博碩士論文 91323023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.144.4.54
姓名 鄭木棋(Mu-Chin Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 奈米碳管元件之製作與分析
(Fabrication and Characterization of Carbon Nanotube Device)
相關論文
★ 凹形球面微電極與異形微孔的成形技術研究★ 二氧化鈦薄膜之製備與分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 碳奈米管微電極陣列之製造與性質檢測
★ 超塑性5083鋁合金快速成形空孔狀態之分析★ 微極彈性內凹結構波桑比之有限元素法分析
★ 不銹鋼微細槽放電加工及電化學拋光精修槽壁效果之研究★ 壓力容器與引流管接合處之軸對稱有限元素分析
★ 負波桑比結構之桁架有限元素法分析★ 具負波桑比性質之細胞型材料之有限元素法分析
★ 具負波桑比傘狀結構之分析與應用★ Ti-6Al-4V之超塑性成形製程模擬與分析
★ 利用微極彈性理論分析蜂巢式結構之波桑比效應★ 結合微細放電與高頻抖動研磨之微孔加工研究
★ 負波桑比機構之設計與分析★ 微雙材料熱變形樑之應用分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用微波電漿化學氣相沉積(Microwave Plasma Chemical Vapor Deposition, MPCVD)以金屬Ni來當作觸媒在基板溫度400℃下,成長出圖案化多壁奈米碳管(Multiwall Carbon Nanotube, MWCNT)。
利用IC圖案化製程和MPCVD,在Vias結構中成長出直徑為20-40nm的多壁奈米碳管,來當作積體電路內連線中的材料。
以拉曼散射光譜(Raman Spectroscopy)和場發射量測儀器(Field Emission Measurement),來探討不同製程參數對於奈米碳管的場發射和石墨化性質影響。
摘要(英) Well-patterned multi-walled carbon nanotubes were grown by microwave plasma chemical vapor deposition with Ni as catalyst at 400℃.
The resulting multi-walled carbon nanotubes with 20-40nm in diameter were used as interconnect material in vias by microwave plasma chemical vapor deposition and patterning process.
Effects of growth parameters on the field emission and the graphitize of multi-walled carbon nanotube were analyzed by raman spectroscopy and field emission measurement.
關鍵字(中) ★ 奈米碳管
★ 場發射
★ 內連線
關鍵字(英) ★ Interconnect
★ Field emission
★ Carbon nanotube
論文目次 目錄
摘要 i
目錄 ii
圖表目錄 iv
第一章 緒論
1.1 前言 1
1.2 研究動機 3
第二章 奈米碳管介紹
2.1奈米碳管的製備方法 6
2.2微波電漿觸媒化學氣相沉積 7
2.3奈米碳管的晶體結構 9
2.4奈米碳管電子應用 12
第三章 實驗方法
3.1 以微波電漿觸媒化學氣相沉積成長奈米碳管 22
3.2 整合奈米碳管到金屬內連線 23
3.3 奈米碳管二極體元件製作 23
3.4 奈米碳管場發射二極體元件製作和量測 24
3.5 實驗儀器簡介 25
第四章 結果與討論
4.1多壁奈米碳管的結構 34
4.2 Vias 結構中成長奈米碳管 36
4.3 奈米碳管二極體元件製作 38
4.4 製程參數對奈米碳管的場發射、石墨化影響 40
第五章 結論 70
參考文獻 71
圖目錄
圖1-1 多壁奈米碳管TEM成像 4
圖1-2 單壁奈米碳管TEM成像 4
圖1-3 奈米碳管的同素異構體 5
圖1-4 想像石墨片捲成單壁奈米碳管 5
圖 2-1成長奈米碳管方法 16
圖2-2 MPCVD示意圖 17
圖2-3 奈米碳管結構示意圖 17
圖2-4 奈米碳管二維平面示意圖 18
圖2-5 奈米碳管的螺旋性 18
圖2-6 奈米碳管金屬、半導體性質 19
圖2-7 金屬在真空系統中的能階圖 19
圖2-8 積體電路內連線的RC時間延遲示意圖 20
圖2-9 內連線金屬材料性質 20
圖2-10奈米碳管用於金屬內連線 21
圖3-1 MPCVD成長奈米碳管的流程 28
圖3-2 金屬內連線的示意圖 29
流程圖3-3 以MPCVD 在Vias結構中成長奈米碳管 30
流程圖3-4 以 MPCVD 來製造奈米碳管二極體元件 31
圖3-5場發射量測儀器示意圖 32
圖3-6 拉曼原理示意圖 32
圖3-7 拉曼量測儀器圖示 32
圖3-8 ID/IG 積分圖示 33
圖4-1 高準直度的奈米碳管膜 45
圖4-2 定位成長的奈米碳管陣列 45
圖4-3 奈米碳管TEM成像圖 46
圖4-4 奈米碳管中空竹節狀結構 47
圖4-5 IC圖案化後Vias 結構SEM圖 48
圖4-6為不同尺寸奈米碳管Via結構所形成的陣列 49
圖4-7 Vias結構尺寸為2μm 49
圖4-8 Vias結構尺寸為0.2μm 49
圖4-9 大面積的在Vias 結構中成長奈米碳管 50
圖4-10 定義Vias結構中奈米碳管形態參數 51
圖4-11 不同成長電漿功率對奈米碳管形態的影響 51
圖4-12不同Vias 剖面尺寸對奈米碳管的影響 52
圖4-13 成長電漿功率對奈米碳管形態的影響 53
圖4-14 濺渡金屬Ta作上電極 54
圖 4-15量測Vias結構元件電壓-電流值 54
