博碩士論文 90541010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.224.31.14
姓名 吳玉龍(Yu-Lung Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 空時碼系統之研究
(A Study of Space-Time Coding Systems)
相關論文
★ 資料儲存系統之渦輪碼與訊號處理研究★ 插值時序恢復之研究與應用
★ 資料儲存系統之通道研究★ 全數位化π/4-shifted DQPSK 之分析與實現
★ 校園多媒體無線通訊系統通道編∕解碼器之研究★ 資料儲存系統之調變碼研究
★ 利用紅外線傳輸動態影像(H.263)之研究★ 數位式上昇餘弦函數濾波器最佳化設計
★ 多層次時空編碼★ 籬柵編碼正交振幅調變的非同調解碼
★ 資料儲存PRML通道系統之全數位插值時序恢復研究及設計★ IrTran-P環境下之JPEG影像錯誤偵測與改善
★ FIR濾波器於二冪次係數空間之研究與分析★ 用於具延遲/迴旋處理器之籬柵碼的超籬柵解碼
★ 影像縮放之插值器研究★ 動態影像在紅外線中傳輸與錯誤消除技術之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前通信系統之設計大部分都集中在低傳輸速率系統之開發,然而,下一代通信系統於網際網路及多媒體上之運用,對於高傳輸率及高機動性的要求以非常快之速度成長,為解決包含時間及頻率選擇性衰減通道(selective fading channel)、功率及頻寬限制所引起效能限制,空時碼(space-time coding)是目前最有效克服衰減之技術及提供高可靠之傳輸。
本論文以三個章節分別探討有關多天線系統之議題,包含非同調(noncoherent)空時碼用於準穩態衰減通道(quasistatic fading channel)之架構、籬柵編碼非同調空時調變(TC-NSTM)及串接空時碼用於不同衰減通道之架構。本論文第三章主要說明在傳送天線及接收天線都不需正確知道通道狀態資訊(CSI)之非同調系統,我們主要提出一種單式空時調變(USTM)以降低二維星座圖訊號點數及保證所尋找出的編碼均為全分集(full diversity),並運用多階層解碼方法以降低解碼複雜度。
第四章提出三種運用於籬柵編碼非同調空時調變之方法,第一種方法為用於區塊衰減通道(block fading channel)環境下之新籬柵編碼單式空時調變(TC-USTM),此方法使用更多的未編碼單式空時調變信號來挑戰傳統利用二倍未編碼單式空時調變信號之籬柵編碼單式空時調變。第二種方法是利用以訓練碼為基礎(training-based)之籬柵編碼非同調空時調變,運用訓練碼估測通道狀態資訊,並將同一分支訊號利用交錯器(interleaver)將信號打散於不同衰減區塊上,以增加系統分集數。第三種方式是用於準穩態衰減通道之非同調序列偵測演算法,而這些演算法是利用一個滑動視窗(slide window)之維特比演算法(Viterbi algorithm)來完成,這個滑動視窗涵蓋幾個籬柵分支信號。
第五章為提出串接空時區塊碼(STBC)與使用一個延遲處理器(delay processor)之籬柵編碼調變(TCM)架構,且運用於多輸入/多輸出(MIMO)系統及多輸入/多輸出正交分頻多工(OFDM)系統。此架構不僅可獲得較大最小平方歐氏距離(squared Euclidean distance)且可獲得較大最小漢明距離(Hamming distance),因此,可得到較佳系統性能。本章除提出一種改善式方法,此方法是於空時區塊碼與籬柵編碼調變中間插入一個特殊區塊交錯器(interleaver),並且提出兩種解碼方法,包含部分硬式決定回授之滑動視窗式之遞迴解碼(SW-IDPHF)及軟式決定回授之滑動視窗式之遞迴解碼(SW-IDSF)。不管是利用那種解碼方式,我們所提出的解碼方法其解碼收斂速度較快且終極性能均比利用傳統解碼方式之位元交錯編碼調變(BICM)為佳。
摘要(英) The main goal of the next generation wireless communication systems provides high data rates and high mobile service for the Internet and multimedia applications. In order to deal with performance-limiting challenges that include time and frequency selective fading channels, power and bandwidth constraints, space-time coding has been proposed as one of the most effective techniques to combat fading and to provide high reliable transmission.
