wet electrostatic precipitator 133
Table 4-13 Equation for predicting PCDD/F partitioning between vapor and solid phases in flue gas downstream fixed activated carbon bed 134
Table 4-14 Equation for predicting PCDD/F partitioning between vapor and solid phases in flue gas downstream selective catalytic reduction system 135
Table 4-15 Equation for predicting PCDD/F partitioning between vapor and solid phases in flue gas downstream activated carbon injection +bag filter 136
Table 4-16 The condition and characteristic of input factors in sensitive test 137
Figure Caption
Fig. 2-1 PCDD and PCDF yields as a function of the concentration of 2,4,6-Cl3Ph in the gas stream 49
Fig. 2-2 The de novo Synthesis of PCDD/Fs from heating carbon particulate at 3000C at varying retention times 49
Fig. 2-3 Temperature dependence on PCDD/F Formation 50
Fig. 2-4 Estimated carbon skeleton formation path 50
Fig. 2-5 Effect of ESP inlet temperature on PCDD/F formation during wastes combustion process 51
Fig. 2-6 Relationship between gas temperature at BF and removal efficiency 51
Fig. 2-7 Correlation between gas temperature at BF inlet and PCDD/F concentration 52
Fig. 2-8 PCDD/F reduction with urea as an inhibitor 52
Fig. 2-9 PCDD/F reductions in inhibitor tests. (a) Ammonia injection, (b) DMA and MM injections 53
Fig. 2-10 Average removal efficiencies of TEF-valued PCDD/F congeners 53
Fig. 2-11 The hydrogen-transfer process during the catalytic reaction 53
Fig. 2-12 Time profiles for dechlorination of 1,2,3,4-TeCDD with Pd/C and Pd/Al2O3 54
Fig. 2-13 Cross-sectional view of the catalytic filter 54
Fig. 2-14 PCDD/F concentrations in the raw and clean gas 54
Fig. 2-15 PCDD/F homologs patterns in vapor and solid phases 55
Fig. 2-16 Comparison of vapor/solid-phase PCDD/F congener concentrations with temperature variation in Nagoya urban air. 55
Fig. 3-1 Research flow chart 82
Fig. 3-2 Flow diagram and sampling points of six facilities investigated 83
Fig. 3-3 Flow diagram and sampling points of the MAI-1, MWI-2, EAF and Waelz plant investigated 84
Fig. 3-4 Schematics of the pilot-scale adsorption system (PAS) 86
Fig. 3-5 Flue gas sampling system 87
Fig. 3-6 Ambient air sampling system 88
Fig. 3-7 Typical glass PUF cartridge (a) and shipping container (b) for use with PS-1sampling systems 89
Fig. 3-8 Typical absorbent cartridge assembly for sampling PCDD/Fs. 90
Fig. 4-1 Variation of PCDD/F concentration in vapor/solid phases at different sampling points in the MWI-1, MWI-2, IWI-1, IWI-2, EAF and Waelz plant investigated 138
Fig. 4-2 The characteristics of PCDD/F congener distribution at different sampling points in the MWI-1, MWI-2, IWI-1, IWI-2, EAF and Waelz plant investigated 141
Fig. 4-3 Removal efficiencies of PCDD and PCDF congeners in vapor and solid phases achieved with venturi cooler in the Waelz plant investigated. 144
Fig. 4-4 Removal efficiencies of PCDD and PCDF congeners in vapor and solid phases achieved with cyclone (CY) in the Waelz plant investigated 144
Fig. 4-5 Removal efficiencies of PCDD and PCDF congeners in vapor and solid phases achieved with electrostatic precipitator (EP) and wet electrostatic precipitator (WEP) in the MWI-2 and IWI-2, respectively 145
Fig. 4-6 Removal efficiencies of PCDD and PCDF congeners in vapor and solid phases achieved with bag filter (BF) in the EAF investigated 145
Fig. 4-7 Removal efficiencies of PCDD and PCDF congeners in vapor and solid phases achieved with activated carbon system in the MWI-1, IWI-1 and IWI-2, respectively 146
Fig. 4-8 Carbon content of particulate matter and carbon concentration in flue gases at different sampling points in the IWI-2 investigated 147
Fig. 4-9 The vapor/solid phase distribution of PCDD/F congeners in flue gas prior to WS+SCR 147
Fig. 4-10 Removal efficiencies of PCDD/F congeners in vapor and solid phases in flue gas with WS+SCR 148
Fig. 4-11 PCDD/F concentrations at stack gas of the (a) MWI-1, (b) MWI-2, (c) EAF and (d) Waelz plant investigated 148
Fig. 4-12 Partitioning of PCDD/Fs in vapor/solid phases at stack gas of the (a) MWI-1, (b) MWI-2, (c) EAF and (d) Waelz plant investigated. 149
