博碩士論文 91326006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:52.15.136.223
姓名 黃薇如(Wei-Ru Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 大氣氣膠碳成分量測誤差與台北都會區有機氣膠特徵之研究
(Investigation on measurement errors of the aerosol carbon in atmosphere and the characteristic of aerosol organic carbon in urban Taipei)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大氣氣膠碳成分在偵測及解析方法上相當分歧,本文探討揮發性有機氣體(VOCs)對氣膠採樣的干擾,比較不同裂解碳(pyrolyzed carbon)矯正方法以及不同分析溫度協定造成的差異,瞭解現行氣膠碳成分自動監測儀器的基本性能,以期能分辨不同分析方法導致的氣膠碳成分差異,建立可靠的氣膠碳成分分析結果。此外,為瞭解台北都會區有機氣膠的特徵,本文在2006年3月底至5月中在台灣大學進行大氣氣膠碳成分的監測,使用的自動儀器包括以Sunset 5040碳分析儀監測有機碳(OC)和元素碳(EC)及以Magee AE-31吸光儀監測黑碳濃度(BC),獲得台北地區的氣膠碳成分日夜分布情形;同時並以DRI 2001碳分析儀針對R&P 2000人工採樣器獲得的濾紙進行大氣氣膠碳成分分析,比較不同分析溫度協定的差異,探討有機氣膠受到溫度影響的揮發情形,並進行二次有機氣膠的推估。
研究結果顯示Sunset 5040及DRI 2001碳分析儀器對OC、EC的偵測極限可達到0.13 μgC以下,再現性也不錯。TOT (Thermo-optical Transmittance)與TOR (Thermo-optical Reflectance)對OC、EC解析的結果顯示OCTOT比OCTOR高出7~15%,ECTOT則比ECTOR低了30~50%。大氣VOCs的存在對有機氣膠的量測呈現顯著的正干擾,日間VOCs主要影響較容易揮發的氣膠OC1及OC2成分的量測,夜間則以較不容易揮發的氣膠OC3成分干擾較為明顯。此外,不同分析儀器的比較,顯示Sunset 5040與DRI 2001得到的OC、EC濃度具有一致的變化趨勢,兩種儀器的EC絕對量也相近,但Sunset儀器量測到的OC較使用DRI 2001分析的結果低了約1.4 μg m-3。在EC與BC的比較上,Aethalometer測得的BC比Sunset及DRI的EC量測值高出50%左右。
台北都會區氣膠的OC、EC佔PM10質量比例,分別約為15~17%及5~7%,氣膠碳成分日夜分布型態顯示EC及估計的一次有機碳(OCpri)與交通污染相關,估計的二次有機碳(OCsec)濃度高值則發生在中午11~13時光化反應最強的時段。OCpri與EC的特徵比值約為1.47顯著低於過去的研究結果,研究成果顯示台北市有機碳以OCpri為主,平均濃度約為4.49~4.84 μg m-3,佔總OC約73%,與過去研究結果相似。在氣膠碳成分分布上,台北都會區大部分的有機碳屬於揮發溫度較高的OC3,次高為OC2,EC成分則是以EC1為主要來源。強光化學反應時的OCsec與O3相關性良好,在中午前後兩者同時出現明顯峰值,在光化事件的案例分析中,10~16時兩者的R2高達0.92,TC中OCsec的平均比例高達40.5%,顯示強光化學反應發生時二次有機物有明顯生成現象。
摘要(英) The detection and analysis of atmospheric aerosol carbon are widely varied. This study investigates the interference of volatile organic carbons (VOCs) on the collection of aerosol carbons, compares the deviations from different corrections of pyrolyzed carbon and temperature protocols in carbon analysis, understands basic functions of commercialized automated aerosol-carbon monitors, and aims at resolving the differences from various analytical methods in aerosol carbons. In addition, this study collects atmospheric aerosol for carbon analysis at National Taiwan University to characterize organic aerosol in Taipei metropolis from the late March to middle May 2006. Meanwhile, diurnal cycle of atmospheric aerosol carbons are monitored using Sunset 5040 Carbon Analyzer for organic carbon (OC) and elemental carbon (EC) and Magee AE-31 Aethalometer for aerosol black carbon (BC). The filter-based aerosol carbons are analyzed in laboratory using DRI 2001 Carbon Analyzer for resolving deviations from different temperature protocols, assessing temperature effects on volatilization of organic aerosol, and estimating secondary organic aerosol.
