參考文獻 |
參考文獻
[1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354 (1991) 56.
[2] D. S. Bethune, C. H. Kiang, “Cobalt-caralyzed growth of carbon nanotubes with single-atomic-layerwalls”, Nature,363(1993)605-607.
[3] H. M. Cheng, Q. H. Yang, and C. Liu, “Hydrogen storage in carbon nanotubes”, Carbon, 39 (2001) 1447.
[4] Y. H. Mo, K. S. Park, K. S. Nahm, and M. H. Yun, “Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH medium”, International Journal of Hydrogen Energy, 26 (2001) 823.
[5] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune,and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature, 386 (1997) 377.
[6] S. J. Tans, A. R. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, 393 (1998) 49.
[7] C. Thelander, M. H. Magnusson, K. Deppert, L. Samuelson, P. R. Poulsen, J. Nygard, and J. Borggreen, “Gold nanoparticle single-electron transistor with carbon nanotube leads”, Appl. Phys. Lett., 79 (2001) 2106.
[8] ]P. W. Chiu, G. S. Duesberg, U. D. Weglikowska, and S. Roth, “Interconnection of carbon nanotubes by chemical functionalization”, Appl. Phys. Lett., 80 (2002) 3811.
[9] S. J. Tans, A. R. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, 393 (1998)49.
[10] C. Thelander, M. H. Magnusson, K. Deppert, L. Samuelson. P. R. Poulsen, J. Nygard, and J. Borggreen, “Gold nanoparticle single-electron transistor with carbon nanotube leads”, Appl. Phys. Lett., 79 (2001) 2106.
[11] P. W. Chiu, G. S. Duesberg, U. D. Weglikowska, and S. Roth, “Interconnection of carbon nanotubes by chemical functionalization”, Appl. Phys. Lett., 80 (2002) 3811.
[12] J. H. Hafner, C. L. Cheung, A. T. Woolley, and C. M. Lieber, “Structural and functional imaging with carbon nanotube AFM probes”, Progress in Biophysics & Molecular Biology, 77 (2001) 110.
[13]. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, “Covalently functionalized nanotubes as nanometresized probes in chemistry and biology”, Nature, 394 (1998) 52.
[14] 劉柏村, 張鼎張, “低介電常數材料應用於導體連線製程技術的探討”,第九卷,第二期。
[15] 楊正杰, 張鼎張, “銅金屬和低介電常數材料與製程”,第七卷,第四期。
[16] 吳文發,秦龍玉,“電遷移效應對銅導線可靠度之影響”,第六卷,第一期。
[17] B. Q. Wei, R. Vajtal, and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes”, Appl. Phys. Lett., 79 (2001) 1172.
[18] S. Ruoff ,“Mechanical and thermal properties of carbon nanotube”,carbon(1995)6-21.
[19] D. Tomanek, “Ballistic conductance in quantum devices : from organic polymers to nanotubes “,Current Applied Physics,(2002)47-49.
[20] Q. Zhang, J. Ahn, S.F. Yoon ,“Field emission from patterned carbon nanotube emitters produced by microwave plasma chemical vapor deposition”, Diamond and materials ,10(2001)2157-2160. “
[21] S. Hong, C. Tae, Y. Lee,“Effect of growth parameters on the selective area growth of carbon nanotubes”, Thin Solid Films, 409(2002)2157-2160.
[22] X .Zhao, Y .Ando, L-C Qin, “Characteristic Raman spectra of multiwalled carbon nanotube” ,Physica B ,323(2002)265-266.
[23] S .Lefrant ,“Raman and SERS studies of carbon nanotube systems ”,Current Applied Physics, 2(2002)479-482.
[24]M.S. Dresselhaus , A. Jorio, A.G. Filho, “Raman spectroscopy on one isolated carbon nanotube”, Physica B, 323(2002)15-20.
[25]M. Sugano,A. Kasuya , K. Tohji, “Resonance Raman scattering and diameter-dependent electronic states in single-wall carbon nanotube”, Chemical Physics Letters, 292(1998)575-579.