圖4-16 不同剖面尺寸的Ni催化金屬塊 55
圖4-17 剖面尺寸對奈米碳管形態的影響 56
圖4-18成長溫度對奈米碳管形態影響 57
圖4-19 成長電漿功率對奈米碳管形態影響 58
圖4-20 奈米碳管場發射元件和場發射參數設定 59
圖4-21 成長時間對奈米碳管場發射和拉曼分析 60
圖4-22 不同成長時間的Eth Ere 和 ID/IG 61
圖4-23不同甲烷流量速率比對奈米碳管形態影響 62
圖4-24甲烷流量比對奈米碳管場發射和拉曼分析 63
圖4-25不同甲烷流量比的Eth Ere 和 ID/IG 64
圖4-26不同氮氣流量比對場發射和拉曼分析 65
圖4-27不同氮氣流量比的Eth Ere 和ID/IG 66
圖4-28ID/IG 和Eth Ere關係 67
圖4-29 不同ID/IG 和電流上升速度的關係 68
表目錄
表1 Vias結構中成長奈米碳管 69
表2 成長時間對奈米碳管場發射特性影響 69
表3 甲烷流量比對奈米碳管場發射特性影響 69
表4 氮氣流量對奈米碳管場發射特性影響 69
參考文獻 參考文獻
[1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354 (1991) 56.
[2] D. S. Bethune, C. H. Kiang, “Cobalt-caralyzed growth of carbon nanotubes with single-atomic-layerwalls”, Nature,363(1993)605-607.
[3] H. M. Cheng, Q. H. Yang, and C. Liu, “Hydrogen storage in carbon nanotubes”, Carbon, 39 (2001) 1447.
[4] Y. H. Mo, K. S. Park, K. S. Nahm, and M. H. Yun, “Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH medium”, International Journal of Hydrogen Energy, 26 (2001) 823.
[5] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune,and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature, 386 (1997) 377.
[6] S. J. Tans, A. R. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, 393 (1998) 49.
[7] C. Thelander, M. H. Magnusson, K. Deppert, L. Samuelson, P. R. Poulsen, J. Nygard, and J. Borggreen, “Gold nanoparticle single-electron transistor with carbon nanotube leads”, Appl. Phys. Lett., 79 (2001) 2106.
[8] ]P. W. Chiu, G. S. Duesberg, U. D. Weglikowska, and S. Roth, “Interconnection of carbon nanotubes by chemical functionalization”, Appl. Phys. Lett., 80 (2002) 3811.
[9] S. J. Tans, A. R. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, 393 (1998)49.
[10] C. Thelander, M. H. Magnusson, K. Deppert, L. Samuelson. P. R. Poulsen, J. Nygard, and J. Borggreen, “Gold nanoparticle single-electron transistor with carbon nanotube leads”, Appl. Phys. Lett., 79 (2001) 2106.
[11] P. W. Chiu, G. S. Duesberg, U. D. Weglikowska, and S. Roth, “Interconnection of carbon nanotubes by chemical functionalization”, Appl. Phys. Lett., 80 (2002) 3811.
[12] J. H. Hafner, C. L. Cheung, A. T. Woolley, and C. M. Lieber, “Structural and functional imaging with carbon nanotube AFM probes”, Progress in Biophysics & Molecular Biology, 77 (2001) 110.
[13]. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, “Covalently functionalized nanotubes as nanometresized probes in chemistry and biology”, Nature, 394 (1998) 52.
[14] 劉柏村, 張鼎張, “低介電常數材料應用於導體連線製程技術的探討”,第九卷,第二期。
[15] 楊正杰, 張鼎張, “銅金屬和低介電常數材料與製程”,第七卷,第四期。
[16] 吳文發,秦龍玉,“電遷移效應對銅導線可靠度之影響”,第六卷,第一期。
[17] B. Q. Wei, R. Vajtal, and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes”, Appl. Phys. Lett., 79 (2001) 1172.