The results show that the OC and EC detection limits of Sunset 5040 and DRI 2001 can reach below 0.13 μgC with excellent repeatability. The comparison between TOT (Thermo-optical Transmittance) and TOR (Thermo-optical Reflectance) on the resolving of OC and EC shows that OCTOT is higher than OCTOR for 7~15% and ECTOT is lower than ECTOR for 30~50%. A positive interference from atmospheric VOCs is found for filter-based organic aerosol. The influenced species are low-temperature evolved aerosol OC1 and OC2 in daytime, while high-temperature evolved aerosol OC3 is much more interfered in nighttime. The instrument comparison shows that Sunset 5040 is consistent with DRI 2001 both in OC and EC variations and in EC quantification; however, the OC measured from Sunset is lower than DRI 2001 for about 1.4 μg m-3. For the comparison between EC and BC measurements, the BC from Aethalometer is around 50% higher than EC from Sunset and DRI instruments.
The fractions of OC and EC in PM10 in Taipei metropolis determined from this syudy are 15-17% and 5-7%, respectively. Analysis of diurnal cycle of aerosol carbon indicates EC and the estimated primary OC (OCpri) are related to traffic activity. The peak value of estimated secondary OC (OCsec) appears at around 11:00-13:00 (local time) when photochemical reactivity is the most vigorous. In this study, the estimated OCpri and EC ratio is at 1.47, which is significantly lower than previous findings. Aerosol OC in Taipei metropolis is dominated by OCpri with concentration ranging from 4.49 to 4.84 μg m-3 and around 73% in OC, which is consistent with previous study. In Taipei aerosol-carbon fractions, the predominant OC species is OC3 followed by OC2, while EC1 is the major fraction of EC. The correlation between OCsec and O3 is high, significant peak values appear concurrently around noon time when photochemical activity is vigrous. In the study of photochemical events, the R2 between OCsec and O3 can be as high as 0.92 and OCsec in TC high around 40.5% which suggests the formation of secondary organic aerosol.
關鍵字(中) ★ 氣膠碳成分
★ 氣膠碳成分分析比對
★ 氣膠裂解碳校正
★ 二次有機氣膠
★ 都會區氣膠碳成分分佈
關鍵字(英) ★ Aerosol carbon fractions
★ Aerosol carbon comparison
★ Pyrolyzed aerosol carbon correction
★ Secondary organic aerosol
★ Urban aerosol carbons
論文目次 目錄 I
圖目錄 IV
表目錄 VII
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章、文獻回顧 3
2.1 大氣環境氣膠的來源及特性 3
2.1.1氣膠分類及來源 3
2.1.2大氣氣膠的化學組成及粒徑分布 4
2.2氣膠碳成分的組成及來源 8
2.2.1 大氣環境氣膠含碳成份特性 8
2.2.2 氣膠含碳成分分布情形 9
2.3 有機碳、元素碳分析方法研究 11
2.3.1 TOR(thermal optical reflectance) 11
2.3.2 TOT(thermal optical transmittance) 14
2.3.3 TMO(thermal manganese oxidation) 16