[26] 陳紹良,「以微波電漿化學氣相沉積法成長奈米碳管之研究」,國立中央大學機械工程研究所碩士論文
[27] Y. S. Park, K. S. Kim, H. J. Jeong, W. S. Kim, J. M. Moon, K. H. An, D. J. Bae, Y. S. Lee, G. S. Park and Y. H. Lee, “Low pressure synthesis of single-walled carbon nanotubes by arc discharge”, Synthetic Metals, 126 (2002) 245.
[28] H. J. Lai, M. C. Lin, M. H. Yang and A. K. Li, “Synthesis of carbon nanotubes using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge”, Materials Science and Engineering C, 16 (2001) 23.
[29] H. Zeng, L. Zhu, G. Hao, R. Sheng, “Synthesis various forms of carbon nanotubes by AC arc discharge”, Carbon, 36 (1998) 259.
[30] C.Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. D. L. Chapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fisxher, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique”, Nature, 388 (1997) 756.
[31] A. Thess, R. Cee, N. P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, J. E. Fischeo, R. E. Smalley, Science, 273 (1996) 483.
[32] B. I. Yakobson and R. E. Smalley, American Scientist, 85 (1997) 324.
[33] S. Zhu, C. H. Su, J. C. Cochrane, S. Lehoczky, Y. Cui and A. Burger, “Growth oriention of carbon nanotubes by thermal chemical vapor deposition”, Journal of Crystal Growth, 234 (2002) 584.
[34] Y. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, W. S. Kim, Y. H. Lee, W. B. Choi, N. S. Lee, J. M. Kim, Y. G. Choi, and S. C. Yu, “Synthesis of uniformly distributed carbon nanotubes on a large area of si substrates by thermal chemical vapor deposition”, Appl. Phys. Lett., 75 (1999) 1721.
[35] C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, Y. H. Lee, W. B. Choi, N. S. Lee, G. S. Park, and J. M. kim, “Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition”, Chem. Phys. Lett., 312 (1999) 461.
[36] C. J. Lee, J. Park, S. Y. Kang, J. H. Lee, “Growth of well-aligned carbon nanotubes on a large area of Co-Ni co–deposition silicon oxide substrate by thermal chemical vapor deposition”, Chem. Phys. Lett., 323 (2000) 554.
[37] C. J. Lee, J. H. Park, and J. Park, “Synthesis of bamboo-shaped multiwalled carbon nanotube using thermal chemical vapor deposition” ,Chem. Phys. Lett., 323 (2000) 560.
[38] Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N. S. Lee, J. M. Kim, “Low temperature synthesis of carbon nanotube by microwave plasma-enhanced chemical vapor deposition ”, Synthetic Metals 108 (2000) 159-163.
[39] X. Wang, Z. Hu, Q. Wu, X. Chen, Y. Chen, “Synthesis of multi-walled carbon nanotubes by microwave plasma-enhanced chemical vapor deposition”, Thin Solid Films, 390 (2001) 130-133.
[40] J. H. Han, S. H. Choi, T. Y. Lee, J. B. Yoo, C. Y. Park, H. J. Kim, I. T. Han, S. Yu, W. Yi, G. S. Park, M. Yang, N. S. Lee, J. M. Kim, “Effects of growth parameters on the selective area growth of carbon nanotubes”, Thin Solid Films, 409 (2002) 126.
[41] Y. S. Woo, D. Y. Jeon, I. T. Han, N. S. Lee, J. E. Jung, and J. M. Kim, “In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition”, Diamond and Related Materials, 11 (2002) 59.
[42] U. Kim, R. Pcionek, D. M. Aslam, and D. Tomanek, “Synthesis of high-density carbon nanotube films by microwave plasma chemical vapor deposition”, Diamond and Related Materials, 10 (2001) 1947.
[43] W. D. Zhang, J. T. L. Thong, W. C. Tjiu, L. M. Gan, “Fabrication of vertically aligned carbon nanotubes patterns by chemical vapor deposition for field emitters”, Diamond and Related Materials, 11 (2002) 1638.
