博碩士論文 91246004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.145.36.137
姓名 陳昇暉(Sheng-Hui Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 次奈米窄帶濾光片的設計與製程和均勻性之關聯的探討
(RESEARCH OF DEPENDENCE OF THE UNIFORMITY ON THE DESIGN AND FABRICATION OF SUB-NANOMETER NARROW BANDPASS FILTERS)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 次奈米窄帶濾光片是一種非常精密且困難的薄膜技術,而其一項很重要的應用是光通訊用的高密度波長多工分工器(DWDM)。在實際的製作上,濾光片的均勻性是一項非常重要的課題。
窄帶濾光片的設計概念是基於Fabry-Perot干涉儀的原理,我們推導了全介質窄帶濾光片的理論並分析了設計參數與均勻性之關聯。基本上,多腔式窄帶濾光片的均勻性主要與空間層的設計有關。如果在設計時,每一個單腔都用相同的空間層設計,則濾光片的光譜將不隨著薄膜厚度均勻性而變化,可以得到好的光譜曲線。另外,如果採用較厚且折射率較低的材料或是厚度均勻性較好的材料來設計空間層,則可以得到比較好的中心波長均勻性。
除了採用好的設計可以得到較好的均勻性,薄膜材料在厚度均勻性也扮演很重要的關鍵。在這方面,我們採用離子蝕刻法來調整薄膜材料的厚度分佈。薄膜材料的厚度均勻性和電子槍蒸鍍薄膜厚度的分佈與離子源蝕刻薄膜厚度的分佈有關。藉由調整離子源特性參數,如離子束電壓、離子束電流及加速電壓可以將薄膜厚度的均勻性調整到最佳狀態。
離子蝕刻法可以調整薄膜厚度的均勻性,但問題是DWDM要求的精密度非常高,誤差須小於萬分之ㄧ,因此我們提出STF法來解決這個問題。不同於以往利用單層薄膜來量測厚度的均勻性,我們採用單腔窄帶濾光片以量測其中心波長來分析薄膜厚度的均勻性,其精密度可達10-5。
最後,我們利用以上幾項技術來製作DWDM。在沒有任何改良前,只有監控點光譜是好的,可用面積幾乎是零。採用空間層的設計後,整個基板的光譜都是好的,但考慮中心波長後,可用面積只有10公分基板的4.4%,單一通道可用面積為185 mm2佔2.3%。再加上離子蝕刻法及STF法,則50 mm直徑的均勻性可達+/-0.003%,而20 mm直徑的均勻性可達+/-0.0006%。單一通道可用面積為2300 mm2佔29%。
摘要(英) One of the important applications of sub-nanometer narrow band-pass filters is for dense wavelength division multiplexing, DWDM, in fiber optic communication systems. To fabricate a sub-nanometer narrow bandpass filter is a very tough coating technology. Particularly, uniformity is one of the most important issues in the fabrication of narrowband pass filters for DWDM.
The basic design of narrow bandpass filter is constructed on the Fabry-Perot interferometer. We have derived the theory of all-dielectric narrow bandpass filter for DWDM by multiple-beam interferometry. The dependence of the uniformity on the design of filters has been derived and analyzed theoretically. Essentially, the uniformity of multicavity DWDM filters is dependent on the spacer design of each cavity. First of all, using a same spacer layer in each cavity can insure the spectra are the same and independent on the tooling factors of materials. Besides, by using high order and good tooling factor of material or low index material to be a spacer will achieve the improvement of the uniformity.
Excepting the improvement of designing a DWDM filter with large tolerance of layer thickness to obtain the good uniformity, the tooling factors of the materials also play the important role. We provide a technology of ion etching effect to improve the uniformity of the tooling factors. Based on the analyses, the uniformity of filters has indeed been improved not only by the tooling factor of each material deposited by E-gun, but also by the etching profile of the ion source. The etching profile could be controlled by adjusting of the working parameters of the ion source, such as the ion-beam voltage, ion-beam current, and acceleration voltage. The parameters have to be controlled to an optimum condition to accommodate the deposition rates of the two coating materials.
The ion etching effect provides a method to modify and improve the tooling factors. However, it is a problem to measure the film thickness with very high precision. To verify the tooling factor to be less than 1/10,000, the accuracy of the thickness has to be at the order of sub-atom. We provide an analyzed method of shaping tooling factor (STF) to improve and enlarge the useful coating area. Instead of deposited a single layer, a single cavity of narrow bandpass filter was deposited and measured the central wavelengths to analyze the distribution of thickness. Using the method of STF the precision of tooling factors can be as good as less than 10-5.
