參考文獻 |
[1] 江美淨,「有時間區間的循序探勘」,國立中央大學資訊管理研究,民國91年。
[2] 林柏伸,「行動環境下之使用者行為樣式研究-以二維度序列型樣進行探勘」,中原大學資訊管理研究所,民國93年。
[3] 張凱棊,「使用頻繁情節法則與有限狀態機於網路入侵偵測系統之設 計」,銘傳大學資訊工程研究所,民國97年。
[4] 陳奕明、黃世昆,資訊與通訊系統之程式安全,初版,行政院國家科學委員會技術資料中心,民國92年。
[5] 陳培德,賴溪松,「入侵偵測系統簡介與實現」,Communications of the CCISA,Vol. 8,No. 2,民國92年。
[6] 游信文,「入侵偵測系統中基於機器學習方法技術之開發與比較」, 國立中正大學 資訊管理研究所, 民國96年。
[7] 黃程斌,「入侵偵測系統中雞魚群集演算法之異常偵測技術評比」,成功大學資訊工程研究所,民國94年。
[8] 葉乃菁、李順仁,網路安全理論與實務,初版,文魁資訊股份有限公司,民國93年。
[9] 賴溪松,資通安全專輯之十四-網路攻防實驗教材,初版,財團法人國家實驗研究院科技政策研究與資訊中心,民國94年。
[10] 謝續平,資通安全專輯之十五-網際網路攻防技術與實例,初版,財團法人國家實驗研究院科技政策研究與資訊中心,民國94年。
[11] A. Patcha and J.-M. Park, “Network Anomaly Detection with Incomplete Audit Data “, Elsevier Computer Networks, Vol. 51, Issue 13, 2007.
[12] Agenda and Work Plan. Computer Security Incident Response Team (CSIRT), Florida State University, http://www.security.fsu.edu/csirt_mtg
[13] Ajzen, I., & Fishbein, M., Belief, attitude, intention, and behavior: An introduction to theory and research, MA: Addison-Wesley Publishing Company, Inc., 1975.
[14] Ajzen, I., & Fishbein, M., Understanding attitudes and predicting social behavior, Englewood Cliffs, NJ: Prentice-Hall, 1980.
[15] Ajzen, I., & Madden, T. J., “Prediction of goal-directed behavior: Attitudes, intentions and perceived behavioral control”, Journal of Experimental Social Psychology, Vol 22, pp 453-474, 1986.
[16] Ajzen, I., “From intentions to actions: A theory of planned behavior”, In J. Kuhl and J. Beckman (Eds.), Action-control: From cognition to behavior (pp. 11-39), Heidelberg: Springer, 1985.
[17] Ajzen, I., “The theory of planned behavior”, Organizational Behavior and Human Decision Process, Vol 50, pp 179-211, 1991.
[18] Anderson, J. C., & Gerbing, D. W., “Structural equation modeling in practice: A review and recommended Two step approach”, Psychological Bulletin, Vol 103(3), pp 411-23, 1988.
[19] Byoung-Doo Kang, Jae-Won.Lee,.Jong-Ho Kim, Hwa Kwon, Chi-Young Seong and Sang-Kyoon Kim, “An Intrusion Detection System Using Principal Component Analysis and Tim Delay Neural Network”, Proceedings of 7th International Workshop on Enterprise networking and Computing in Healthcare Industry, pp. 442-445, 2005.
[20] C. Anley. Advanced SQL Injection in SQL Server Applications. An NGSSoftware Insight Security Research (NISR) publication, 2002. http://www.nextgenss.com/papers/advanced_sql_injection.pdf.
[21] CERT Coordination Center, Overview of Attack Trends, 2002. http://www.arcert.gov.ar/webs/textos/attack_trends.pdf
[22] Chechen, L., Chen, J. L., & Yen, D. C., “Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service: An integrated model”, Computers in Human Behavior, Vol 23, pp 2804-2822, 2007.
[23] Chueh, H.-E., Lin, N. P., “Mining Time-Interval Sequential Patterns Using Clustering Analysis”, 2008 International Computer Symposium, Taipei, 2008.
[24] Constant, D., Kiesler, S., & Sproull, L., “What’s mine is ours, or is it? A study of attitudes about information sharing”, Information Systems Research, Vol 5(4), pp 400-421, 1994.
[25] Davis, F. D., Bagozzi, R. P., & Warshaw, P. R., “User acceptance of computer technology: a comparison of two theoretical models”, Management Science, Vol 35(8), pp 982-1002, 1989.
[26] Denning, D. E., “An intrusion detection model”, IEEE Transactions on Software Engineering, Vol 13, pp 222-232, 1987.
[27] Ertoz, L., Eilertson, E., Lazarevic, A., Tan, P., Srivastava, J., Kumar, V., Dokas, P., “The MINDS – Minnesota Intrusion Detection System”, Next Generation Data Mining, MIT Press, 2004.
[28] Event Monitoring Enabling Responses to Anomalous Live Disturbances (EMERALD), http://www.sdl.sri.com/projects/emerald/
[29] Guan, Y., Ghorbani, A. A., Belacel, N., “Y-means: A clustering method for intrusion detection”, IEEE Canadian Conference on Electrical and Computer Engineering, Montreal, Quebec, Canada, 2003.