This thesis has three chapters to address three important issues, respectively, relative to multiple antennas systems: noncoherent space-time modulation schemes for the quasistatic fading channel, trellis coded noncoherent space-time modulation schemes for various fading channels and concatenated space-time coding with a delay processor for frequency flat/selective fading channels. In Chapter 3, we deal with a noncoherent system in which the transmit and the receive antennas do not know the channel state information (CSI). We consider the design of unitary spacetime modulation (USTM) reduces the number of signal points in the two-dimensional
constellation and guarantees full diversity for searched codes as well as reduces the decoding complexity with multistage decoding for large constellation size. Moreover, in the scheme using multistage decoding with power allocation based on USTM, training code and differential space-time block coding (DSTBC) can achieve better error performance than those codes using conventional decoding.
In Chapter 4, we propose three schemes for trellis coded noncoherent space-time modulation (TC-NSTM). In the first scheme, based on systematic method for constructing USTM, we propose a new trellis coded unitary space-time modulation (TC-USTM) scheme for the block fading channel; the scheme uses more signals of USTM
compared with the existing TC-USTM schemes expanding the signal set of uncoded USTM by a factor of two and can obtain larger distance than existing schemes. In the second scheme, based on training code, a new TC-NSTM scheme is investigated for the block fading channel also. We use training code instead of USTM and insert
a proper interleaving to increase temporal diversity. In the last scheme, we generalize
the noncohernt sequence detection algorithms to detect TC-USTM over the quasistatic fading channel. The detection using the Viterbi algorithm with a slide window where each window covers several branches of the trellis is proposed. The searched codes for this scheme can achieve better performance than the USTM.
In Chapter 5, we propose concatenated space-time block coding (STBC) with trellis coded modulation (TCM) using a delay processor for multiple-input multipleoutput (MIMO) andMIMO-OFDM (orthogonal frequency-division multiplexing) scheme. The scheme can achieve not only minimum squared Euclidean distances but also
large minimum Hamming distances and hence can achieve good error performance for both MIMO and MIMO-OFDM systems under various fading channels. The slidingwindow-type iterative decoding using partial hard-decision feedback (SW-IDPHF) and sliding-windows-type iterative decoding using soft-decision feedback (SW-IDSF) are also proposed. The codes can converge fast and get better performance as compared to the case of bit-interleaved coded modulation (BICM) using conventional decoding.
關鍵字(中) ★ 多輸入/多輸出
★ 籬柵編碼單式調變
★ 單式空時調變
★ 分集
★ 非同調
★ 衰減通道
關鍵字(英) ★ trellis coded unitary space-time modulation
★ diversity
★ unitary space-time modulation
★ noncoherent
★ MIMO
★ fading channel
論文目次 Abstract i
List of Figures vi
List of Tables x
List of Notations and Symbols xi
List of Acronyms xiii
1 Introduction 1
1.1 Problem Statement 2
1.2 Outline of Thesis 3
2 Principles and Concepts 6
2.1 MIMO Systems 7
2.1.1 MIMO ChannelModel 7
2.1.2 MIMO Channel Capacity 8
2.2 Fading Channels 9
2.2.1 Propagation Channels 9
2.2.2 StatisticalModels of Fading Channels 10
2.3 Diversity Techniques 12
2.3.1 Time Diversity 12
2.3.2 Frequency Diversity 13
2.3.3 Space Diversity 14
