博碩士論文 91322048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:3.136.236.178
姓名 汪信寶(Hsin-Pao Wang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 日興土活化改質作為緩衝材料之回脹性質改善效應
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 依據歐洲核能總署(NEA)的統計資料,黏土緩衝材料與密封回填佔核廢料最終處置場全部經費(含選址作業)的14%~18%。高放射性廢料最終處置計畫所需的緩衝材料數量龐大,以我國核能研究所之初步概念設計推估,用過核燃料處置計畫所須之緩衝材料數量約達四萬立方公尺之多,因此各核能先進國家都傾向於在自己國家中尋找合適的黏土材料作為候選緩衝材料。國內早於民國七十四年起就對台東樟原日興土進行相關研究,由於日興土屬於鈣型蒙脫石,其回脹性質較國外鈉型蒙脫石遜色。本研究目的在於尋求可能的活化改良方法,藉以提昇日興土的回脹特性,以增加其作為緩衝材料的競爭優勢。本研究採用的活化改良方法包括物理方法、化學方法、熱處理法及離子交換法四大類
試驗結果顯示:(1)物理改良產物(乾篩及濕篩法)之最大回脹應變量不如原礦;(2)酸活化處理有助於提升日興土之比表面積;(3)熱處理溫度高於300℃後,日興土回脹行為已不具規則性;(4)添加Na2CO3改良方式可有效提升日興土之最大回脹應變量,且其回脹歷時曲線不同於原礦,屬於後期上升型;(5)NaCl改良雖可提升回脹量但處理程序繁瑣,不建議使用;(6)研究中,除以離子交換程序改良外,其餘改良方式雖可改變黏土礦物表面性質或礦物性質,或對其他工程性質(強度、吸附性)有所助益,然對回脹行為的影響有限。
摘要(英) According to the data of OECD/NEA,the cost of buffer material is 14%~18% of whole disposal program. The HLW disposal program needs enormous buffer material, so that every nuclear country prefers to use domestic bentonite as potential buffer material. Zhisin clay has been studied from 1985. Zhisin clay is Ca-bentonite and the swelling property is less than Na-bentonite. The objective of this study is aimed to search for possible activation methods to enhance the properties of buffer material, including physical modification, acid and base activation, thermal treatment, and cation-exchange method.
The experimental results of this research show(1)the swelling potential of Zhisin clay modified by physical modification (or篩分析)is less than raw material;(2)the BET surface of Zhisin clay activated by HCl is increased with the concentration of acid solution;(3)thermal treatment could decreased the swelling potential of Zhisin clay, particularly when thermal temperature over 300℃;(4)base activation could erode impurity in raw material;(5)the swelling potential of Na2CO3-activated Zhisin clay is significantly increasing. The time-swell curve of Na2CO3-activated Zhisin clay is different from raw material.;(6)in this study, cation-exchange method could most affected promotion to swelling potential. But others shifting method can only change surface property of raw material and have refund to other mechanical properties In conclusion, Na2CO3 activation method could meet the swelling function of buffer material.
關鍵字(中) ★ 緩衝材料
★ 最終處置
★ 回脹性質
★ 活化改良
關鍵字(英) ★ activation
★ swelling
★ buffer material
論文目次 目錄
摘要……………………………………………………….…………………….I
ABSTRACT…………………………………………………………………..II
