博碩士論文 91222009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.137.178.122
姓名 邱聞鋒(Wen-Feng Chiu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 以電泳法對奈米碳管進行剪裁後的長度篩選及應用
(Length Selection and Application of Carbon Nanotubes by Dielectrophoresis)
相關論文
★ 以化學製程製備奈米級二氧化鈦並研究其親水性及測試其除霧效果★ 以原子力顯微鏡於砷化鎵與氮化鎵表面進行局部氧化微影技術之研究
★ 鈀/鎢(111)和鈀/鉬/鎢(111)表面的可逆皺/平相變之研究★ 鎢(111)表面上的皺/平相變之研究
★ 矽奈米線場效應元件低頻雜訊量測與分析★ 以光學顯微鏡及原子力顯微鏡於大氣中觀測及操控奈米碳管之研究
★ 新型氮化鎵蕭特基二極體之製作與特性分析★ 太陽能轉子的製作與探討
★ 太陽能轉子的模擬分析與實驗之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 奈米碳管自1991年被發現後,由於其具許多特殊的性質,特別是在結構的尺度上及電子的傳遞特性,使其成一新興的奈米材料。其它,如高抗拉強度、高熱傳導率及高承受電流強度等,使得奈米碳管在應用的領域上更加寬廣。然而奈米的結構尺度也限制碳管的實際發展,因為目前能夠操作奈米碳管的工具,僅僅只有原子力顯微鏡而已。因此在應用奈米碳管前,要如何克服操作上所遭遇的困難,就成為相當值得研究的課題。
在本文裡,將利用類似生物實驗中,常用來分離不同蛋白質的電泳技術,對不同長度的奈米碳管,進行長度篩選的研究。利用改變電泳實驗中,所施加的外加偏壓類型(直流及交流偏壓)及順序,觀察不同長度的奈米碳管,在實驗中的移動情形,並發現到長度較長的奈米碳管,在實驗中的移動速度要比較短的碳管快。
我們也利用了電泳實驗中,奈米碳管會向電場強度較強的方向 (電極)做移動的特性,將奈米碳管跨接在電極的兩端之間,並以控制電泳實驗中的碳管濃度,改變電極之間的碳管數量。最後,透過量測奈米碳管間的電子傳遞信號,可應用在以奈米碳管製作電子元件方面的研究。在我們的研究中,已成功的由電極兩端,量測到通過碳管的電流訊號,完成以碳管製作氣體偵測器的初步工作。
在以碳管製作場效應電晶體的方面,則是觀察到當閘極偏壓改變時,電晶體的源極與集極之間的電流量(即流經碳管之間的電流),會受到閘極與源極間電場的影響而有所改變,這也表現出了場效應電晶體的基本工作方式。
上述利用電泳的方式,在操控奈米碳管方面及其相關的運用,顯現出了相當有效的結果,而電泳的實驗裝置與成本則是遠小於其它的操控工具。因此,在操控奈米尺度的材料上,電泳將成為一有效並且方便的工具。
摘要(英) After being found in 1991, the carbon nanotube becomes a rising nanomaterial because of its many special properties, in particular, the dimension of its structure and the conductivity of electrons. Other properties, such as the high tension, heat conductivity, and electric current tolerance broaden the applications of the carbon nanotube. However, the naronic structure limits the advance of the applications of the carbonate nanotube, since so far the atomic force microscope is the only tool to control the carbon nanotube. Therefore, before talking about the applications, to overcome the difficulties in controlling the carbon nanotube is a worthwhile subject.
In this thesis, we will use the electrophoresis, which is usually used to separate proteins in biological experiments, to bolt the carbon nanotubes of different length. By changing the bias (with alternative or direct current) applied to the carbon nanotubes and its order, we observe nanotubes of different length and find that the longer nanotubes have higher velocity than those of short length.
We impose the character of nanotubes’’ movement to higher electric field to connect the electrodes with the nanotubes. Then we change the number of tubes between electrodes by tuning the concentration of carbon nanotube in the electrophoresis experiments. Subsequnetly, through measuring the electric signal between nanotubes, the system can be used to design electronic devices. In our work, the electric signal flowed through the nanotubes is detected successfully and the preparing work of producing the gaseous sensor made of nanotubes is done.
In the aspect of producing the field effect transistor made of carbon nanotubes, we observe that the change of current between the source and the drain depends on the gate voltage. This implies the fundamental operation of the field effect transistor.
The above method using electrophoresis shows sufficient result in controlling the carbon nanotube and the related applications. The cost of the experimental set of electrophoresis is much lower than other manipulative tools, consequently, electrophoresis will be an efficient and convenient technique to control nanomaterials.
關鍵字(中) ★ 介電泳
★ 電泳
★ 奈米碳管
關鍵字(英) ★ carbon nanotubes
★ electrophoresis
★ dielectrophoresis
論文目次 目錄
第一章 簡介 1
第二章 研究背景及原理說明 5
2.1奈米碳管的成長方法.........................5
2.1.1電弧放電法.............................6
2.1.2 雷射激發法............................7
2.1.3 化學氣相沉積法........................8
2.2 利用超音波剪裁碳管的原理.................10
2.2.1 超音波空泡形成的原理.................10
2.2.2 超音波空泡的成長及破壞機制........... 12
2.2.3 利用超音波的聲波空泡剪裁奈米碳管..... 14
2.3 電泳實驗的原理...........................15
2.3.1 利用電泳操控奈米碳管的研究現況....... 15
2.3.2 電泳的作用原理....................... 16
2.3.3 利用電泳篩選奈米碳管的長度.........19
2.4 奈米碳管的應用........................... 21
第三章 實驗流程與裝置 24
3.1 剪裁奈米碳管...........................24
3.2 電泳實驗.................................25
3.2.1 調控偏壓類型的實驗...................26
(a) 直流偏壓...........................26
(b) 交流偏壓...........................27
3.2.2 篩選奈米碳管的長度...................27
3.3 奈米碳管的電性量測.......................29
第四章 實驗結果與討論 31
4.1 剪裁奈米碳管.............................31
4.2電泳實驗..................................36
4.2.1 直流電泳與交流電泳...................37
(a) 直流電泳實驗.......................37
(b) 交流電泳實驗.......................39
4.2.2奈米碳管長度的篩選結果................41
(a) 調控交流電壓的作用時間.............42
(b) 調控交流電壓值.....................48
4.3 奈米碳管的電性量測.......................51
第五章 結論 59
參考書目.........................................62
附錄一 超音波震盪池功率的比較....................65
附錄二 各種保存溶液中的奈米碳管分佈情形..........67
附錄三 以油滴包覆奈米碳管的篩長度................71
附錄四 利用電泳的方式以奈米碳管製作場效應電晶體..73
參考文獻 [1] S. Iijima, Nature (London) 354, 56-58 (1991).