2.3.4 CNRS-CEA Method 18
2.3.5氣膠碳成份實驗分析方法的比較 21
2.4 二次有機污染物的探討 27
第三章 研究方法 29
3.1採樣及監測地點及量測設備 29
3.2 漸縮元件振盪微量天平 (TEOM) 32
3.2.1 儀器原理 32
3.2.2 運轉程序 33
3.3 SUNSET 5040半自動氣膠碳成分監測儀 34
3.3.1 分析原理概述 34
3.3.2 Sunset 5040採樣流路 36
3.3.3 Sunset 5040分析流路 39
3.4 DRI 2001氣膠碳成分分析儀 41
3.5氣膠黑碳濃度監測儀(吸光儀) 43
3.6氣膠成份分析採樣器 45
3.7碳成分採樣及分析方法比對實驗 46
3.7.1 TOR及TOT的比較 46
3.7.2 揮發性有機物的干擾測試 46
3.7.3 NIOSH 與 IMPROVE分析方法的比較 47
3.7.4 吸光儀與碳分析儀的比較 48
第四章 結果與討論 49
4.1 碳分析儀功能測試及校正 49
4.1.1 Sunset 5040功能測試及校正 49
4.1.1.1 零點(值)測試 49
4.1.1.2 Sunset 5040校正(準確度accuracy) 50
4.1.1.3 再現性測試(精確度precision) 52
4.1.2 DRI 2001碳分析儀功能測試及校正 53
4.1.2.1 DRI 2001儀器零點(值)測試 53
4.1.2.2 DRI 2001 KHP校正結果 55
4.1.2.3再現性測試 56
4.1.2.4 濾紙(背景)穩定度測試 58
4.2 裂解碳矯正方法的比較(TOT VS. TOR) 59
4.3揮發性有機碳的干擾測試結果 65
4.3.1 碳成分的揮發溫度分布特徵 65
4.3.2 人工採樣器基本差異量 67
4.3.3 揮發性有機物對有機碳量測值干擾 68
4.4 NIOSH 及 IMPROVE 分析模式的比較 73
4.5 AETHALOMETER 與 SUNSET 5040的比較 75
4.5.1 Aethalometer vs. Sunset 75
4.5.2 BC vs. EC 78
4.6 台北都會區春季氣膠特徵 79
4.6.1 台北都會區中有機碳及元素碳的質量比例 79
4.6.2 台北都會區的含碳成分小時分布 87
4.6.3 台北都會區氣膠含碳成分的揮發溫度分布 92
4.6.4 台北都會區春季氣膠事件日探討 96
4.6.4.1 二次有機氣膠高濃度事件日 97
4.6.4.2 原生性有機氣膠高濃度事件日 100
第五章 結論與建議 103
5.1 結論 103
5.2 建議 106
參考文獻 107
參考文獻 Andreae, M. O., Charlson, R. J., Bruynseels, F., Storms, H., Van Grieken, R., and Maenhaut, W. (1986). Internal mixture sea salt, silicates, and excess sulfate in marine aerosols. Science 232, 1620-1623.
Appel, B. R. (1993). Atmospheric sample analysis and sampling artifacts. Aerosol measurement : principles, techniques, and applications . New York, NY . Van Nostrand Reinhold, 233-259.
Baron, P. A., and Willeke, K. (2001). Size Distribution Characteristics of Aerosols. In Aerosol Measurement: Principles, Techniques, and Applications, 2nd edition. John Wiley & Sons: New York, 99-116.
Birch, M. E. (1998). Analysis of Carbonaceous Aerosols: Interlaboratory Comparison. Analyst 123, 851-587.
Birch, M. E., and Cary, R. A. (1996a). Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Science and Technology 25(3), 221-241.
Birch, M. E., and Cary, R. A. (1996b). Elemental carbon-based method for occupational monitoring of particulate diesel exhaust: Methodology and exposure issues. Analyst 11, 1183-1190.
Boucher, O., and Anderson, T. L. (1996). GCM assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. Journal of Geophysical Research 100, 26117-26134.
Cachier, H., Bremond, M. P., and Buat-Ménard, P. (1989a). Thermal separation of soot carbon. Aerosol Science and Technology 10(2), 358-364.
Cachier, H., Bremond, M. P., and Buat-Ménard, P. (1989b). Determination of atmospheric soot carbon with a sample thermal method. Tellus 41B(3), 379-390.