Fig. 4-13 PCDD/F concentrations in ash samples of the MWI-1 and MWI-2 investigated. 150
Fig. 4-14 PCDD/F concentrations in ash samples of the EAF and Waelz plant investigated. 150
Fig. 4-15 PCDD/F TEQ flows in the MWI-1 and MWI-2. 151
Fig. 4-16 PCDD/F TEQ flows in the EAF and Waelz plant investigated. 152
Fig. 4-17 Variation of PCDD/F in solid phase with ambient air temperature in the vicinity area of the MWI-1investigated. 153
Fig. 4-18 Comparison of coefficient of vapor/solid-phase PCDD/F partitioning and vapor pressure in stack gas of the MWI-1and EAF investigated 153
Fig. 4-19 The coefficient of vapor/solid-phase PCDD/F partitioning in ambient air in the vicinity area of the MWI-1 and EAF investigated 154
Fig. 4-20 Sampling points and temperature variation of APCDs in the MWI-1 investigated.. 154
Fig. 4-21 Variation of PCDD/F concentration in vapor/solid phases at CY outlet and stack of different temperatures in the MWI-1 investigated 155
Fig. 4-22 Partitioning of PCDD/Fs in vapor/solid phases at cyclone outlet and stack gas of the MWI-1investigated with temperature variation. 156
Fig. 4-23 The coefficient of vapor/solid-phase PCDD/Fs partition at CY outlet 157
Fig. 4-24 The coefficient of vapor/solid-phase PCDD/Fs partition in stack gas 158
Fig. 4-25 Vapor/solid-phase PCDD/F removal efficiencies achieved with ACI+BF with temperature variation in the MWI-1 investigated 159
Fig. 4-26 Vapor-phase PCDD/F recovery efficiencies in PAS experimentation with temperature variation 159
Fig. 4-27 Transferring and formation of vapor/solid-phase PCDD/Fs in PAS experimentation at 2500C 160
Fig. 4-28 The coefficient of vapor/solid-phase PCDD/Fs partition in flue gases downstream incinerator/furnace at the (a)EAF, (b) Waelz plant, (c) IWI-1 and (d) MWI-2 investigated 161
Fig. 4-29 The coefficient of vapor/solid-phase PCDD/Fs partition in flue gases downstream venture cooler and scrubber at the (a) Waelz plant and (b) IWI-2 investigated 162
Fig.4-30 The coefficient of vapor/solid-phase PCDD/Fs partition in flue gases downstream cyclone(CY) at the (a) MWI-1, (b) Waelz plant and (c) EAF investigated 163
Fig. 4-31 The coefficient of vapor/solid-phase PCDD/Fs partition in flue gases downstream electrostatic precipitator (EP) and wet electrostatic precipitator (WEP) at the (a) MWI-2 and (b) IWI-2 investigated, respectively 164
Fig. 4-32 The coefficient of vapor/solid-phase PCDD/Fs partition in flue gases downstream bag filter (BF) at the Waelz plant investigated 165
Fig. 4-33 The coefficient of vapor/solid-phase PCDD/Fs partition in flue gases downstream fixed carbon bed (FCB) at the IWI-2 investigated 165
Fig. 4-34 The coefficient of vapor/solid-phase PCDD/Fs partition in flue gases downstream activated carbon injection (ACI)+BF at the (a) IWI-1 and (b) MWI-1 investigated 166
Fig. 4-35 The coefficient of vapor/solid-phase PCDD/Fs partition in flue gases downstream selective catalytic reduction (SCR) at the MWI-2 investigated 167
Fig.4-36 Comparison of observed data from relevant studies and results predicted by PCDD/F partitioning equations 168
Fig.4-37 Sensitivity between 2,3,7,8-TCDD partitioning and the variation of particle concentration in flue gas achieved with BF 169
Fig.4-38 Sensitivity between 2,3,7,8-TCDD partitioning and the temperature variation in flue gas achieved with BF 169
Fig.4-39 Sensitivity between 2,3,7,8-TCDD partitioning and the variation of particle concentration in flue gas achieved with EP 170
Fig.4-40 Sensitivity between 2,3,7,8-TCDD partitioning and the temperature variation in flue gas achieved with EP. 170
Fig.4-41 Sensitivity between 2,3,7,8-TCDD partitioning and the variation of particle concentration in flue gas achieved with ACI+BF 171
Fig.4-42 Sensitivity between 2,3,7,8-TCDD partitioning and the temperature variation in flue gas achieved with ACI+BF 171
參考文獻 References
Addink, R., Drijver, D. J. and Olie, K. Formation of Ppolychlorinated Dibenzo-p-dioxins/dibenzofurans in the Carbon or Fly Ash System. Chemosphere 23(8-1):1205-1211 (1991).