Finally, we applied the technologies shown above including the spacer design rules, ion-etching technique, and shaping tooling factor to achieve the best result. Before any improvement, the useful coating area is limited at the monitoring point. By applying the spacer design rules, the useful coating areas cover 4.4% of the 10-cm substrate. Besides, the useful coating area for a single channel is about 185 mm2, 2.3% of the whole substrate. In addition, under the improvements of ion-etching technique and the shaping tooling factor, the uniformity of the DWDM filter was better than +/-0.003% over an area of 50 mm in diameter and +/-0.0006% over that of a 20 mm diameter. The useful coating area for a single channel exceeds 2300mm2, 29% of the whole substrate, which is twelve times of the area if only the design was improved.
關鍵字(中) ★ 次奈米窄帶濾光片
★ 高密度波長多工分工器
★ 均勻性
★ 離子輔助鍍膜
★ 薄膜設計
★ 離子蝕刻
關鍵字(英) ★ SUB-NANOMETER NARROW BANDPASS FILTER
★ Dense Wavelength Division Multiplexer (DWDM)
★ Uniformity
★ Thin-film Design
★ Ion Assisted Deposition (IAD)
★ Ion Etching
論文目次 摘 要 I
ABSTRACT III
TABLE OF CONTENTS VI
LIST OF FIGURES IX
LIST OF TABLES XIII
TABLE OF SYMBOL XIV
1. INTRODUCTION (簡介) 1
1.1 RESEARCH BACKGROUND 1
1.1.1. Development of DWDM Technologies 1
1.1.2. Multiplexers and Demultiplexers 2
1.2 RESEARCH GOAL AND METHODS 8
1.3 ORGANIZATION OF THE THESIS 9
BIBLIOGRAPHY 11
2. THEORY OF NARROW BANDPASS FILTERS (窄帶濾光片理論) 15
2.1 FABRY-PEROT NARROW BANDPASS FILTERS 15
2.2 ALL-DIELECTRIC NARROW BANDPASS FILTERS 20
2.3 MULTI-CAVITY NARROW BANDPASS FILTERS 22
BIBLIOGRAPHY 25
3. DESIGN OF SUB-NANOMETER NARROW BANDPASS FILTERS (次奈米窄帶濾光片設計) 26
3.1 REQUIREMENTS AND SPECIFICATIONS OF DWDM FILTERS 26
3.1.1. Definition of the optical properties 27
3.1.2. Specifications of DWDM filters 29
3.2 DEPENDENCE OF THE UNIFORMITY ON DESIGNS 30
3.2.1. Effect of Reflectors 33
3.2.2. Effect of Spacers 34
3.2.3. Analysis of the uniformity on Design 36
BIBLIOGRAPHY 39
4. FABRICATION OF SUB-NANOMETER NARROW BANDPASS FILTERS(次奈米窄帶濾光片製程) 42
4.1 FABRICATION EQUIPMENTS AND PROCESS FLOW 42
4.1.1. Experimental Equipments and Parameters 42
4.1.2. Process Flow 47
4.2 ADJUSTMENT OF THICKNESS UNIFORMITY 49
4.2.1. Etching effect of Ion beam 49
4.2.2. Distribution Controlling 51
4.2.3. Analysis of Ion Beam Parameters 55
4.3 ANALYSIS OF THICKNESS UNIFORMITY 59
4.3.1. Calculation of Tooling Factor 59
4.3.2. Shaping Tooling Factor (STF) 62
4.4 FABRICATION AND EXPERIMENTAL RESULTS 64
4.4.1. Fabrication of Sub-nanometer narrow bandpass filters 65
4.4.2. Uniformity Improvement 69
BIBLIOGRAPHY 74
5. CONCLUSIONS (結論) 76
5.1 TOPICS FOR FUTURE STUDIES 78
BIBLIOGRAPHY 80
APPENDIX 81
ITU Grid L-Band 81
ITU Grid C-Band 83
ITU Grid S-Band 85
參考文獻 1.1. http://www.cisco.com/univercd/cc/td/doc/product/mels/cm1500/dwdm/dwdm_ovr.htm
1.2. Andre Girard , et al., Guide to WDM Technology and Testing, 2nd Ed., Chap.2, Exfo Electro Optical Engineering, Quebec City, Canada, 2000, ISBN 1-55342-000-4.
1.3. Stamatios V. Kartalopoulos, Introduction to DWDM Technology, Chap 5, A John Wiley & Sons, Inc. IEEE Press, New York, USA, 2000, ISBN 0-7803-5399-4.
1.4. J.P. Laude, DWDM fundamentals, components, and applications, Chap 3, Artech House Inc., Norwood, MA, USA, 2002, ISBN 1-58053-177-6
1.5. Stamatios V. Kartalopoulos, DWDM Networks, Devices, and Technology, Chap 2, A John Wiley & Sons, Inc. IEEE Press, New York, USA, 2003, ISBN 0-471-26905-0.