2.4 Space-Time Coding 14
2.4.1 Space-Time Trellis Coding 15
2.4.2 Space-Time Block Coding 16
2.4.3 Differential Unitary Space-Time Modulation 18
3 Noncoherent Space-Time Modulation 20
3.1 Introduction 20
3.2 Preliminaries 21
3.2.1 Unitary Space-Time Modulation 22
3.2.2 Training Code 24
3.3 Unitary Space-Time Coded 8PSK 27
3.3.1 Search Codes 27
3.3.2 Simulation Results 28
3.4 Noncoherent Space-Time Modulation Schemes with Multistage Decoding 33
3.4.1 The Proposed Scheme 33
3.4.2 Design Criterion 34
3.4.3 Simulation Results 35
3.5 Concluding Remarks 37
4 Trellis Coded Noncoherent Space-Time Modulation 46
4.1 Introduction 46
4.2 On Trellis Coded Noncoherent Space-Time Modulation for the Block Fading Channel 48
4.2.1 System Model 48
4.2.2 The Existing Trellis Coded Unitary Space-Time Modulation Schemes 48
4.2.3 The Proposed Trellis Coded Unitary Space-Time Modulation scheme 50
4.2.4 Training-Based Trellis Coded Noncoherent Space-Time Modulation 55
4.2.5 Simulation Results 57
4.3 Noncoherent Sequence Detection for Trellis Coded Unitary Space-Time Modulation for the Quasistatic Fading Channel 63
4.3.1 The Proposed Noncoherent Sequence Detection Scheme 63
4.3.2 Systematic Design of Trellis Coded Unitary Space-Time Modulation 67
4.3.3 Simulation Results 69
4.4 Concluding Remarks 73
5 Concatenated Space-Time Block Coding with Trellis Coded Modulation Using a Delay Processor 81
5.1 Introduction 81
5.2 Concatenated STBC with TCM 83
5.2.1 System Description 83
5.2.2 Channel Models and Design Criteria for MIMO Systems 85
5.2.3 Channel Models and Design Criteria for MIMO-OFDM Systems 86
5.3 An Improved System and Its Design Criteria 86
5.4 TCMwith a Delay Processor 88
5.4.1 Encoding 88
5.4.2 Distance Properties 89
5.5 A Tail-Biting Code for TCMwith a Delay Processor 92
5.5.1 Encoding 92
5.5.2 Distance Properties 93
5.5.3 Application to the Improved System 94
5.5.4 Sliding-Window-Type Iterative Decoding Using Soft-Decision Feedback (SW-IDSF) 95
5.5.5 Sliding-Window-Type Iterative Decoding Using Partial Hard-Decision Feedback (SW-IDPHF) 97
5.5.6 Comparison with BICMUsing either IDSF or IDFHF 98
5.6 Simulation Results 98
5.6.1 FER Results in Fast Fading Channels for MIMO Systems 99
5.6.2 Comparison with Turbo CodedMIMO Systems 100
5.6.3 FER Results in Correlated Rayleigh Fading Channels for MIMO Systems 101
5.6.4 FER Results in MIMO-OFDM Systems 101
5.6.5 Convergence Behavior for SW-IDSF and SW-IDPHF 102
5.7 Concluding Remarks 103
6 Conclusions and Future Work 110
List of Publications 113
Bibliography 114
參考文獻 [1] V. Tarokh and H. Jafarkhani, “A differential detection scheme for transmit diversity,”IEEE J. Select. Areas Commun., vol. 18, pp. 1169–1174, July 2000.
[2] P. Dayal, M. Brehler, and M. K. Varanasi, “Leveraging coherent space-time
codes for noncoherent communication via training,” IEEE Trans. Inform. Theory,
vol. 50, pp. 2058–2080, Sept. 2004.
[3] I. Bahceci and T. M. Duman, “Trellis coded unitary space-time modulation,”IEEE Trans. Wireless Commun., vol. 3, pp. 2005–2012, Nov. 2004.
[4] B. Hochwald and W. Swelden, “Differential unitary space-time modulation,”
IEEE Trans. Commun., vol. 48, pp. 2041–2052, Dec. 2000.
[5] B. Hughes, “Differential space-time modulation,” IEEE Trans. Inform. Theory, vol. 46, pp. 2567–2578, Nov. 2000.
[6] V. Tarokh, N. Seshadri, and A. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 48, pp. 744–765, Mar. 1998.
[7] G. Hellstern, “Coded modulation with feedback decoding trellis codes,” in Proc. IEEE Int. Conf. on Communications (ICC), May 1993, pp. 1071–1075.