Addink, R. and Olie, K. Mechanisms of Formation and Destruction of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Heterogeneous Systems. Environ. Sci. Technol., 29, 1425-1435 (1995).
Addink, R., Cnubben, P. A. J. P., and Olie, K. Formation of Polychlorinated Dibenzo-p-dioxins/Dibenzofurans on Fly Ash from Precursors and Carbon Model Compounds. Carbon. 33(10), 1463-1471 (1995).
Addink, R., Espouteille, F. and Altwicker, E. R. Role of Inorganic Chlorine in the Formation of Polychlorinated Dibenzo-p-dioxins/dibenzofurans from Residual Carbon on Incinerator Fly Ash. Environ. Sci. Technol., 32, 3356-3359 (1998).
Ahlborg, V. G., Becking, G. C. and Birnbaum, L. S. Toxic Equivalency Factors for Dioxin-like PCBs. Chemosphere, 28(6), 1049-1067 (1994).
Altwicker, e. R., Xun, Y. and Milligan, M. S. Dioxin Formation over Fly Ash: Oxygen Dependence, Temperature Dependence and Phase Distribution. Organohalogen Compounds, 20, 381–384 (1994).
Alonso, F., Beletskaya, I. P. and Yus, M. Metal-mediated Reductive Hydrodehalogenation of Organic Halides. Chemical Reviews, 102, 4009-4092 (2002).
Anthony, E. J., Jia, L. and Granatstein, D. L. Dioxin and Furan Formation in FBC Boilers. Environ. Sci. Technol., 35, 3002-3007(2001).
Arion, A., Florimond, P., Berho, F., Marlière, E. and Louër, P. L. Investigation of Dioxin Formation Mechanisms under Sintering Conditions by Use of Pilot Pot. Organohalogen Compounds, 56, 127-131 (2002).
Benfenati, E., Pastorelli, R., Castelli, M. G., Fanelli, R., Carminati, J. A., Farneti, A. and Lodi, M. Studies on the Tetrachlorodibenzo-p-dioxins (TCDD) and Tetrachlorodibenzofurans (TCDF) Emitted from an Urban Incinerator. Chemosphere, 15, 557-561 (1986).
Bidleman, T. F., Billings, W. N. and Foreman, W. T. Vapor-particle Partitioning of Semi-volatile Organic Compounds: Estimates from Field Collections. Environ. Sci. Technol., 20, 1038-1043 (1986).
Blumbach, J. and Nethe, L. Sorbalit - A New Economic Approach Reducing Mercury and Dioxin Emissions. Proceedings of 85th Annual Air and Waste Management Association Meeting, Kansas City, 92-41. 09, 21-26 (1992).
Born, J. G. P., Mulder, P., Louw, R. Fly Ash Mediated Reactions of Phenol and Monochlorophenols: Oxychlorination, Deep Oxidation, and Condensation. Environ. Sci. Technol., 27, 1849-1863 (1993).
Bonte, J. L., Fritsky, K. J., Plinke, M. A. and Wilken, M. Catalytic Destruction of PCDD/F in a Fabric Filter: Experience at a Municipal Waste Incinerator in Belgium. Waste Management, 22(4), 421-426 (2002).
Brubaker, W. W. and Hites, R. A. Polychlorinated dibenzo-p-dioxins and dibenzofurans: Gas-phase Hydroxy Radical Reactions and Related Atmospheric Removal. Environ. Sci. Technol., 31, 1805-1810 (1997).
Bruce, K. R., Beach, L. O. and Gullet, R. K. The Role of Gas-phase Cl in the Formation of PCDD/PCDF during Waste Combustion. Waste Management, 11, 97-102 (1991).
Buekens, A. and Huang, H. Comparative Evaluation of Techniques for Controlling the Formation and Emission of Chlorinated Dioxin/ Furans in Municipal Waste Incineration. Journal of Hazardous Materials 62, 1-33 (1998).