Cadle, S. H., and Groblicki, P. J. (1982). An evaluation of methods for the determination of organic and elemental carbon in particulate samples. In Particulate Carbon: Atmospheric Life Cycles. Plenum Press, New York, 89-109.
Cadle, S. H., Groblicki, P. J., and Mulawa, P. A. (1983). Problems in Sampling and Analysis of Carbon Particulate. Atmospheric Environment.17, 593-600.
Cass, G. R., Hughes, L. A., Bhave, P., Kleeman, M. J.,Allen, J. O., and Salmon, L. G. (2000). The Chemical Composition of Atmospheric Ultrafine Particles. Philosophical Transactions of the Royal Society of London: Series A. Mathematical and Physical Sciences, 358 (2000) 2581-2592.
Castro, L. M., Pio, C. A., Harrison, R. M., and Smith, D. J. T. (1999). Carbonaceous aerosol in urban and rural European atmospheres: estimate of secondary organic carbon concentrations. Atmospheric Environment 33, 2771-2781.
Chow, J. C. (1995). Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles. Journal of the Air & Waste Management Association 45, 320-382.
Chow, J. C., Watson, J. G., Chen, L.-W., Arnott, W. P., Moosmüller, H., and Fung, K. (2004). Equivalence of elemental carbon by the IMPROVE and STN Thermal/Optical Carbon Analysis Methods. Environmental Science and Technology, in press.
Chow, J. C., Watson, J. G., Chen, L.-W., Arnott, W. P., and Moosmüller, H. (2004). Equivalence of Elemental Carbon by Thermal/Optical Reflectance and Transmittance with Different Temperature Protocols. Environmental Science and Technology 38, 4414-4422.
Chow, J. C., Watson, J. G., Chen, L.-W. A., Chang, M.-C. O., and Miranda, G. P. (2005). Comparison of the DRI/OGC and Model 2001 Thermal/Optical Carbon Analyzers. Report. Submitted to IMPROVE Steering Committee.
Chow, J. C., Watson, J. G., Crow, D., Lowenthal, D. H., and Merriifield, T. (2001). Comparison of IMPROVE and NIOSH Carbon Measurements. Aerosol Science and Technology 34(1), 23-34.
Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W .R., Frazier ,C. A., and Purcell, R. G. (1993). The DRI thermal/optical reflectance carbon analysis system:description , evaluation and application in US. Air Quality Studies. Atmospheric Environment 27A(8), 1185-1201.
Day, D. E., and Malm, W. C. (2001). Aerosol light scattering measurements as a function of relative humidity:a comparison between measurements made at three different sites. Atmospheric Environment 35, 5169-5179.
Duan, F., He, K., Ma, Y., Jia, Y., Yang, F., Lei, Y., Tanaka, S., and Okuta, T. (2005). Characteristics of carbonaceous aerosols in Beijing, China. Atmospheric Environment 60, 355-364.
Fung, K. K. (1990). Particulate carbon speciation by MnO2 oxidation. Aerosol Science and Technology 12(1), 122-127.
Fung, K. K, Chow, J. C., and Watson, J. G. (2002). Evaluation of OC/EC speciation by thermal manganese dioxide oxidation and the IMPROVE method. Journal of the Air & Waste Management Association 52(11), 1333-1341.
Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K., and Rau, J. A. (1986). Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles. Environmental Science and Technology 20, 580-589.
Hering , S. V., and Friedlander, S. K. (1982). Origins of aerosol sulfur size distributions in the Los Angeles basin, Atmospheric Environment 16, 2647-2656.
Hildemann, L. M., Rogge, W. F., Cass, G. R., Mazurek, M. A., and Simoneit, B. R.T. (1996). Contribution of primary aerosol emissions from vegetation-derived sources to fine particle concentrations in Los Angeles. Journal of Geophysical Research 101, 19541-19549.