目錄…………………………………………………………………………...III
圖目錄………………………………………………………….…………...VIII
表目錄……………………………………………………………….……....XII
第一章 緒論……………………………………………………………….…..1
1.1 緣起……………………………………………………………………..1
1.2 研究目的………………………………………………………………..3
1.3 研究範圍………………………………………………………………..4
第二章 文獻回顧…...….……………….………….…….……...…………….6
2.1 高放射性廢棄物最終處置場概念…….……………………………….6
2.1.1 處置場設計概念………………………………………………...6
2.1.2 近場環境……………………………………………...................8
2.1.3 緩衝材料………………………………………………………...8
2.1.3.1 緩衝材料預期功能............................................................9
2.2 黏土礦物基本特性..…………………………………………………..12
2.2.1 黏土礦物結晶構造…………………………………………….12
2.2.2 常見黏土礦物種類…………………………………………….13
2.2.2.1 蒙脫石……………………………………………...…...14
2.2.2.2 伊利石…………………………………………………..14
2.2.2.3 高嶺石…………………………………………………..14
2.2.3 黏土-水-電解質交互作用………...……………………………16
2.2.3.1 黏土-水-電解質系統……………………………………16
2.2.3.2 黏土礦物水合作用……………………………………..18
2.2.3.3 蒙脫石族礦物特性………………………………...…...20
2.2.3.4 台東樟原膨潤之產狀與應用現況……………………..22
2.3 黏土活化改良方法與機制……………………………………............24
2.3.1 黏土礦物分離純化…………………………………………….24
2.3.2 黏土礦物表面活化…………………………………………….25
2.3.3 黏土礦物離子交換…………………………………………….26
2.3.3.1 離子交換意義…………………………………………..26
2.3.3.2 影響離子交換因素……………………………………..29
2.3.3.3 離子交換遲滯性………………………………………..31
2.3.3.4 緩衝材料離子交換方法………………………………..33
2.3.4 黏土強度提昇………………………………………………….35
2.4 處置場近場環境分析………………………………………................36
2.4.1 衰變熱………………………………………………………….36
2.4.2 蒙脫石礦物的脫水與再水化作用…………………………….36
2.5 擴散雙層理論和模式原理…………………………………................37
2.5.1 電解質濃度及離子價數對電雙層厚度之影響……..………...39
2.6 回脹機制與回脹行為………………………………………................39
2.6.1 回脹機制……………………………………………………….40
2.6.1.1 晶格回脹………………………..………………………40
2.6.1.2 滲透回脹…………………………….………………….41
2.6.2 回脹行為………………………………………….……………42
第三章 研究計畫…………………………………………………….………45
3.1 試驗流程……………………………………………………………....45
3.2 試驗材料……………………………………………………….……...47
3.3 黏土活化改良方法…………………………………………………....47
3.3.1 物理改良方法………………………………………………….47
3.3.1.1 乾篩改良法……………………………………..............47
3.3.1.2 濕篩改良法……………………………………..............48
3.3.2 化學改良方法………………………………………….............48
3.3.2.1 酸活化改良法…………………………………………..48
3.3.2.2 鹼活化改良法…………………………………..............48
3.3.3 NaCl 改良法………….…………...…………………...............49
3.3.4 Na2CO3 改良法……….…………………...…………...............49
3.3.4.1 乾式球磨混合法………………………………..............49
3.3.4.2 乾式攪拌混合法………………………………..............49
3.3.4.3 濕式浸泡法……………………………………..............50
3.3.5 熱處理改良……………..……………………………………...50
3.4 改良試體模擬近場環境試驗……………………..…………………..50
3.4.1 衰變熱效應…………………………………..………………...50
3.5 回脹試驗……………………………………………….…...................50
3.5.1 回脹試驗方法選擇…………………………………………….51
3.5.2 回脹試體製作………………………………………………….51