[18] S. Ruoff ,“Mechanical and thermal properties of carbon nanotube”,carbon(1995)6-21.
[19] D. Tomanek, “Ballistic conductance in quantum devices : from organic polymers to nanotubes “,Current Applied Physics,(2002)47-49.
[20] Q. Zhang, J. Ahn, S.F. Yoon ,“Field emission from patterned carbon nanotube emitters produced by microwave plasma chemical vapor deposition”, Diamond and materials ,10(2001)2157-2160. “
[21] S. Hong, C. Tae, Y. Lee,“Effect of growth parameters on the selective area growth of carbon nanotubes”, Thin Solid Films, 409(2002)2157-2160.
[22] X .Zhao, Y .Ando, L-C Qin, “Characteristic Raman spectra of multiwalled carbon nanotube” ,Physica B ,323(2002)265-266.
[23] S .Lefrant ,“Raman and SERS studies of carbon nanotube systems ”,Current Applied Physics, 2(2002)479-482.
[24]M.S. Dresselhaus , A. Jorio, A.G. Filho, “Raman spectroscopy on one isolated carbon nanotube”, Physica B, 323(2002)15-20.
[25]M. Sugano,A. Kasuya , K. Tohji, “Resonance Raman scattering and diameter-dependent electronic states in single-wall carbon nanotube”, Chemical Physics Letters, 292(1998)575-579.
[26] 陳紹良,「以微波電漿化學氣相沉積法成長奈米碳管之研究」,國立中央大學機械工程研究所碩士論文
[27] Y. S. Park, K. S. Kim, H. J. Jeong, W. S. Kim, J. M. Moon, K. H. An, D. J. Bae, Y. S. Lee, G. S. Park and Y. H. Lee, “Low pressure synthesis of single-walled carbon nanotubes by arc discharge”, Synthetic Metals, 126 (2002) 245.
[28] H. J. Lai, M. C. Lin, M. H. Yang and A. K. Li, “Synthesis of carbon nanotubes using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge”, Materials Science and Engineering C, 16 (2001) 23.
[29] H. Zeng, L. Zhu, G. Hao, R. Sheng, “Synthesis various forms of carbon nanotubes by AC arc discharge”, Carbon, 36 (1998) 259.
[30] C.Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. D. L. Chapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fisxher, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique”, Nature, 388 (1997) 756.
[31] A. Thess, R. Cee, N. P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, J. E. Fischeo, R. E. Smalley, Science, 273 (1996) 483.
[32] B. I. Yakobson and R. E. Smalley, American Scientist, 85 (1997) 324.
[33] S. Zhu, C. H. Su, J. C. Cochrane, S. Lehoczky, Y. Cui and A. Burger, “Growth oriention of carbon nanotubes by thermal chemical vapor deposition”, Journal of Crystal Growth, 234 (2002) 584.
[34] Y. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, W. S. Kim, Y. H. Lee, W. B. Choi, N. S. Lee, J. M. Kim, Y. G. Choi, and S. C. Yu, “Synthesis of uniformly distributed carbon nanotubes on a large area of si substrates by thermal chemical vapor deposition”, Appl. Phys. Lett., 75 (1999) 1721.
[35] C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, Y. H. Lee, W. B. Choi, N. S. Lee, G. S. Park, and J. M. kim, “Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition”, Chem. Phys. Lett., 312 (1999) 461.
[36] C. J. Lee, J. Park, S. Y. Kang, J. H. Lee, “Growth of well-aligned carbon nanotubes on a large area of Co-Ni co–deposition silicon oxide substrate by thermal chemical vapor deposition”, Chem. Phys. Lett., 323 (2000) 554.
[37] C. J. Lee, J. H. Park, and J. Park, “Synthesis of bamboo-shaped multiwalled carbon nanotube using thermal chemical vapor deposition” ,Chem. Phys. Lett., 323 (2000) 560.
[38] Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N. S. Lee, J. M. Kim, “Low temperature synthesis of carbon nanotube by microwave plasma-enhanced chemical vapor deposition ”, Synthetic Metals 108 (2000) 159-163.
[39] X. Wang, Z. Hu, Q. Wu, X. Chen, Y. Chen, “Synthesis of multi-walled carbon nanotubes by microwave plasma-enhanced chemical vapor deposition”, Thin Solid Films, 390 (2001) 130-133.
[40] J. H. Han, S. H. Choi, T. Y. Lee, J. B. Yoo, C. Y. Park, H. J. Kim, I. T. Han, S. Yu, W. Yi, G. S. Park, M. Yang, N. S. Lee, J. M. Kim, “Effects of growth parameters on the selective area growth of carbon nanotubes”, Thin Solid Films, 409 (2002) 126.