Hitzenberger, R., Jennings, S. G., Larson, S. M., Diller, A., Cachier, H., Galambos, Z., Rouc, A., and Spain, T. G. (1999). Intercomparison of Measurement Methods for Black Carbon Aerosols, Atmospheric Environment 33, 2823-2833.
Huntzicker, J. J., Heyerdahl, E. K., Rau, J. A., Griest, W. H., and MacDougall, C. S. (1986). Carbonaceous aerosol in the Ohio River Valley. Journal of Air Pollution Control Association 36, 705-709.
Huntzicker, J. J., Johnson, R. L., Shah, J. J., and Cary, R. A. (1982). Analysis of organic and elemental carbon in ambient aerosols by a thermal-optical method. Particulate Carbon: Atmospheric Life Cycle. Plenum Press, New York, 79-88.
Jeong, C.-H., Lee, D.-W., Kim, E., and Hopke, P. K. (2004). Measurement of real-time PM2.5 mass, sulfate, and carbonaceous aerosols at the multiple monitoring sites. Atmospheric Environment 38, 5247-5256
John, W., Wall, S. M., Ondo, J. L., and Winklmayr, W. (1990). Modes in the Size Distribution of Atmospheric Inorganic Aerosol. Atmospheric Environment 24A, 2349-2359.
Johnson, R. L., Shah, J. J., Cary, R. A., and Huntzicker, J. J. (1981). An automated thermal-optical method for the analysis of carbonaceous aerosol. In Atmospheric Aerosol: Source/Air Quality Relationships. American Chemical Society, Washington, DC, 223-233.
Keil, A., and Wendisch, M. (2001). Bursts of Aitken Mode and Ultrafine Particles Observed at the Top of Continental Boundary Layer Clouds. Journal of Aerosol Science 32 (5), 649-660.
Kim, E., Hopke, P. K., and Edgerton, E. S. (2004). Improving source identification of Altanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment 38, 3349-3362.
Koloutsou-Vakakis, S., Carrico, C. M., Li, Z., Rood, M. J., and Ogren, J. A. (1999). Characterisation of Aerosol Properties and Radiative Forcing at an Anthropogenically Perturbed Continental Site. Physical and Chemical of the Earth 24, 541-546.
Lee, C. T., and Hsu, W. C. (1993). The source apportionment of an urban aerosol from chemical properties of aerosol spectra near atmospheric sources. 85th annual meeting and exhibition at Denver, Colorado, U.S.A.
Lin, C., and Friedlander, S. K. (1988a). Anote on the use of glass fiber filters in the thermal analysis of carbon containing aerosol. Atmospheric Environment 22, 605-607.
Lin, C., and Friedlander, S. K. (1988b). Soot oxidation in fibrous filter. 1. Deposit structure and reaction mechanisms. Langmuir 4, 891-898.
Lin, C., and Friedlander, S. K. (1988c). Soot oxidation in fibrous filter. 2. Effects of temperature, oxygen partial pressure, and sodium additives. Langmuir 4, 898-903.
Mader, B. T., Flagan, R. C., and Seinfeld, J. H. (2002). Airborne measurements of atmospheric carbonaceous aerosol during ACE-Asia. Journal of Geophysical Research 107, D23, AAC 13-1-AAC 13-21.
Molnar, A., and Meszaros, E. (2001). On the relation between the size and chemical composition of aerosol particles and their optical properties. Atmospheric Environment 35, 5053-5058.
NIOSH (1996). Method 5040 Issue 1 (Interim): Elemental carbon (diesel exhaust). In NIOSH Manual of Analytical Methods, 4th ed. National Institute of Occupational Safety and Health, Cincinnati, OH.
NIOSH (1999). Method 5040 Issue 3 (Interim): Elemental carbon (diesel exhaust). In NIOSH Manual of Analytical Methods, 4th ed. National Institute of Occupational Safety and Health, Cincinnati, OH.
Novakov, T. (1982). Soot in the atmosphere. Edited by G. T. Wolff, and R. L. Klimisch. Particulate Carbon: Atmospheric Life Cycle. Plenum, New York, 19-41.