Cavallaro, A., Luciani, L., Ceroni, G., Rocchi, I., Invernizzi, G. and Gorni, A. Summary of Results of PCDD Analyses from Incinerator Effluents. Chemosphere, 11, 859-886 (1982).
Chang, M. B. and Lin, J. J. Memory Effect on the Dioxin Emissions from Municipal Waste Incinerator in Taiwan. Chemosphere, 45, 1151-1157 (2001).
Chang, M. B., Lin, J. J., and Chang, S. H.. Characterization of Dioxin Emissions from Two Municipal Solid Waste Incinerators in Taiwan. Atmospheric Environment, 36, 279-286 (2002).
Chang, M. B., Weng, Y. M., Lee, T. Y., Chen, Y. W., Chang, S. H., and Chi, K. H. Sampling and Analysis of Ambient Dioxins in Northern Taiwan. Chemosphere, 51(10), 1103-1110 (2003).
Chang, M.B., Chi, K. H., Chang, S.H., Chen, Y.W. Measurement of PCDD/F Congener Distributions in MWI Stack Gas and Ambient Air in Northern Taiwan. Atmospheric Environment 38, 2535-2544 (2004).
Chen, C. M. The Emission Inventory of PCDD/PCDF in Taiwan. Chemosphere, 54, 1413-1430 (2004).
Chi, K. H. and Chang, M. B. Evaluation of PCDD/F Congener Partition in Vapor/Solid Phases of Waste Incinerator Flue Gases. Environ. Sci. Technol., (minor revision, 2005).
Clement, R. E., Tosine, H. M., Osborne, J., Ozvacic, V. and Wong, G. Levels of Chlorinated Organics in a Municipal Incinerator. Chlorinated Dioxins and Dibenzofurans in the Total Environment II. Butterworth Publishers, Boston, MA., 489-514 (1985).
Correa, O., Rifai, H., Raun, L., Suarez, M. and Koenig L. Concentrations and Vapor–particle Partitioning of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Ambient Air of Houston, TX. Atmospheric Environment, 38, 6687–6699 (2004).
Dickson, C. L., Lenolr, D. and Hutzinger, O. Quantitative Comparison of De Novo and Precursor Formation of Polychlorinated Dibenzo-p-dioxions under Simulated Municipal Solid Waste Incineration Post Combustion Conditions. Environ. Sci. Technol., 26, 1822-1828 (1992).
Donnelly, J.R. Waste Incineration Sources: Refuse. In: Buonicore, A.J., Davis, W.T., eds, Air Pollution Engineering Manual. Air and Waste Management Association. New York, NY. 263-275 (1992).
Eitzer, B. D. and Hites, R. A. Vapor Pressures of Chlorinated Dioxins and Furans. Environ. Sci. Technol., 22, 1362-1364 (1988).
Eitzer, B. D., Hites, R. A., Vapor Pressures of Chlorinated Dioxins and Dibenzofurans. Environ. Sci. Technol., 32, 2804–2806 (1998).
Eklund, G, Pedersen, J.R. and Stromberg, B. Methane, Hydrogen Chloride and Oxygen from a Wide Range of Chlorinated Organic Species in the Temperature Range 4000C-9500C. Chemosphere, 17 (3): 575-586 (1988).
European Union On-Line. European Dioxin Inventory-Result. 040207, http:// europa.eu.int/ comm. /environment /dioxin / stage1. (2001).
Finzio, A., Mackay, D., Bidleman, T. and Harner, T. Octanol–air Partition Coefficient as a Predictor of Partitioning of Semi-volatile Organic Chemicals to Aerosols. Atmospheric Environment, 31, 2289–2296 (1997).
Fisher, R., Anderson, D. R., Wilson, D. T., Aries E., Hemfrey, D. and Fray, T. A. T. Effect of Chloride on the Formation of PCDD/Fs and WHO-12 PCBs in Iron Ore Sintering. Organohalogen Compounds, 66, 1132-1139 (2004).
Govers, H. A. J. and Krop, H. B. Partition Constants of Chlorinated Dibenzofurans and Dibenzo-p-dioxins. Chemosphere, 37, 2139–2152 (1998).
Gotoh, Y. and Nakamura, Y. Japanese Source Inventory, Focusing on the Emission Reduction Measures in the Manufacturing Industries Sector. Organohalogen Compounds, 41, 477-480 (1999).