[30] H. Mannila, H. Toivonen, and A. Inkeri Verkamo, “Discovery of frequent episodes in event sequences,” Data Mining and Knowledge Discovery, Vol 1(3), pp 259-289, Novermber 1997.
[31] Han,J., Kamber, M., Data mining: Concepts and Techniques, San Francisco, CA: Morgan Kaufmann Publishers, 2001.
[32] James P Anderson, Computer Security Threat Monitoring and Surveillance, Techniqueal report, James P Anderson Co., Fort Washington, Pennsylvania, April 1980.
[33] Jianxiong Luo and Susan M. Bridges, “Mining Fuzzy Association Rules and Fuzzy Frequency Episodes for Intrusion Detection”, International Journal of Intellignet Systems, Vol. 15, No. 1, pp 687-703, 2001.
[34] Kai Hwang, Min Cai, Ying Chen and Min Qiu, “Hybrid Intrusion Detection with Weighted Signature Generation over Anomalous Internet Episodes”, IEEE Transactions of Dependable and Secure Computing, Vol. 4, No. 1, pp 41-55, 2007.
[35] Kemmerer, R. A., Vigna, G. , “Intrusion Detection: A Brief History and Overview”, Computer, Vol 35(4), pp 27-30, 2002.
[36] Kevin J.Houle and George M., “Weaver, Trends in Denial of Service Attack Technology(v1.0)”, CERT® Coordination Center, pages 1-20, October 2001.
[37] Kruegel, C., Vigna, G., Robertson, W., “A multi-model approach to the detection of web-based attacks”, Computer Networks, Vol 48(5), pp 717-738, 2005.
[38] Lee W. Stolfo, S. J. , “A framework for constructing features and models for intrusion detection systems”, ACM Transactions on Information and System Security, Vol 3(4), pp 227-261, 2000.
[39] Li Zhi-Tang and Li Jia-Chun, “Application of Fuzzy Neural Networks to Intrusion Dectection”, Mini-Micro Systems, Vol. 23, Issue 10, pp 1234-1238, 2002.
[40] Li, T.-R., Pan, W.-M. , “Intrusion detection system based on new association rule mining model”, 2005 IEEE International Conference on Granular Computing, Beijing, China, 2005.
[41] Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and LiWu Chang, “A Novel Anomaly Detection Scheme Based on Principal Component Classifier”, Proceedings of ICDM Foundation and New Direction of Data Mining workshop, pp 172-179, 2003.
[42] P.H. Wu, W.C. Peng, and M. S. Chen, “Mining Sequential Alarm Patterns in a Telecommunication Database”, Workshop on Databases in Telecommunications (VLDB 2001), Sept. 2001.
[43] Portnoy, L., Eskin, E., Stolfo, S., “Intrusion detection with unlabeled data using clustering”, ACM Workshop on Data Mining Applied to Security, Philadelphia, USA, 2001.
[44] Prelude, http://www.prelude-ids.org/
[45] R. Srikant and R. Agrawal, “Mining Sequential Patterns: Generalizations and Performance Improvements”, In Proc. Of the Fifth Int’l Conference on Extending Database Technology (EDBT’96), Avignon, France, Mar.1996.
[46] R. Srikant and R. Agrawal, “Mining Sequential Patterns”, IEEE International Conference on Data Engineering, pp 3-114, 1995.
[47] Rebecca G Bace,駭客入侵偵測專業手冊,賴冠州編譯,旗標出版股份有限公司,民國91年。
[48] Search Security Definitions, http://searchsecurity.techtarget.com
[49] Sheng Yi Jiang et al., “A clustering-based method for unsupervised intrusion detections”, Pattern Recognition Letters, 2006.
[50] Taylor, S., & Todd, P. , “Understanding information technology usage: A test of competing models”, Information Systems Research, Vol 6(2), pp 144-176, 1995.
[51] W. Lee, S.J. Stolfo, and K. Mok, “Adaptive Intrusion Detection: A Data Mining Approach”, Artificial Intelligence Review, pp 533-567, 2000.
[52] Wang, Q., Mehalooikonomou, V., “A Clustering Algorithm for Intrusion Detection”, The SPIE Conference on Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security, Orlando, USA, 2005.
[53] Wenke Lee, “Applying Data Mining to Intrusion Detection: The Quest for Automation, Efficiency, and Credibility”, ACM SIGKDD Explorations Newsletter, Vol. 4, Issue 2, pp 35-42, 2002.
[54] Witten, I. H., Frank, E., Data Mining: Practical Machine Learning Tools and Techniques, San Francisco, CA: Morgan Kaufmann Publishers, 2005.
[55] Wuu, L.-C., Hung, C.-H., Chen, S.-F., “Building intrusion pattern miner for Snort network intrusion detection system”, Journal of Systems and Software, 80(10), 1699-1715, 2007.
[56] Yen-Liang Chen, Mei-Ching Chiang, Ming-Tat Kob, ‘‘Discovering time-interval sequential patterns in sequence databases’’, Expert Systems with Applications, Vol 25, pp 343–354, 2003.
[57] Zhong, S., Khoshgoftaar, T., Seliya, N., “Clustering-based network intrusion detection”, International Journal of Reliability, Quality and Safety, Vol 14(2), pp 169-187, 2007.
|