Nunes , T. V., and Pio, C. A. (1993). Carbonaceous aerosol in industrial and coastal atmospheres. Atmospheric Environment 27A, 1339-1346.
Pandis, S. N., Harley, R. H., Cass, G. R., and Seinfeld, J. H. (1992). Secondary organic aerosol formation and transport. Atmospheric Environment 26A, 2269-2282.
Park, S. S., Kim, Y. J., and Fung, K. (2002). PM2.5 carbon measurements in two urban areas: Seoul and Kwangju, Korea. Atmospheric Environment. 36, 1287-1297.
Park, S. S., Bae, M. S., Schauer, J. J., Ryu, S. Y., Kim, Y. J., Cho, S. Y., and Kim, S.J. (2005). Evaluation of the TMO and TOT methods for OC and EC measurements and their characteristics in PM2.5 at an urban site of Korea during ACE-Asia. Atmospheric Environment 39(28), 5101-5112.
Schauer, J. J., Rogge, W .F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T. (1996). Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment 22, 3837-3855.
Seinfeld, J. H., and Pandis, S. N. (1998). Atmospheric chemistry and physics : From air pollution to climate change. Wiley-Interscience, New York, 700-765.
Shah, J. J., Johnson, R. L., Heyerdahl, E. K., and Huntzicker, J. J. (1986). Carbonaceous aerosol at urban and rural sites in the United States. Journal of the Air Pollution Control Association 36, 254-257.
Shah, J. J., and Rau, J. A. (1991). Carbonaceous Species Methods Comparison Study; interlaboratory round robin interpretation of results. Presented at 4th int. Conf. Car-bonaceous Particles in the Atmosphere, Vienna, Austria, 3-5 April.
Shi, J. P., and Harrison, R. M. (1999). Investigation of Ultrafine Particle Formation during Diesel Exhaust Dilution. Environment Science and Technology 33 (21), 3730-3736.
Shi, J. P.; Evans, D. E.; Khan, A. A., and Harrison, R. M. (2001). Sources and Concentration of Nanoparticles (<10 nm Diameter) in the Urban Atmosphere. Atmospheric Environment 35 (7), 1193-1202.
Strader, R., Lurmann, F., and Pandis, S. N. (1999). Evaluation of secondary organic aerosol formation in winter. Atmospheric Environment 33, 4849-4863.
Tanner, R. L., Gaffney, J. S., and Phillips, M. F. (1982). Determination of organic and elemental carbon in atmospheric aerosol samples by thermal evolution. Analytical Chemistry 54, 1627-1630.
Turpin, B. J., Cary, R. A., and Huntzicker, J. J. (1990). An in-situ, time-resolved analyzed for aerosol organic and elemental carbon. Aereosol Science and Technology 12, 161-171.
Turpin, B. J., and Huntzicker, J. J. (1995). Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment 29, 3527-3544.
Venkataraman, C., and Friedlander, S. K. (1994a). Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 1. Sampling, measurement methods and
source characterization. Environmental Science and Technology 28, 555-562.
Viidanoja, J., Sillanpaa, M., Laakia, J., Kerminen, V., Hillamo, R., Aarnio, P., and Koskentalo, T. (2002). Organic and black carbon in PM2.5 and PM10: 1 year of data from an urban site in Helsinki, Finland. Atmospheric Environment 36, 3183-3193.
Wall, S. M., John, W., and Ondo, J. L. (1988). Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment 22, 1649-1656.
Watson, J. G. (2002). Visibility: Science and Regulation. Journal of the Air and Waste Management Association 52, 628-713.
Watson, J. G., Chow, J. C., and Chen, L.-W. A. (2005). Summary of Organic and Elemental Carbon/Black Carbon Analysis Methods and Intercomparisons. Aerosol and Air Quality Research 5(1), 65-102.