3.5.3 單向度回脹試驗……………………………………………….53
3.6 基本土壤力學性質分析………………………………………............55
3.6.1 自然含水量…………………………………………………….55
3.6.2 比重試驗……………………………………………………….56
3.6.3 粒徑分析試驗………………………………………………….56
3.6.4 阿太堡限度試驗……………………………………………….56
3.6.5 活性(Activity) ………………………………………….............56
3.7 材料性質分析…………………………………………………............56
3.7.1 化學成分分析………………………………………………….56
3.7.2 X光繞射分析儀………………...…...…...…………………….57
3.7.3 熱重分析(TGA) ……………………………………………….57
3.7.4 BET比表面積測定…………………...……...………………...58
3.7.5 土壤pH反應……..…………………………………………….59
3.7.6 土壤Eh反應……………………………………………............59
第四章 試驗結果與分析…………………………………………………….60
4.1 日興土原礦性質分析…………………………………………............60
4.1.1 基本性質試驗分析…………………………………………….60
4.1.2 化學成分分析……………………………………….................61
4.1.3 XRD分析………...……...……………………………………..62
4.1.4 熱重分析(TGA)………………………………………………..62
4.1.5 日興土原礦之自由回脹……………………………………….64
4.2 黏土材料回脹行為……………………………………………............65
4.3 物理改良法………………………………..…………………………..70
4.3.1 物理改良(乾篩及濕篩法)之自由回脹……………………….70
4.3.2 試驗材料性質分析…………………………………………….73
4.3.2.1 XRD分析………………...……………………………..73
4.3.3 乾濕循環對自由回脹的影響………………………………….74
4.4 酸活化改良法………………………………………………................76
4.4.1 酸活化改良法之自由回脹…………………………………….76
4.4.2 試驗材料性質分析………..…………………………………...80
4.4.2.1 XRD分析………………......………………….………..80
4.4.2.2 熱重分析(TGA)………………………………………..80
4.5 鹼活化改良法……………………...………………………………….81
4.5.1 鹼活化改良法之自由回脹…………………………………….82
4.5.2 試驗材料性質分析…………………………………………….85
4.5.2.1 XRD分析………………...…………………...………...85
4.5.2.2 熱重分析(TGA)………………………………………..85
4.5.2.3 BET比表面積測定化學活化對日興土表面性質影響..86
4.6 熱處理改良法…………………………………………………............87
4.6.1 熱處理改良法之自由回脹…………………………………….87
4.6.2 試驗材料性質分析…………………………………………….92
4.6.2.1 XRD分析…………...……...…………………………...92
4.7 NaCl改良法…...…………………...………………………….............92
4.7.1 NaCl改良法之自由回脹…………...…………...……………..93
4.7.2 試驗材料性質分析…………………………………………….95
4.7.2.1 XRD分析…………………..…………………………...95
4.8 Na2CO3改良法…...…………………………………………................95
4.8.1 不同改良程序之最大回脹應變量…………………………….96
4.8.2 Na2CO3改良特性………………………...…………………….99
4.8.2.1 回脹歷時曲線型態……………………………..............99
4.8.2.2 XRD分析………………...…...……………….............108
4.8.2.3 熱重分析(TGA)………………………………............108
4.8.2.4 pH量測結果分析………………......………….............111
4.8.2.5 陳化時間(Aging Time)效應對改良成效之影響….......111
4.8.2.6 Na2CO3溶液系統對日興土離子交換性質影響……...114
4.9 改良日興土在衰變熱狀態下之自由回脹…………………………..118
第五章 結論與建議………………………………………………………...124
5.1 結論…………………………………………………………………..124
5.2 建議…………………………………………………………………..125
參考文獻…………………………………………………………………….127
參考文獻 參考文獻
台灣電力公司,我國用過核燃料長程處置:全程工作規劃書(2000版) ,(2000)。
陳文泉、黃偉慶「深地層處置緩衝材料熱-水力機械-化學耦合作用探討」,核研季刊第42期,第38-48頁,(2002)。