[8] J. Wang and M. Lin, “On constructing trellis codes with large free distances and low decoding complexities,” IEEE Trans. Commun., vol. 45, pp. 1017–1020, Sept. 1997.
[9] X.Li and J. Ritcey, “Bit-interleaved coded modulation with iterative decoding,” IEEE Commun. Lett., vol. 1, pp. 169–171, Nov. 1997.
[10] Z. Hong and B. Hughes, “Bit-interleaved space-time coded modulation with iterative decoding,” IEEE Trans. Wireless Commun., vol. 3, pp. 1912–1917, Nov. 2004.
[11] S. L. Goff, A. Glavieux, and C. Berrou, “Turbo-codes and high spectral efficient modulation,” in Proc. IEEE ICC’94, 1994, pp. 1064–1070.
[12] G. Bauch, “Concatenation of space-time block codes and ’turbo’-TCM,” in Proc. IEEE ICC’99, June 1999, pp. 1202–1206.
[13] A. Stefanov and T. Duman, “Turbo coded modulation for systems with transmit and receive antenna diversity over block fading channels: system models, decoding approaches, and practical considerations,” IEEE J. Select. Areas Commun., vol. 19, pp. 958–968, May 2001.
[14] Y. Gong and K. B. Letaief, “Concatenated space-time block coding with trellis coded modulation in fading channels,” IEEE Trans. Commun., vol. 51, pp. 2019– 2029, Dec. 2003.
[15] ——, “An efficient space-frequency coded OFDM system for broadband wireless communications,” IEEE Trans. Wireless Commun., vol. 4, pp. 580–590, Oct. 2002.
[16] Z. Hong and B. Hughes, “Robust space-time codes for broadband ofdm systems,” in Proc. IEEE WCNC’02, Mar. 2002, pp. 105–108.
[17] B. Hochwald, T. Marzetta, T. Richardson, W. Sweldens, and R. Urbanke, “Systematic design of unitary space-time constellations,” IEEE Trans. Inform. Theory, vol. 46, pp. 1962–1973, Sept. 2000.
[18] W. Zhao, G. Leus, and G. B. Giannakis, “Orthogonal design of unitary constellations for uncoded and trellis-coded noncoherent space-time systems,” IEEE Trans. Inform. Theory, vol. 50, pp. 1319–1327, June 2004.
[19] Z. Sun and T. T. Tjhung, “On performance analysis and design criteria for trellis coded unitary space-time modulation,” in Proc. IEEE WCNC, Mar. 2003, pp. 262–267.
[20] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multiple-element antennas,” Bell Labs Technol. J., vol. 1, pp. 41–59, Aug. 1996.
[21] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,”IEEE J. Select. Areas Commun., vol. 16, pp. 1451–1458, Oct. 1998.
[22] V. Tarokh, H. Jafarkhani, and A. Calderbank, “Space-time block codes for orthogonal designs,” IEEE Trans. Inform. Theory, vol. 49, pp. 1456–1467, July
1999.
[23] J. H. Winters, “Transmit diversity WCDMA system,” Nokia Research Center,
Tech. Rep., 1998.
[24] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “VBLAST: An architecture for realizing very high date rates, over the richscattering wireless channel,” in Proc. ISSSE-98, Sept. 1998.
[25] L. J. Cimini and J. C.-I. C. Jr., “Advanced cellular internet service,” IEEE Commun. Mag., vol. 36, pp. 150–159, Oct. 1998.
[26] B. Hochwald and T. Marzetta, “Unitary space-time modulation for multipleantenna communications in Rayleigh flat-fading,” IEEE Trans. Inform. Theory, vol. 46, pp. 543–564, Mar. 2000.
[27] S. Alamouti, V. Tarokh, and P. Poon, “Trellis coded modulation and transmit diversity: Design criteria and performance evaluation,” in Proc. IEEE ICUPC’98, Oct. 1998, pp. 703–707.
[28] D. Agrawal, V. Tarokh, A. Naguib, and N. Seshadri, “Space-time coded OFDM
for high date-rate wireless communication over wideband channels,” in Proc.
IEEE VTC’98, May 1998, pp. 2232–2236.