Watson, J. G., Chow, J. C., Lowenthal, D. H., Stolzenburg, M. R., Kreisberg, N. M., and Hering, S. V. (2002). Particle Size Relationships at the Fresno Supersite; Journal of the Air and Waste Management Association 52(7), 822-827.
Weber, R .J., Chen, G., Davis, D. D., Mauldin, R. L., Tanner, D. J., Eisele, F. L., Clarke, A. D., Thornton, D. C., and Bandy, A. R. (2001). Measurements of Enhanced H2SO4 and 3-4 nm Particles near a Frontal Cloud during the First Aerosol Characterization Experiment (ACE 1); Journal of Geophysical Research 106 (D20), 24107-24117.
Whitby, K.T. (1978). The Physical Characteristics of Sulfur Aerosols. Atmospheric Environment 12, 135-159.
Whitby, K. T., Husar, R. B., and Liu, B. Y .H. (1972). The Aerosol Size Distribution of Los Angeles Smog. Journal of Colloid and Interface Science 39 (1), 177-204.
Willeke, K., and Whitby, K. T. (1975). Atmospheric Aerosols: Size Distribution Interpretation. Journal of the Air Pollution Control Association 25 (5), 529-534.
Wilson, J. C., Gupta, A., Whitby, K. T., and Wilson, W. E. (1988). Measured Aerosol Light Scattering Coefficients Compared with Values Calculated from EAA and Optical Particle Counter Measurements: Improving the Utility of the Comparison. Atmospheric Environment 22 (4), 789-793.
Woo, K. S., Chen, D R., Pui, D. Y. H., McMurry, P. H. (2001). Measurement of Atlanta Aerosol Size Distributions: Observations of Ultrafine Particle Events. Aerosol Science and Technology 34 (1), 75-87.
Wu, P. M., and Okada, K. (1994). Nature of coarse nitrate particles in the atmosphere-a single particle approach. Atmospheric Environment 28, 2053-2060.
Yang, H. and Yu, J. Z. (2002). Uncertainties in charring correction in the analysis of elemental and organic carbon in atmospheric particles by thermal/optical methods. Environmental Science Technology 36(23), 5199-5204.
Yu, S., Dennis, R. L., Bhave, P. V., Eder, B. K. (2004). Primary and secondary organic aerosols over the United States estimates on the basis of observed organic carbon (OC) and elemental carbon (EC), and air quality modeled primary OCEC ratios. Atmospheric Environment 38, 5257-5268.
Zhao, W., and Hopke, P. K. (2004). Source apportionment for ambint particle in the San Gorgonio wilderness. Atmospheric Environment 38, 5901-5910.
Zheng, M., Cass, G. R., Schauer, J. J., and Edgerton, E. S. (2002). Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environmental Science and Technology 36, 2361-2371.
Zhiqiang, Q., Siegmann, K., Keller, A., Matter, U., Scherrer, L., and Siegmann, H.C. (1999). Nanoparticle Air Pollution in Major Cities and Its Origin. Atmospheric Environment 34 (3), 443-451.
Zhong, L.-X. and Chung, Y.-S. (1996). Aerosol size distribution and elemental composition in urban areas of northern China. Atmospheric Environment 30 (13), 2355-2362.
林政宏。1992年。公館地區CO濃度與氣象要素的關係。師大學報第37期,第505-528頁
周崇光、劉紹臣、李崇德、鄭曼婷、陳瑞仁、袁中新、吳義林、龍世俊、許文昌、許世傑、林傳堯。2005年。行政院環保署報告EPA-94-FA11-03-A165。
劉紹臣、李崇德、鄭曼婷、吳義林、袁中新、陳瑞仁、林博雄、許文昌、周崇光、龍世俊、許世傑、林傳堯、張志忠。2004年。台灣地區臭氧雨懸浮微粒預報模式建立及生成雨傳輸機制分析。行政院環保署報告EPA-93-FA11-03-D037。
指導教授 李崇德(Chung-Te Lee) 審核日期 2006-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明