莊文壽、洪錦雄、董家寶「深地層處置技術之研究」,核研季刊第37期,第44-54頁,(2000)。
蔡敏行,襯裏土對放射性待處理物料長期貯存效果之研究,委託機關:放射性待處理物料管理處,執行機關:國立成功大學礦油系,(1985)。
林哲毅,「從緩衝材料觀點研究放射核種在膨潤土中的吸附與擴散行為」,國立清華大學原子科學系碩士論文,新竹,(1996)。
陳志霖,「放射性廢料處置場緩衝材料之力學性質」,國立中央大學土木工程研究所碩士論文,中壢,(2000)。
劉俊志,「膨潤土與花崗岩碎石混合材料之熱傳導係數」,國立中央大學土木工程研究所碩士論文,中壢,(2000)。
卓智聰,「放射性廢料處置場緩衝材料之物理特性及配方研究」,國立中央大學土木工程研究所碩士論文,中壢,(1998)。
王欣婷,「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,國立中央大學土木工程研究所碩士論文,中壢,(2003)。
黃慈君,「溫度及鹽水濃度對壓實膨潤土回脹性質之影響」,國立中央大學土木工程研究所碩士論文,中壢 (2003)。
王澤明、周鳳歧、馬小凡、邱立民,「膨潤土的提純及應用研究」,非金屬礦物,第二十二卷,第三期,第19-20頁,大陸,(1999)。
核能研究所,「我國用過核燃料深層地質處置概念討論會」,行政院原子能委員會核能研究所,(2002)。
放射性物料管理處,「核燃料與用過核燃料基礎課程」,用過核燃料中期貯存訓練教材,板橋,(1991)。
放射性物料管理局網站,http://fcma.aec.gov.tw,(2004)
黃偉慶、葉佐仁、盧俊鼎,「放射性廢棄物處置場回填材料之工程性質」,核子科學,第三十八卷,第二期,第107-118頁,(2001)。
許俊男,「在模擬地下水中省產黏土礦物對鍶銫核種的吸附機制研究1/1」,放射性物料管理局八十五年度專題研究計劃期末報告,(1996)。
劉慧玲,「台東樟原黏土資源之有機黏土備製研究」,國立成功大學資源工程學系碩士論文,台南,(2001)。
王守明,「膨礦土及其加工技術」,礦產保護與利用,第二期,第21-28頁,大陸,(1992)。
歸鳳鐵、陳強、侯海山,「高純鈉基膨潤土備製新工藝研究」,非金屬礦,第二十二卷,第四期,第36-37頁,大陸,(1999)。
萬鑫森,基礎土壤物理學,國立編譯館,(1987)。
萬鑫森,基礎土壤物理學,茂昌圖書,(1991)。
張郇生,「麥飯石探微-兼論膨潤石外型、特徵及用途」,地質,第十九卷,第一期,第68-88頁,(1999)。
程道腴,陶瓷學概論,徐氏基金會,(1982)。
趙杏媛、張有瑜,黏土礦物與黏土礦物分析,海洋出版社,北京,(1990)。
單信瑜,「放射性廢料處置場緩回填材料物性及化性之介紹」,放射性廢料最終處置核種遷移與水文地質相關技術訓練研習會(第二期),(1997)。
王明光,土壤環境礦物學,藝軒圖書出版社,(2000)。
洪昆煌、王明光、陳尊賢、賴朝明、何聖賓、李達源,土壤化學,國立編譯館,(1996)。
萬獻銘,「台灣樟原及瑞美滑潤石黏土之礦物學特性」,礦冶,第68-79頁,(1976)。
翁豐源、范增源,「鑽井泥漿之現在及未來」,礦業技術,第十二卷,第一期,第20-24頁,(1974)。
翁豐源,「台灣油氣生產層之岩性與鑽井泥漿之關係研究」,礦冶,第十五卷,第一期,第29-40頁,(1971)。
鄭近南、葉向陽,「含土壤與皂土之泥漿壕溝所作之截水牆」,現代營建,第三卷,第十二期,第48-58頁,(1982)。
祝錫智、許世傑,「皂土-水泥漿固化後之工程性質研究」,中國土木水利工程學刊,第十六卷,第四期,第48-58頁,(1990)。
牛炳昆,「膨潤土提純研究」,化工礦物與加工,第八期,第6-8頁,(1999)。
林祐聖,「顆粒加強複合土壤之回脹行為」,國立中央大學土木工程學系碩士論文,中壢,(1994)。
金永斌、曾哲鳴、林李少華、郭晉榮,「台灣西南部泥岩坡地表面防治穩定處理(二)」,行政院國家科學委員會防災科技研究報告74-10號,(1985)。
任磊夫,黏土礦物與黏土岩,地質出版社,大陸,(1992)。
莊文淵,土壤材料之核種遷移吸附特性試驗與研究,核能研究所內部報告,INER-T2443,第3-1頁,(1998)。
田永銘、李德河,「黏土質材料的吸水回脹速率」,中國土木水利工程學刊,第六卷,第二期,第223-232頁,(1994)。
田永銘,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(Ι)」,行政院原子能委員會委託研究計畫研究報告,國立中央大學土木工程學系,(2001)。
沈茂松,實用土壤力學實驗,增訂第七版,文笙書局,(1988)。
李德河、許琦、周墩堅,「泥岩剪力強度特性研究」,行政院國家科學委員會防災科技研究報告77-70號,(1989)。
陳文泉,國立中央大學土木工程系材料組博士班資格考試會議記錄,(2003)。
汪信寶、陳文泉、黃偉慶,「日興土活化改質方法對其回脹性質之效應」,第十屆大地工程學術研究研討會論文集(二),(2003)。
A. A. Basma et al., (1994). “Effect of methods of drying on the engineering behavior of clays.” Applied Clay Science, Vol. 9, pp. 151-164.
Al-Homoud, A. S., Basma, A. A., Husein Malkawi, I. H., Al Bashabsheh, M.A., (1995). “Cyclic Swelling Behavior of Clays.” Journal of Geotechnical Engineering, Vol. 121, No. 7, pp. 562~565.