Griffin, R. G. A New Theory of Dioxin Formation in Municipal Solid Waste Combustion. Chemosphere, 15, 1987-1990 (1986).
Green, N. J. R., Lohmann L. and Jones, K. C. Seasonal Anthropogenic, Air Mass, and Meteorological Influences on the Atmospheric Concentrations of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDD/Fs): Evidence for the Importance of Diffuse Combustion Sources. Environ. Sci. Technol., 33, 2864-2871 (1996).
Gullett, B., Bruce, K. and Beach, L. Mechanistic Steps in the Production of PCDD and PCDF during Waste Combustion. Chemosphere 25(7-10):1387-1392 (1992a).
Gullett, B. K., Bruce, K. R. and Beach, L. O. Effect of Sulfur Dioxide on the Formation Mechanism of Polychlorinated Dibenzodioxin and Dibenzofuran in Municipal Waste Combustors. Enviorn. Sci. Technol., 26, 1938-1943 (1992b).
Gullett, B. K. and Lemieux, P. M. Role of Combustion and Sorbent Parameters in Prevention of Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Formation during Waste Combustion. Environ. Sci. Technol., 28(1), 107-118 (1994).
Hagenmaier, H., Kraft, M., Jager, W., Mayer, U., Lutzke, K. and Siegel, D. Comparison of Various Sampling Methods for PCDDs and PCDFs in Stack Gas. Chemosphere, 15(9-12), 1187-1192 (1986).
Harner, T., Green, N. J. L., Jones, K. C. Measurements of Octanol–air Partition Coefficients for PCDD/Fs: a Tool in Assessing Air–soil Equilibrium Status. Environ. Sci. Technol., 34, 3109–3114 (2000).
Hart, K. M. and Pankow, J. F. High Volume Air Sampler for Particle and Gas Sampling. 2. Use of Backup Filters to Correct for the Adsorption of Gas-phase Polycyclic Aromatic Hydrocarbons to the Front Filter. Environ. Sci. Technol., 28, 655-661 (1994).
Hell, K., Altwicker, E. R., Stieglitz, L. and Addink, R. Comparison of 2,4,6-trichlorophenol Conversion to PCDD/PCDF on a MSWI-fly Ash and a Model Fly Ash. Chemosphere, 40, 995-1001 (2000).
Hell, K., Stieglitz, L. and Dinjus, E. Mechanistic Aspects of the De-Novo Synthesis of PCDD/PCDF on Model Mixtures and MSWI Fly Ashes Using Amorphous 12C- and 13C-Labeled Carbon. Environ. Sci. Technol., 35, 3892-3898 (2001).
Huang, H. and Buekens, A. Chemical Kinetic Modeling of De Novo Synthesis of PCDD/F in Municipal Waste Incinerators. Chemosphere, 44, 1505-1510 (2001).
Janssens J. J., Daellemans F. F. and Schepens, P. J. C. Sampling Incinerator Effluents for PCDDs and PCDFs: A Critical Evaluation of Existing Sampling Procedures. Chemosphere, 25, 1323-1332 (1992).
Junge, C. E. Basic Considerations about Trace Constituents in the Atmophere as Related to the Fate of Global Pollutants”, Fate of Pollutants in the Air and Water Enviroments. Part I, J. Wiley, New York, 7-26 (1977).
Karadenir, A., Bakoglu, M., Taspinar, F. and Ayberk, S. Removal of PCDD/Fs from Flue Gas by a Fixed-Bed Activated Carbon Filter in a Hazardous Waste Incinerator. Environ. Sci. Technol., 38, 1201-1207 (2004).
Kadowaki, S. and Naiton, H. Gas–particle Partitioning of PCDD/Fs in Nagoya Urban air, Japan. Chemosphere, 59, 1439–1453 (2005).
Khachatryan, L., Asatryan, R. and Dellinger B. Development of Expanded and Core Kinetic Models for the Gas Phase Formation of Dioxins from Chlorinated Phenols. Chemosphere, 52, 695-708 (2003).
Kilgroe, J. D. Control of Dioxin, Furan, and Mercury Emissions from Municipal Waste Combustors. Journal of Hazardous Materials, 47(1-3), 163-194 (1996).
Kim, S. C., Jeon, S. H., Jung, I. R., Kim, K. H., Kwon, M. H., Kim, J. H., Yi, J. H., Kim, S. J., You, J. C. and Jung, D. H. Removal Efficiencies of PCDD/PCDFs by Air Pollution Control Devices in Municipal Solid Waste Incinerators. Chemosphere 43, 773-776 (2001).