[29] K. F. Lee and D. B. Williams, “Space-frequency transmitter diversity technique for OFDM systems,” in Proc. IEEE GLOBECOM’00, Nov. 2000, pp. 1473–1477.
[30] B. Lu and X. Wang, “Space-time code design in OFDM systems,” in Proc. IEEE GLOBECOM’00, Nov. 2000, pp. 1000–1004.
[31] T. S. Rappaport, Wireless Communications: Principles and Practice. NJ:
Prentice-Hall, 2002.
[32] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a
fading environment when using multiple antennas,” Wireless Personal Communications, vol. 6, pp. 1778–1782, Mar. 1998.
[33] I. E. Telatar, “Capacity of multi-antenna gaussian channels,” European Trans. on Telcom., vol. 10, pp. 1778–1782, Nov./Dec. 1999.
[34] T. Marzetta and B. Hochwald, “Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading,” IEEE Trans. Inform. Theory, vol. 45, pp. 139–157, Jan. 1999.
[35] L. Zheng and D. N. C. Tse, “Communication on the Grassmann manifold: a
geometric approach to the noncoherent multiple-antenna channel,” IEEE Trans.
Inform. Theory, vol. 48, pp. 359–383, Feb. 2002.
[36] J. G. Proakis, Digital Communications. McGraw-Hall, 2000.
[37] B. Vecetic and J. H. Yuan, Space-Time Coding. John Wiley & Sons, 2003.
[38] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications. Cambridge University Press, 2003.
[39] Y. Gong and K. B. Letaief, “Performance evaluation and analysis pd space-time coding in unequalized multipath fading links,” IEEE Trans. Commun., vol. 48, pp. 1778–1782, Nov. 2000.
[40] S. H. Jamali and T. Le-Ngoc, Coded Modulation Techniques for Fading Channels. Boston: MA: Kluwer, 1994.
[41] S. Siwamogsatam and M. Fitz, “Improved high rate space-time trellis codes via orthogonality and set partitioning,” in Proc. IEEE WCNC’02, Mar. 2002, pp. 17–21.
[42] ——, “Improved high rate space-time TCM via concatenation of expanded orthogonal block codes and MTCM,” in Proc. IEEE ICC’02, New York, Apr. 2002.
[43] H. Jafarkhani and N. Seshadri, “Super-orthogonal space-time trellis codes,”IEEE Trans. Inform. Theory, vol. 49, pp. 937–950, Apr. 2003.
[44] X. B. Liang and X. G. Xia, “Unitary signal constellations for differential space-time modulation with two transmit antennas: parametric codes, optimal designs, and bounds,” IEEE Trans. Inform. Theory, vol. 48, pp. 2291–2322, Aug. 2002.
[45] B. Hassibi and B. M. Hochwald, “How much training is needed in multipleantenna wireless links?” IEEE Trans. Inform. Theory, vol. 49, pp. 951–963, Apr. 2003.
[46] J. K. Cavers, “An analysis of pilot symbol assisted modulation for Rayleigh fading channels,” IEEE Trans. Veh. Technol., vol. 40, pp. 686–693, Nov. 1991.
[47] G. Ungerboeck, “Channel coding with multilevel/phase signal,” IEEE Trans. Inform. Theory, vol. 28, pp. 55–66, Jan. 1982.
[48] D. Raphaeli, “Noncoherent coded modulation,” IEEE Trans. Commun., vol. 44, pp. 172–183, Feb. 1996.
[49] G. Colavolpe and R. Raheli, “Noncoherent sequence detection,” IEEE Trans. Commun., vol. 47, pp. 1376–1385, Sept. 1999.
[50] R. Y. Wei and Y. L. Wu, “On trellis coded noncoherent space-time modulation,” IEEE Trans. Wireless Commun., to be published.
[51] H. E. Gamal and A. R. H. Jr., “On the design of algebraic space-time codes for mimo block-fading channels,” IEEE Trans. Inform. Theory, vol. 49, pp. 151–163, Jan. 2003.
[52] W. Jakes, Microwave Mobile Communications. NJ: IEEE Press, 1994.