ASTM, (1996). “Designation D4546-96: Standard Test Methods for One-Dimensional Swell or Settlement Potential of Cohesive.” Annual Book of ASTM Standars , Vol. 04. 08, ASTM, pp.1-7.
Aylmore, L.A.G., J.P. Quirk, and I. D., Sills, (1969). “Effects of Heating on the Swelling of Clay Minerals.” Highway Res. Board Special Rep. 103, pp. 31-38.
Bohn, H. L., McNeal, B. L., and O’Connor, G. A. (1985). Soil Chemistry, 2nd ed., John Wiley & Sons, New York.
Charles, M.E., (1988). Compositional Analysis by Thermogravimetry American Society Testing and Materials, pp. 272-289.
Cho, W. J., Lee J. O., and Kang C. H. (2000). “Influence of temperature elevation on the sealing performance of a potential buffer material for a high-level radioactive waste repository.” Annals of Nuclear Energy, Vol. 27, pp. 1271-1284.
David Savage, Andrew Lind and Randolph C. Arthur, “Review of the properties and uses of bentonite as a buffer and backfill material.” SKB Report 99:9, May 1999.
Donald Towse, “Geologic factors in nuclear waste disposal.” UCRL-52522, July 1978.
Egloffstein T. (1996). “Bentonite as sealing material in geosynthetic clay liners.” Geosythetics: Applications, Design and Construction, pp. 799-806.
Fripiat, J. J., Cloos, P., and Ponclelet, A., (1965). Comparaison entre les proprietes d’echange de la montmorillonite et d’une resine vis-à-vis des cations alcalines et alcalineo-terreux, I., Reversibilite des processus,” Bull. Soc. Chim. Fr., pp. 134-137.
Grim,R.E., (1959). “Physico-Chemical properties of soils:clay minerals.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 85, NO. SM2, pp. 1-17.
IAEA, (1985). Deep Underground Disposal of Radioactive Waste:Near-Field Effects, Technical Reports Series NO. 251.
ISRM Commission on Swelling Rocks and Commission on Testing Methods, (1999). ”Suggested Methods for Laboratory Testing of Swelling Rocks”, International Journal of Rock Mechanics and Mining Sciences 36, pp. 291-306.
Jazairi, B. E. and Illston, J. M. (1980). “The hydration of cement paste using the semi-isothermal method of derivative thermogravimetry.” Cement and Concrete Research, Vol. 10, pp. 361-366.
K. H. Tan, B. F. Hajek, and I. Barshad, (1986). “Thermal Analysis Techniques.” Method of Soil Analysis,Vol. 1, pp. 151-181.
K. J. Schneider, L. T. Lake and D. J. Silviera, “Survey of waste package designs for disposal of high-level waste/spent fuel in selected foreign countries”, PNL-6981, September 1989.
Komine, H., and Ogata, N., (1994). “Experimental study on swelling characteristics of compacted bentonite.” Canadian Geotechnical Journal, Vol. 31, pp. 478-490.
Komine, H., and Ogata, N., (1999). “A trial design of buffer materials from the viewpoint of self-sealing.” Proceeding of Radioactive Waste Management and Environmental Remediation, ASME.
Lambe, T. W. (1958). “The structure of compacted clay.” Journal of the Soil Mechenics and Foundations Division, ASCE, Vol.84, No. SM2. pp. 1654-1-1654-34.
Lee, D. C., and Lee, W. J., (1996). “Preparation and Characterization of PMMA-Clay Hybrid Composite by Emulsion Polymerization.” Journal of Applied Polymer Science, Vol. 61, pp. 1117-1122.
Madsen, F. T. (1998). “Clay mineralogical investigations related to nuclear waste disposal.” Clay Minerals, Vol. 33, pp. 109-129.
Madsen, F. T., and Muller-Vonmoos, M., (1989). “The Swelling Behavior of Clays.” Applied Clay Science, Vol. 4, pp. 143~156.
Maes A., and Cremers, A., (1975). “Cation-exchange hysteresis in momtmorillonite: A pH-dependent effect.” Soil Science, Vol. 119, pp. 198-202.
Marcial, D., Delage. P., and Cui Y. J. (2002). “On the high stress compression of bentonites.” Canadian Geotechnical Journal, Vol. 39, pp. 812-820.