[41] Y. S. Woo, D. Y. Jeon, I. T. Han, N. S. Lee, J. E. Jung, and J. M. Kim, “In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition”, Diamond and Related Materials, 11 (2002) 59.
[42] U. Kim, R. Pcionek, D. M. Aslam, and D. Tomanek, “Synthesis of high-density carbon nanotube films by microwave plasma chemical vapor deposition”, Diamond and Related Materials, 10 (2001) 1947.
[43] W. D. Zhang, J. T. L. Thong, W. C. Tjiu, L. M. Gan, “Fabrication of vertically aligned carbon nanotubes patterns by chemical vapor deposition for field emitters”, Diamond and Related Materials, 11 (2002) 1638.
[44] N.M Rodriguez,”A review of catalytically grown carbon nanofibers”, J . Mater . Res.,8(1993)3233-3250.
[45] Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H. Lee, B. S. Lee, D. C. Chung, “Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition”, Journal of Applied Physics, 88 (2000) 4898.
[46] E. F. Kukovitsky, S. G. Lvov, N. A. Sainov, V. A. Shustov, and L. A. Chernozatonskii, “Correlation between metal catalyst particle size and carbon nanotube growth”, Chem. Phys. Lett. 355 (2002) 497.
[47]Y. H. Wang, J. Lin, C. H. A. Huan, “Synthesis of large area aligned carbon nanotube arrays from C2H2-H2 mixture by rf plasma-enhanced chemical vapor deposition “, Appl. Phys. Letts,79(2001)680.
[48] M Tanemura, K. lwata., K. Takahashi, Y. Fujimoto, ”Growht of aligned carbon nanotube by plasma-enhanced chemical vapor deposition : Optimization of growth parameters”, J Appl.Phys.,90(2001)1529.
[49] A. P. Burden, S. R.P. Silva,”Fullerene and nanotube formation in cool terrestrial “dusty plasmas”, Appl. Phys. Lett,73(1998)3082.
[50]C. Bower, W. Zhu, S. Jin, O.Zhou, “Plasma-induced alignment of carbon nanotube”, Appl.Phys.Lett., 77(2000)830.
[51] http://www.rpi.edu/dept/materials/course/nano/
[52] M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes”, Carbon, 33 (1995) 883.
[53] C. E. Hunt, J. T. Trujillo, W. J. Orvis, “Structure and electrical characteristics of silicon field-emission microelectronic devices “,IEEE Transactions on Electron Devices, 38 (1991) 2309.
[54] R. B. Marcus, T. S. Ravi, T. Gmitter,. H. Busta, J. T. Niccum, K. Chin, D.Liu, “Atomically sharp silicon and metal field emitters”, IEEE Transactions on Electron Devices, 38 (1991) 2289.
[55] R. E. Burgess, R. Kroemer, “Corrected values of Fowler-Nordheim Field emission function v(x) and s(y)”, Physical Review, 90 (1953) 515.
[56] Y.T. Jang , C.H. Choi , “Fabrication and characteristics of field emitter using carbon nanotubes directly grown by thermal chemical vapor deposition “,Thin Solid Films ,436(2003)298-302.
[57] Y. Tzeng , Y. Chen, C. Liu, “Fabrication and characterization of non-planar high-current –density carbon-nanotube coated cold cathodes”, Diamond and Related Materials ,12 (2003)442-445.
[58] J. M.Bonard , H Kind , T. Stockli , “Field emission from carbon nanotubes: the first five years ”,Solid-State Electronics,45(2001)893-914.
[59] Y. Cheng, O. Zhou, “Electron Field emission from carbon nanotube ”C.R.Physique, 4 (2003)1021-1033.
[60] B. Q. Wei, R. Vajtal, P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes”, Appl. Phys. Lett., 79 (2001) 1172.
[61] H. M. Cheng, Q. H. Yang, C. Liu, “Hydrogen storage in carbon nanotubes”, Carbon, 39 (2001) 1447.
[62] D. W. Austin, A. A. Puretzky, D. B. Geohegan, P. F. Britt, M. A. Guillorn, M. L. Simpson, “The electrodeposition of metal at metal/carbon nanotube junctions”, Chem. Phys. Lett., 361 (2002) 525.
[63] Y. S. Han, J. K. Shin, S. T. Kim, “Synthesis of carbon nanotube bridges on patterned silicon wafers by selective lateral growth”, Journal of Applied Physics, 90 (2001) 5731.
[64] S. Frank, P. Poncharal, Z. L. Wang, W. Heer, “Carbon nanotube quantum resistors“, Science, 280 (1998) 1774.
指導教授 黃豐元(Fuang-Yuan Huang) 審核日期 2004-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明