Lasagni, M., Collina, E., Tettamanti, M. and Pitea, D. Kinetics of MSWI Fly Ash Thermal Degradation. 1. Empirical Rate Equation for Native Carbon Gasification. Environ. Sci. Technol., 34(1), 130-136 (2000).
Lee, R. G. M. and Jones, K. C. Gas-Particle Partitioning of Atmospheric PCDD/Fs: Measurements and Observations on Modeling. Environ. Sci. Technol., 33(20), 3596-3604 (1999).
Lohmann, R., Harner, T., Thomas, G. O. and Jones, K. C. A Comparative Study of the Gas-Particle Partitioning of PCDD/Fs, PCBs, and PAHs. Environ. Sci. Technol., 34(23), 4943-4951 (2000).
Lorber, M., Pinsky, P., Gehring, P., Braverman, C., Winters, D. and Sovocool, W. Relationships between Dioxins in Soil, Air, Ash and Emissions from a Municipal Solid Waste Incinerator Emitting Large Amounts of Dioxin. Chemsphere, 37(9-12), 2173-2197 (1998).
Mackay, D., Shiu, W. Y. and Ma, K. C. Illustrated Handbook of Physical-chemical Properties and Environmental Fate for Organic Chemicals: Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins, and Dibenzofurans. Chelsea, MI: Lewis Publishers (1992).
Mackay, D. Dioxin Characterization, Formation and Minimisation during Municipal Solid Waste (MSW) Incineration: Review. Chemical Engineering Journal, 86 , 343–368 (2002).
Makiya, K. National Environmental Monitoring in Japan. Organohalogen Compounds, 43, 217-220 (1999).
Mager, K., Meurer, U. and Wirling, J. Minimizing Dioxin and Furan Emissions during Zinc Dust Recycle by the Waelz Process. The Minerals, Metals & Materials Society's Monthly Membership Journal, 20-25 (2003)
Milligan, M. S. and Altwicker, E. The Relationship between De Novo Synthesis of Polychlorinated Dibenzo-p-dioxin and Dibenzofurans and Low-temperature Carbon Gasification in Fly Ash. Environ. Sci. Technol., 27, 1595-1601 (1993).
Milligan, M.S. and Altwicker, E.R., Chlorophenol Reactions on Fly Ash. I. Adorption/desorption Equilibria and Conversion to Polychlorinated Dibenzo-p-dioxins. Environ. Sci. Technol., 30(1), 225-229 (1996).
Oehme, M., Mano, S. and Mikalsen, A. Quantitative Method for the Determination of Femtogram Amounts of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Outdoor Air. Chemosphere, 15(5), 607-617 (1986).
Ogawa, H., Orita, N., Horaguchi, M., Suzuki, Takumi., Okada, M. and Yasuda, S. Dioxin Reduction by Sulfur Component Addition. Chemosphere, 32(1), 151-157 (1996).
Oh, J. E., Choi, J. S. and Chang, Y. S. Gas/particle Partitioning of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Atmosphere; Evaluation of Predicting Models. Atmospheric Environment, 35, 4125-4134 (2001).
Olie, K., Vermeulen, P. L. and Hutzinger, O. Chlorodibenzo-p-dioxins and Chlorodibenzofurans Are Trace Components of Fly ash and Flue Gas of Some Municipal Incinerators in the Netherlands. Chemosphere, 6, 455-459 (1977).
Pankow, J. F. Review and Comparative Analysis of the Theories on Partitioning between the Gas and Aerosol Particulate Phase in the Atmosphere. Atmospheric Environment, 21, 2275-2283 (2001).
Quaß, U., Fermann, M. W., Bröker, G. Steps Towards a European Dioxin Emission Inventory. Chemosphere, 40, 1125-1129 (2000).
Raccanelli, S., Tirler, W., Favotto, M. and Donega, M. Montioring PCDD/F De-novo Synthesis in a Municipal Waste Incinerator. Organohalogen Compounds, 41, 255-258 (1999).
Raghunathan, K. and Gullett, B. K. Role of Sulfur in Reducing PCDD and PCDF Formation. Enviorn. Sci. Technol., 30, 1827-1835 (1996).
Rigg, K. B., Brown, T. D. and Schrock, M. E. PCDD/PCDF Emission from Coal-fired Power Plants. Organohalogen Compounds, 24, 51-54 (1995).