[44] N.M Rodriguez,”A review of catalytically grown carbon nanofibers”, J . Mater . Res.,8(1993)3233-3250.
[45] Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H. Lee, B. S. Lee, D. C. Chung, “Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition”, Journal of Applied Physics, 88 (2000) 4898.
[46] E. F. Kukovitsky, S. G. Lvov, N. A. Sainov, V. A. Shustov, and L. A. Chernozatonskii, “Correlation between metal catalyst particle size and carbon nanotube growth”, Chem. Phys. Lett. 355 (2002) 497.
[47]Y. H. Wang, J. Lin, C. H. A. Huan, “Synthesis of large area aligned carbon nanotube arrays from C2H2-H2 mixture by rf plasma-enhanced chemical vapor deposition “, Appl. Phys. Letts,79(2001)680.
[48] M Tanemura, K. lwata., K. Takahashi, Y. Fujimoto, ”Growht of aligned carbon nanotube by plasma-enhanced chemical vapor deposition : Optimization of growth parameters”, J Appl.Phys.,90(2001)1529.
[49] A. P. Burden, S. R.P. Silva,”Fullerene and nanotube formation in cool terrestrial “dusty plasmas”, Appl. Phys. Lett,73(1998)3082.
[50]C. Bower, W. Zhu, S. Jin, O.Zhou, “Plasma-induced alignment of carbon nanotube”, Appl.Phys.Lett., 77(2000)830.
[51] http://www.rpi.edu/dept/materials/course/nano/
[52] M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes”, Carbon, 33 (1995) 883.
[53] C. E. Hunt, J. T. Trujillo, W. J. Orvis, “Structure and electrical characteristics of silicon field-emission microelectronic devices “,IEEE Transactions on Electron Devices, 38 (1991) 2309.
[54] R. B. Marcus, T. S. Ravi, T. Gmitter,. H. Busta, J. T. Niccum, K. Chin, D.Liu, “Atomically sharp silicon and metal field emitters”, IEEE Transactions on Electron Devices, 38 (1991) 2289.
[55] R. E. Burgess, R. Kroemer, “Corrected values of Fowler-Nordheim Field emission function v(x) and s(y)”, Physical Review, 90 (1953) 515.
[56] Y.T. Jang , C.H. Choi , “Fabrication and characteristics of field emitter using carbon nanotubes directly grown by thermal chemical vapor deposition “,Thin Solid Films ,436(2003)298-302.
[57] Y. Tzeng , Y. Chen, C. Liu, “Fabrication and characterization of non-planar high-current –density carbon-nanotube coated cold cathodes”, Diamond and Related Materials ,12 (2003)442-445.
[58] J. M.Bonard , H Kind , T. Stockli , “Field emission from carbon nanotubes: the first five years ”,Solid-State Electronics,45(2001)893-914.
[59] Y. Cheng, O. Zhou, “Electron Field emission from carbon nanotube ”C.R.Physique, 4 (2003)1021-1033.
[60] B. Q. Wei, R. Vajtal, P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes”, Appl. Phys. Lett., 79 (2001) 1172.
[61] H. M. Cheng, Q. H. Yang, C. Liu, “Hydrogen storage in carbon nanotubes”, Carbon, 39 (2001) 1447.
[62] D. W. Austin, A. A. Puretzky, D. B. Geohegan, P. F. Britt, M. A. Guillorn, M. L. Simpson, “The electrodeposition of metal at metal/carbon nanotube junctions”, Chem. Phys. Lett., 361 (2002) 525.
[63] Y. S. Han, J. K. Shin, S. T. Kim, “Synthesis of carbon nanotube bridges on patterned silicon wafers by selective lateral growth”, Journal of Applied Physics, 90 (2001) 5731.
[64] S. Frank, P. Poncharal, Z. L. Wang, W. Heer, “Carbon nanotube quantum resistors“, Science, 280 (1998) 1774. |