[53] G. D. Forney, Concatenated codes. Cambridge, MA: MIT Press, 1966.
[54] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. 28, pp. 55–66, Jan. 1982.
[55] E. Zehavi, “8-PSK trellis codes for a rayleigh channel,” IEEE Trans. Inform. Theory, vol. 40, pp. 873–884, May 1992.
[56] X.Li and J. Ritcey, “Bit-interleaved coded modulation with iterative decoding,” in Proc. IEEE ICC’99, June 1999, pp. 858–862.
[57] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE Trans. Inform. Theory, vol. 44, pp. 927–946, May 1998.
[58] P. Robertson and T. W¨orz, “Bandwidth-efficient turbo trellis coded modulation using punctured component codes,” IEEE J. Select. Areas Commun., vol. 16, pp. 206–218, Feb. 1998.
[59] J. L. Ramsey, “Realization of optimum interleavers,” IEEE Trans. Inform. Theory, vol. 16, pp. 338–345, May 1970.
[60] Y. L. Ueng, C. J. Yeh, and M. C. Lin, “On trellis codes with delay processor and signal mapper,” IEEE Trans. Commun., vol. 50, pp. 1906–1917, Jan. 2002.
[61] T. C. Ying, “Space-time coding with a delay processor in orthogonal frequency division multiplexing system,” Master’s thesis, National Central University, Chung-Li, Taiwan, 2004.
[62] C. W. Yang, “Soft-input/soft-output iterative decoding for space-time coding with a delay processor,” Master’s thesis, National Central University, Chung-Li, Taiwan, 2005.
[63] E. Akay and E. Ayanoglu, “Bit interleaved coded modulation with space time block codes for ofdm systems,” in Proc. IEEE VTC2004-Fall, Sept. 2004, pp. 2477–2481.
[64] S. Lin and D. J. C. Jr., Error Control Coding: Fundamentals and Applications. Prentice Hall, 2004.
[65] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-output decoding algorithms for continuous decoding of parallel concatenated convolutional codes,” in Proc. IEEE ICC’96, Dallas, Texas, June 1996, pp. 23–27.
[66] H. H. Ma and J. K. Wolf, “On tail-biting convolutional codes,” IEEE Trans. Commun., vol. 34, pp. 104–111, Feb. 1986.
[67] Y. Huang and J. A. Ritcey, “Tight ber bounds for iteratively decoded bitinterleaved space-time coded modulation,” IEEE Commun. Lett., vol. 8, pp.
153–155, Mar. 2004.
[68] J. B. Anderson and S. M. Hladik, “Tail-biting map decoders,” IEEE J. Select. Areas Commun., vol. 16, pp. 297–302, Feb. 1998.
[69] L. Hanzo, T. H. Liew, and B. L. Yeap, Turbo coding, turbo equalization and
space-time coding for transmission over fading channels. John Wiley, 2002.
[70] Z. Sun and T. T. Tjhung, “On performance analysis and design criteria for trellis coded differential unitary space-time modulation,” in Proc. IEEE Int. Conf. on Communications (ICC’03), May 2003, pp. 3477–3481.
[71] M. Tao and R. S. Cheng, “Trellis-coded differential unitary space-time modulation over flat fading channels,” IEEE Trans. Commun., vol. 51, pp. 587–596, Apr. 2003.
[72] Z. Sun and T. T. Tjhung, “Multiple-trellis-coded unitary space-time modulation in Rayleigh flat fading,” IEEE Trans. Wireless Commun., vol. 3, pp. 2335–2344, Nov. 2004.
[73] M. Borgmann and H. B¨olcskei, “Noncoherent space-frequency coded MIMOOFDM,”IEEE J. Select. Areas Commun., vol. 23, pp. 1–12, Sept. 2005.
[74] J. Giese and M. Skoglund, “Space-time constellations for unknown frequencyselective channels,” in Proc. IEEE ICC’03, June 2003, pp. 2583–2587.
指導教授 林銀議、魏瑞益
(Yin-Yi Lin、Reuy-Yi Wei)
審核日期 2007-1-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明