Rordorf, B. F. Prediction of Vapor-pressures, Boiling points and Enthalpies of Fusion for 29 Halogenated Dibenzo-para-dioxins and 55 Dibenzofurans by a Vapor-pressure Correlation Method. Chemosphere 18(1-6), 783-788 (1989a).
Ruokojärvi, P. H., Halonen, I. A., Tuppurainen, K. A., Ruuskanen, J., Tarhanen, J. Effect of Gaseous Inhibitors on PCDD/F Formation. Environ. Sci. Technol., 32, 3099-3103 (1998b).
Sakai, S. I. Substance Flow Approach for the Control of PCDDs/DFs-Recent Development on Emission Control and Abatement of PCDDs/Fs in Japan. Organohalogen Compounds, 40, 449-452 (1999).
Sasaki, M., Sato, Y., Ikenaga, Y., Kawakami, T. and Tsukamoto, T. Reduction of Total Dioxin Emission from MSW Incinerators. Organohalogen Compounds, 36, 325-328 (1998).
Sakurai, T., Kobayashi, T., Watanabe, T. and Kondo, T. Formation of PCDD/Fs from Chlorophenols (CPs) on Fly Ash Produced by Municipal Solid Waste Incinerators. Organohalogen Compounds, 27, 183–186 (1996).
Sheffield, A. E. and Pankow, J. F. Specific Surface Area of Urban Atmospheric Particulate Matter in Portland, Oregon. Environ. Sci. Technol., 28, 1759-1766 (1994).
Shin, D., Yang, W., Choi, J., Choi, S. and Jang, Y. S. The Effect of Operation Conditions on PCDD/PCDF Emission in Municipal Solid Waste Incinerators: Stack Gas Measurement and Evaluation of Operating Conditions. Organohalogen Compounds, 36, 143-146 (1998).
Shin, D. H., Choi, S. M., Oh, J. E. and Chang, Y. S. Evaluation of Polychlorinated Dibenzo-P-Dioxin/Dibenzofuran (PCDD/F) Emission in Municipal Solid-Waste Incinerators. Environ. Sci. Technol., 33, 2657-2666 (1999).
Stieglitz, L. and Vogg, H. On Formation Condition of PCDD/PCDF in Fly-ash from Municipal Waste. Chemosphere, 16, 1917-1922 (1987).
Stieglitz, L., Zwick, G., Beck, J., Bautz, H. and Roth, W. Carbonaceous particles in Fly Ash: a Source for the De novo Synthesis of Organochlorocompounds. Chemosphere, 19(1-6), 283-290 (1989).
Stieglitz, L., Vogg, H., Zwick, G., Beck, J. and Bautz, H. On Formation Conditions of Organohalogen Compounds from Particulate Carbon of Fly Ash. Chemosphere 23(8-10), 1255-1264 (1991).
Tiernan, T. O., Garrett, J.H., Vanness, G. F., Bultman, S., Hinders, J. D., Everson, C., Wagel, J. W. and Taylor, M. L. The results of analyses of combustion products collected during tests of a refuse-fired incinerator located in Tsushima, Japan for polychlorinated dibenzodioxins and dibenzofurnas, selected metals and fluorides/chlorides. Prepared by Wright State University, Dayton, OH., for Cooper Engineers, Richmond, CA. Work supported jointly by the State of California Air Resources Board and the Ministry of the Environment, Province of Ontario, Canada. (July 14, 1984).
Tejima, H., Nakagawa, I., Shinoda, T. A. and Maeda, I. PCDDs/PCDFs Reduction by Good Combustion Technology and Fabric Filter with/without Activated Carbon Injection. Chemosphere, 32(1), 169-175 (1996).
Tundo, P., Perosa, A., Selva, M. and Zinovyev, S. S. Mild Catalytic Detoxification Method for PCDDs and PCDFs. Applied Catalysis B: Environmental, 32 L1-L7 (2001).
Tuppurainen, K., Halonen, I., Ruokojärvi, P., Tarhanen, J. and Ruuskanen, J. Formation of PCDDs and PCDFs in Municipal Waste Incineration and Its Inhibition Mechanisms: A Review. Chemosphere, 36(7), 1493-1511 (1998).
Ukisu, Y. and Miyadera, T. Dechlorination of Dioxins with Supported Palladium Catalysts in 2-propanol Solution. Applied Catalysis A: General, 271(1-2), 165-170 (2004).