[2] S. Iijima, and T. Ichihashi, Nature (London) 363, 603 (1993).
[3] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature (London) 363, 605 (1993).
[4] M. S. Dresselhaus, and R. Saito, Phys. Rev. B, 45, 6234 (1992).
[5] J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett., 68, 631-634 (1992).
[6] N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett., 68, 1579-1581 (1992).
[7] M.S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon, 33, 883-891 (1995).
[8] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York 1996).
[9] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature (London), 391, 59-62 (1998).
[10] T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature (London), 391, 62-64 (1998).
[11] K. Yamamoto, S. Akita and Y. Nakayama, Jpn. J. Appl. Phys. 35, L917-L918 (1996).
[12] K. Yamamoto, S. Akita and Y. Nakayama, J. Phys. D, 31, L34-L36 (1998).
[13] X. Q. Chen, T. Saito, H. Yamada and K. Matsushige, Appl. Phys. Lett., 78, 3714-3716 (2001).
[14] W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, N. S. Lee and J. M. Kim, Appl. Phys. Lett., 78, 1547-1549 (2001).
[15] L. A. Nagahara, I. Amlani, J. Lewenstein and R. K. Tsui, Appl. Phys. Lett., 80, 20, 3826-3828 (2002).
[16] S. K. Doorn, R. E. Fields, H. Hu, M. A. Hamon,R. C. Haddon, J. P. Selegue and V. Majidi, J. AM. CHEM. SOC. 9, 124, 3169-3174 (2002).
[17] R. Krupke, F. Hennrich, H. B. Weber, D. Beckmann, O. Hampe, S. Malick, M. M. Kappes and H. V. Lohneysen, Appl. Phys. A, 76, 397–400 (2003).
[18] R. Krupke, F. Hennrich, H. Lohneysen and M. M. Kappes, SCIENCE, 301, 344-347 (2003).
[19] J. Suehiro, G. Zhou and M. Hara, J. Phys. D, 36, L109–L114 (2003)
[20] J. Chem. Educ., 75, p3, (1998)
[21] Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E. Chemical Physics Letters 243, (1-2), 49-54 (1995).
[22] C. D. Ohl, T. Kurz, R. Geisler, O. Lindau and W. Lauterborn, Phil. Trans. R. Soc. Lond: A 357, 269-294 (1999).
[23] S. Majumdar, P. S. Kumar and A. B. Pandit, Ultrason. Sonochem. 5, 113-118 (1998).
[24] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Secince 280, 1253-1256 (1998).
[25] published in Nova Acta Regiae Societatis Scientiarum Upsaliensis, Ser. IV, Vol. 7, No. 4.
[26] Herbert A. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge, UK, 1978.
[27] S. W. Lee, D. S. Lee, H. Y. Yu, E. E. B. Campbell and Y. W. Park, Appl. Phys. A, 78, 283–286 (2004).
[28] T.B. Jones, Electromechanics of Particles. New York: Cambridge University Press, 1995.
[29] T. B. Jones, IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, Nov/Dec, 33-42 (2003)
[30] Sander J. Tans, Alwin R. M. Verschueren and Cees Dekker, Nature, 393, 49-52 (1998).
[31] Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).
[32]Collins, P., Bradley, K., Ishigami, M. & Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000).
[33] Junya Suehiro1, Guangbin Zhou and Masanori Hara, J. Phys. D: Appl. Phys. 36, L109–L114 (2003).
[34] The AP-grade product consists of prepared bundles of single-walled carbon nanotubes, with 10-200 individual nanotubes per bundle. The average diameter of the nanotubes is 1.3nm, with almost all tubes falling within the diameter range of 1.2-1.5nm. The purity of the AP-grade products ranges from 50% to 70% by volume. Major impurities are carbon nanospheres and carbon-encapsulated catalyst nanoparticles(Ni,Y).
[35] The Au electrodes produced by electron beam lithography is fabricated by Zhi-Lian Zhang, National Chiao Tung University.
[36] J. Liu, M. J. Casavant, M. Cox, D. A. Walters, P. Boul, W. Lu, A. J. Rimberg, K. A. Smith, D. T. Colbert, and R. E. Smalley, Chemical Physics Letters 303, 125-129 (1999).
[37] K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov, J. Phys. Chem. B, 104 No.38 (2000)
[38] H. Yanagi, E. Sawada, A. Manivannan, and L. A. Nagahara, Appl. Phys. Lett., Vol 78, No. 10, 1355-1357 (2001).
[39] T. G. Mason, and J. Bibette, Phys. Rev. Lett., 77, 3481 (1996)
指導教授 粘正勳(Cheng-Hsun Nien) 審核日期 2004-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明