1.6. F. Villa, A. Martinez, and L. E. Regalado, “Correction masks for thickness uniformity in large-area thin films,” Appl. Opt. Vol. 39, pp. 1602-1610, 2000.
1.7. H. A. Macleod, Thin-Film Optical Filters, 3rd Ed. 2001, Chap.11, Institute of Physics Publishing, Bristol and Philadelphia.
1.8. I. C. Stevenson, ”Optimizing Source Location for Control of Thickness Uniformity”, Soc. of Vacuum. Coater 41st Annual Technical Conf. Proc. 281-286, 1998.
1.9. H. A. Macleod and E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Optica Acta, Vol. 24, 907-930, 1977.
1.10. F. Q. Zhou, M. Zhou and J. J. Pan, “Optical coating computer simulation of narrow bandpass filters for DWDM”, OSA, Optical Interference Coatings Conference, June 7-12, P.WB2, 1998, Tucson, Arizona, USA.
1.11. D. Deakins and R. Ferguson, “Influence of the Substrate and Deposition Process on the Accuracy of Optical Monitoring”, Soc. of Vacuum. Coater 45th Annual Technical Conf. Proc. 256-260, 2002.
1.12. M. A. Scobey, W. J. Lekki and T. W. Geyer, “Filters create thermally stable, passive multiplexers,” Laser Focus World, pp. 111-116, March 1974.
1.13. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition”, Appl. Opt. Vol.34, 667-675, 1995.
1.14. A. Zoller, “Temperature stability of optical coatings produced by plasma and ion assisted evaporation process”, OSA, Optical Interference Coatings Conference, June 7-12, P.MA1, 1998, Tucson, Arizona, USA.
1.15. H. A. Macleod, “Tutorial on the design of telecommunication filters”, OSA, Optical Interference Coatings Conference, July 15-20, P.WC1, 2001, Banff, Alberta, Canada.
1.16. P. Baumeister, “WDW bandpass design based upon the microwave bandpass analogy”, OSA, Optical Interference Coatings Conference, July 15-20, P.WC2, 2001, Banff, Alberta, Canada.
1.17. A. V. Tikhonravov and M. K. Trubetskov, “Automated design and sensitivity analysis of wavelength-division multiplexing filters,” Appl. Opt. Vol. 41, pp. 3176-3182, 2002.
1.18. S. R. Mallinson, “Wavelength-selective filters for single-mode fiber WDM spectrum using Fabry-Perot interferometers,” Appl. Opt., Vol. 26, pp. 430-436, 1987.
1.19. J. Minowa and Y. Fuji, “Subnanometer bandwidth interference filter for optical filter communication system,” Appl. Opt. Vol. 27, pp. 1385-1396, 1988.
1.20. R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films Vol. 398, pp. 1-9, 2001.
2.1. 李正中, 薄膜光學與鍍膜技術, 第四版, 2004年8月,第8章, 藝軒出版社, 台北, (ISBN 957-616-699-1).
2.2. H. A. Macleod, Thin-Film Optical Filters, 3rd Ed. 2001, Chap.7, Institute of Physics Publishing, Bristol and Philadelphia.
2.3. J. S. Seeley, “Resolving power of multi-layer filter”, J. Opt. Soc. Am., 54, 342-346, 1964.
2.4. P. H. Berning, “Use of equivalent films in the design of infrared multilayer antireflection coatings”, J. Opt. Soc. Am., 52, 431-436, 1962.
3.1. F. Villa, A. Martinez, and L. E. Regalado, “Correction masks for thickness uniformity in large-area thin films,” Appl. Opt. Vol. 39, pp. 1602-1610, 2000.
3.2. H. A. Macleod, “Thin-Film Optical Filters”, 3rd Ed. 2001, Chap.11, Institute of Physics Publishing, Bristol and Philadelphia.
3.3. I. C. Stevenson, ”Optimizing Source Location for Control of Thickness Uniformity”, Soc. of Vacuum. Coater 41st Annual Technical Conf. Proc. 281-286, 1998.
3.4. H. A. Macleod and E. Pelletier, “Error compensation mechanisms in some thin-film monitoring systems,” Optica Acta, Vol. 24, 907-930, 1977.
3.5. F. Q. Zhou, M. Zhou and J. J. Pan, “Optical coating computer simulation of narrow bandpass filters for DWDM”, OSA, Optical Interference Coatings Conference, June 7-12, P.WB2, 1998, Tucson, Arizona, USA.
3.6. D. Deakins and R. Ferguson, “Influence of the Substrate and Deposition Process on the Accuracy of Optical Monitoring”, Soc. of Vacuum. Coater 45th Annual Technical Conf. Proc. 256-260, 2002.
