參考文獻 |
[1] G. Piatetsky-Shapiro and W. J. Frawley, Knowledge Discovery in Databases, AAAI/MIT Press, 1991.
[2] M. S. Chen, J. Han, and P. S. Yu, Data Mining : An Overview from Database Perspective, IEEE Transactions on Knowledge and Data Engineering, 8(6):866-883, 1996.
[3] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press, 1996.
[4] K. J. Cios, W. Pedrycz, and R. Swiniarski, Data Mining Methods for Knowledge Discovery, Dordrecht, The Netherlands: Kluwer, 1998.
[5] S. Mitra, S. K. Pal, and P. Mitra, Data Mining in Soft Computing Framework : A Survey, IEEE Transactions on Neural Networks, 13(1):3-14, 2002.
[6] R. Agrawal, T. Imielinski, and A. Swami, Mining Association Rules between Sets of Items in Large Databases, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pp.207-216, 1993.
[7] R. Agrawal, and R. Srikant, Fast Algorithms for Mining Association Rules in Large Databases, Proceedings of the 20th International Conference on Very Large Data Bases, pp.478-499, 1994.
[8] J. S. Park, M. S. Chen, and P. S. Yu, An Effective Hash- Based Algorithm for Mining Association Rules, Proceedingds of the 1995 ACM SIGMOD International Conference on Management of Data, pp.175-186, 1995.
[9] J. Han, Y. Cai, and N. Cercone, Knowledge Discovery in Databases : An Attribute-Oriented Approach, Proceedings of the 18th International Conference on Very Large Data Bases, pp.547-559, 1992.
[10] X. Hu, and N. Cercone, Mining Knowledge Rules from Databases : A Rough Set Approach, Proceedingds of 12th International Conference on Data Engineering, pp.96-105, 1996.
[11] N. Zhong, J. Z. Dong, S. Ohsuga and T. Y. Lin, An Incremental, Probabilistic Rough Set Approach to Rule Discovery, Proceedingds of the 1998 IEEE International Conference on Fuzzy Systems, 2:933-938, 1998.
[12] Y. L. Chen, C. L. Hsu, and S. C. Chou, Constructing a multi-valued and multi-labeled decision tree, Expert Systems with Applications, 25(2):199-209, 2003.
[13] M. Garofalakis, D. Hyun, R. Rastogi, and K. Shim, Building Decision Tree with Constraints, Data Mining and Knowledge Discovery, 7(2):187-214, 2003.
[14] B. Liu, Y. Ma, C. K. Wong, and P. S. Yu, Scoring the Data Using Association Rules, Applied Intelligence, 18(2):119-135, 2003.
[15] X. Yin, and J. Han, CPAR : Classification based on Predictive Association Rules, Proceedingds of SIAM International Conference on Data Mining, 2003.
[16] J. Han, M. Kamber, and A. K. H. Tung, Spatial Clustering Methods in Data Mining : A Survey, Geographic Data Mining and Knowledge Discovery, Taylor & Francis, 2001.
[17] A. K. H.Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng, Constraint-Based Clustering in Large Databases, Proceedingds of 2001 International Conference on Database Theory, 2001.
[18] J. Han, G. Dong, and Y. Yin, Efficient Mining of Partial Periodic Patterns in Time Series Database, Proceedings of 15th International Conference on Data Engineering, pp.106-115, 1999.
[19] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. C. Hsu, PrefixSpan : Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth, Proceedings of 17th International Conference on Data Engineering, pp.215-224, 2001.
[20] Y. L. Chen, M. C. Chiang, and M. T. Kao, Discovering time-interval sequential patterns in sequential databases, Expert Systems with Applications, 25(3):343-354, 2003.
[21] J. Yang, W. Wang, P. S. Yu, and J. Han, Mining Long Sequential Patterns in a Noisy Environment, Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, pp.406-417, 2002.
[22] X. Yan, J. Han, and R. Afshar, CloSpan : Mining Closed Sequential Patterns in Large Databases, Proceedings of SIAM International Conference on Data Mining, 2003.
[23] K. Wang, and H. Liu, Discovering Structural Association of Semistructured Data, IEEE Transactions on Knowledge and Data Enginering, 12(3):353-371, 2000.
[24] M. Kuramochi, and G. Karypis, Frequent Subgraph Discovery, Proceedings of IEEE International Conference on Data Mining, pp.313-320, 2001.
[25] X. Yan, and J. Han, gSpan : Graph-Based Substructure Pattern Mining, Proceedings of 2002 IEEE International Conference on Data Mining, pp.721-724, 2002.
[26] X. Yan, and J. Han, CloseGraph : Mining Closed Frequent Graph Patterns, Proceedings of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.286-295, 2003.
[27] J. Srivastava, R. Cooley, M. Deshpande, and P. N. Tan, Web Usage Mining : Discovery and Applications of Usage Patterns from Web Data, ACM SIGKDD Explorations Newsletter, 1(2):12-23, 2000.
[28] M. Spiliopoulou, B. Mobasher, B. Berendt, and M. Nakagawa, A Framework for the Evaluation of Session Reconstruction Heuristics in Web Usage Analysis, INFORMS Journal on Computing, 15(2):171-204, 2003.
[29] F. Masseglia, P. Poncelet, and R. Cicchetti, An efficient algorithm for Web usage mining, Networking and Information Systems Journal (NIS), 2(5-6):571-603, 1999.
[30] Q. Yang, J. Z. Huang, and M. Ng, A Data Cube Model for Prediction-Based Web Prefetching, Journal of Intelligent Information Systems, 20(1):11-30, 2003.
[31] V. Carchiolo, A. Longheu, and M. Malgeri, Extracting Logical Schema from the Web, Applied Intelligence, 18(3):341-355, 2003.
[32] Y. Fu, M. Creado, and M. Y. Shih, Adaptive Web Sites by Web Usage Mining, International Conference on Internet Computing, IEEE, 2001. |