United Nations Environment Program. Thailand Dioxin Sampling and Analysis Program (2001).
USEPA. Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-dioxins and -dibenzofurans (CDDs and CDFs) and 1989 Update. Washington, DC: Risk Assessment Forum. EPA/625/3-89.016, (1989).
USEPA. Validation of Emission Test Method for PCDDs and PCDFs VII. Prepared by Midwest Research Institute for the Atmospheric Research and Exposure Assessment Laboratory, EPA, Research Triangle Park, NC. Contract 68- 02-4395. (1990).
USEPA. Economic Impact and Preliminary Regulatory Impact Analysis for Proposed MACT-based Emission Standards and Guidelines for Municipal Waste Combustors. Office of Air Quality Planning and Standards. EPA-450/3-91-029. (1992).
USEPA. Health Assessment Document for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Related Compounds. Office of Research and Development, Washington, DC. EPA/600/Bp-92/001c (1994a).
USEPA. Health Assessment Estimating Exposure to Dioxin-Like Compounds, EPA/600/6-88/005Cb, Office of Research and Development, Washington, DC. (1994b).
USEPA. Combustion Emissions Technical Resource Document (CETRED). Washington, DC: Office of Solid Waste and Emergency Response. Draft Report. EPA/530-R-94-014 (1994c).
USEPA. Method 23A, http://www.epa.gov/epaoswer/hazwaste/test/pdfs/0023a.pdf. (1996).
USEPA. Choosing an Adsorption System for VOC: Carbon, Zeolite or Polymers. U.S. Goverment Printing Office: Washington, DC, EPA-456/F-99-004. (1999).
USEPA. Site-Specific Assessment Procedures. Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds. Part I: Estimating Exposure to Dioxin-Like Compounds (4), Washington, DC, EPA/600/P-00/001Bd (2000).
Van De Kleut, D. and Van De Akker, B. Dioxin Removal from Wet Phase Flue Gas Treatment with Powdered Activated Carbon. Organohalogen Compounds, 36, 101-104 (1998).
Van den Berg, M., Birnbaum, L. and Bosveld, A. T. C. Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife. Environ Health Perspect, 106(12), 775-792 (1998).
Vogg, H., Metzger, M. and Steiglitz, L. Recent Findings on the Formation and Decomposition of PCDD/PCDF in Municipal Solid Waste Incineration. Waste Management and Research, 5(3), 285-294 (1987).
Vogg, H., Kreise, S. and Husinger, H. A Potential PCDD/F Source? Organohalogen Compounds, 20 305-307 (1994).
Wang, H.C., Hwang, J.F., Chang, M.B., Chi, K.H. Formation and Removal of Dioxins in an MSWI during Different Operating Periods. Organohalogen Compounds 66, 1180-1186 (2004).
Weber, R., Sakurai, T. and Hagenmaier, H. Formation and Destruction of PCDD/PCDF during Heat-treatment of Fly-ash Samples from Fluidized-bed Incinerators. Chemosphere, 38, 2633-2642 (1999).
Weber, R., Plinke, M., Xu, Z. and Wilken, M. Destruction Efficiency of Catalytic Filters for Polychlorinated Dibenzo-p-dioxin and Dibenzofurans in Laboratory Test and Field Operation- Insight into Destruction and Adsorption Behavior of Semi-volatile Compounds. Applied Catalysis B: Environmental, 31, 195–207 (2001).
Wever, M., Pe Fré, R., Rymen, T. and Geuzens, P. Reduction of Dioxin Emission from a Municipal Waste Incinerator by Wet Gas Scrubbing. DIOXIN ’91, 216-220 (1991).
Wevers, M. and De Fré, R. Dioxin Emission Reduction of a Municipal Waste Incinerator by Injection of Activated Carbon-the Abatement of Memory Effects. Organohalogen Compounds, 36, 342-346 (1998).
Whitby, K. T. The Physical Characteristics of Sulfur Aerosols. Atmospheric Environment, 12, 135–159 (1978).
Yamassaki, H., Kuwata, K. and Miyamoto, H. Effects of Ambient Temperature on Aspects of Airborne Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol., 16, 189–194 (1982).
Yunje, K. and Jaehoon, Y. The Study on the Contents of PCDDs/PCDFs in Ambient Air, Edible and Human Serum in Korea. Organohalogen Compounds, 43, 167-172 (1999).
指導教授 張木彬(Moo-Been Chang) 審核日期 2005-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明