3.7. M. A. Scobey, W. J. Lekki and T. W. Geyer, “Filters create thermally stable, passive multiplexers,” Laser Focus World, pp. 111-116, March 1974.
3.8. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition”, Appl. Opt. Vol.34, 667-675, 1995.
3.9. A. Zoller, “Temperature stability of optical coatings produced by plasma and ion assisted evaporation process”, OSA, Optical Interference Coatings Conference, June 7-12, P.MA1, 1998, Tucson, Arizona, USA.
3.10. Jin-Cherng Hsu, Cheng-Chung Lee, Chien-Chung Kuo, Sheng-Hui Chen, Jean-Yee Wu, Huang-Lu Chen, and Ching-Yi Wei, “Coating uniformity improvement for a dense-wavelength-division-multiplexing filter by use of the etching effect”, Apply Optics, 44, No. 20, pp. 4402-4407, 2005.
3.11. H. A. Macleod, “Tutorial on the design of telecommunication filters”, OSA, Optical Interference Coatings Conference, July 15-20, P.WC1, 2001, Banff, Alberta, Canada.
3.12. P. Baumeister, “WDW bandpass design based upon the microwave bandpass analogy”, OSA, Optical Interference Coatings Conference, July 15-20, P.WC2, 2001, Banff, Alberta, Canada.
3.13. A. V. Tikhonravov and M. K. Trubetskov, “Automated design and sensitivity analysis of wavelength-division multiplexing filters,” Appl. Opt. Vol. 41, pp. 3176-3182, 2002.
3.14. S. R. Mallinson, “Wavelength-selective filters for single-mode fiber WDM spectrum using Fabry-Perot interferometers,” Appl. Opt., Vol. 26, pp. 430-436, 1987.
3.15. J. Minowa and Y. Fuji, “Subnanometer bandwidth interference filter for optical filter communication system,” Appl. Opt. Vol. 27, pp. 1385-1396, 1988.
3.16. R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films Vol. 398, pp. 1-9, 2001.
3.17. Bellcore, “GR-2883-CORE, Generic Requirements for Fiber Optic Filters”, 1995, Bell Communications Research, Inc.
3.18. Bellcore, “GR-1221-CORE, Generic Reliability Assurance Requirements for Passive Optical Components”, 1995, Bell Communications Research, Inc.
3.19. International Telecommunications Union , Document number ITU-T G.692
3.20. H. A. Macleod, “Thin-Film Optical Filters”, 3rd Ed. 2001, Chap.7, Institute of Physics Publishing, Bristol and Philadelphia.
3.21. Jennifer D. T. Kruschwitz, “Bandwidth Reduction Technique for multilayer WDM Bandpass Filters”, Optics and Photonics News, Vol. 11, 1-2, 2000.
4.1. 李正中, 薄膜光學與鍍膜技術, 第四版, 2004年8月,第12章, 藝軒出版社, 台北, (ISBN 957-616-699-1).
4.2. Operation manual, NBPF-2, Optorun Co.
4.3. K. Postava and J. Pištora, “Thickness monitoring of optical filters for DWDM applications,” Opt. Express 11, 610–616 (2003).
4.4. E. B. Graper, “Distribution and apparent source geometry of electron-beam heated evaporation sources,” J. Vacuum Sci. Technol. 10, 100–103 (1973).
4.5. H. R. Kaufman and R. S. Robinson, Operation of Broad-Beam Sources (Fort Collins, 1987), p. 65.
4.6. V. N. Zhitomirsky, R. L. Boxman, and S. Goldsmith, “Plasma distribution and SnO2 coating deposition using a rectangular filtered vacuum arc plasma source,” Surf. Coat. Technol. 185, 1–11 (2004).
4.7. R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films Vol. 398, pp. 1-9, 2001.
4.8. Jennifer D. T. Kruschwitz, “Bandwidth Reduction Technique for multilayer WDM Bandpass Filters”, Optics and Photonics News, Vol. 11, 1-2, 2000.
5.1 D. Cushing, “ Bandpass Filter for 45 Degree Angle with Low Polarization Properties”, OSA, Optical Interference Coatings Conference, June 7-12, P.WB3, 1998, Tucson, Arizona, USA.
5.2 D. Cushing, “Thin Film Interference Filter for 45 degree of incidence side a Glass Prism with Extremely Low Polarization Dependence”, Soc. of Vacuum. Coater 43rd Annual Technical Conf. Proc. 252-257, 2000.
5.3 H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition”, Appl. Opt. Vol.34, 667-675, 1995.
5.4 S. H. Kim and C. K. Hwangbo “Derivation of the center-wavelength shift of narrow-bandpass filters under temperature change”, Optics Express, 12, 5634-5639, 2004.
指導教授 李正中(Cheng-Chung Lee) 審核日期 2006-3-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明