Mitchell, J. K., (1993). Fundamentals of Soil Behavior, 2nd ed, University of California, Berkeley.
Mosser, C., et al., (1997). “Migration of Cations in Cooper(II)-exchanged Montmorillnotine and Laponite upon Heating.” Clays and Clay Mineral, Vol. 45, No. 6, pp. 789-802.
Nblal, (1993). “Swelling Pressure in Expansive Soils.” Eleventh Southeast Asian Geotechnical Conf., 4-8 May, Singapore, pp. 141-146.
Nelson, J. D., and J. M. Debora, (1992). “Expansive Soil: Problem and Practice in Foundation and Pavement Engineering.” John Wiley and Sons, Inc., New York, pp. 8-11.
Onal, M., Sarikaya, Y., Alemdaroglu, T., and Bozdogan, I., (1985). “The effect of acid activation on some physicochemical properties of a bentonite.” Turkish Journal of Chemistry, Vol. 26, pp. 409~416.
Paterson, E., and R. Swaffield, (1987). Thermal analysis in A handbbok of determinative methods in clay mineralogy (Edited by M. J. Wilson, (1987))Blackie, USA:Chapman and Hall, New York.
Poncelet, G. M., and G. W. Brindley, (1967). “Experimental formation of kaolinite from montmorillonite at low temperature.” Journal of the Mineralogical Society of America, Vol. 52, pp. 1161-1173.
Pratt, P. F., Whittig, L, D., and Grover, B. L., (1962). “Effect of pH on the sodium–calcium exchange equilibria in soils.” Soil Science Society, Vol. 26, pp. 227-230.
Pusch, R. (2001). The Microstructure of MX-80 Clay with respect to its Bulk Physical Properties under Different Environmental Conditions, SKB TR-01-08, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden..
R. N. Youg, P., Boonsinsuk and G., Wong, (1986). “Formulation of Backfill Material for a Nuclear Fuel Waste Disposal Vault.” Canadian Geotechnical Journal, Vol. 23, pp. 216-218.
Singhal, J. P., Singh, N., and Singh, R. P., (1977). “Hysteresis and reversibility in calcium ammonium exchange in bentonite,” Journal of Indian Chemistry Society, Vol. 54, pp. 555-559.
Sivapullaiah, P.V., Sridharan, A., and Stalin V.K.(1996). ”Swelling behaviour of soil-bentonite mixtures.” Canadian Geotechnical Journal, Vol. 33, pp. 808-814.
Summer, M. E., Swction G.., (2000). Interdisciplinary Aspects of Soil Science. Hanbook of Soil Science, 1st ed. CRC, USA.
Tabikh, A. A., Barshad, I., and Overstreet, R., (1960). “Cation exchange hysteresis in clay minerals.” Soil Science, Vol. 90, pp. 219-226.
Tessier, D., Dardaine, M., Beaumont, A., and Jaunet, A. M., (1998). “Swelling pressure and microstructure of an activated swelling clay with temperature.” Clay Mineral, Vol. 33, pp. 255-267.
Thompson, H. S. (1850). “On the Absorbent Power of Soils.” J. Royal Agr. Soc. Vol. 11, pp. 68-74.
Van Bladel, R., and Laudelout, H., (1967). “Apparent irreversibility of ion-exchange reactions in clay suspensions.” Soil Science, Vol. 104, pp. 134-137.
Velde, B., (1992). Introduction to Clay Minerals, published by Chapman&Hall, Lndon.
Verburg, k., and Baveye, P., (1994). “Hysteresis in the binary exchange of cations on 2:1 clay minerals: A critical review.” CCM, Vol. 42, pp. 207-220.
Vysry, V., Vodak, F., Kapickova, O., and Hoskova, S. (2001). “Effect of temperature on porosity of concrete for nuclear-safety structures.” Cement and Concrete Research, Vol. 31, pp. 1023-1026.
Way, J. T. (1850). “On the Power of Soils to Absorb Manure.” J. Royal Agr. Soc. Vol. 11, pp. 313-379.
Yong R. N., and Benno, P. W. (1975). Soil Properties and Behavior Elsevier, NewYork.
Yildiz, N., and Calimli, A.,(2002). “Alteration of Three Turkish Bentonites by Treatment with Na2CO3 and H2SO4.” Turkish Journal of Chemistry, Vol. 26, pp. 393-401.
指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2004-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明