博碩士論文 91326017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.143.241.253
姓名 劉詔文(Chao-Wen Liu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 生物反應牆袪除地下水中三氯乙烯和氯乙烯之研究
(Removal of TCE and VC in Groundwater by a Biobarrier)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採樣於疑似受TCE污染場址之現地土壤,由批次實驗探討現地土壤原生菌或額外添加甲苯分解菌(Pseudomonas putida F1)時,在好氧環境下,以甲苯為誘導基質,生物降解袪除地下水中三氯乙烯(Trichloroethylene, TCE)和氯乙烯(Vinyl chloride, VC)的可行性與降解機制。此外,以生物刺激的方式,利用土壤管柱模擬建構於地下飽和含水層之生物反應牆,探討應用現地土壤原生菌,整治受TCE和VC污染之地下水的可行性。
批次實驗結果發現,當添加100 mg/L甲苯於土壤原生菌時,TCE袪除率可達87%,驗證土壤原生菌可以甲苯為生長基質,產生甲苯加氧酵素,以好氧共代謝的方式袪除TCE。此外,P. putida F1對甲苯與TCE的降解率,均高於土壤原生菌,當添加100 mg/L甲苯時,P. putida F1對TCE共代謝袪除率可提升至94%。然而,若將P. putida F1植種至土壤中,P. putida F1會與土壤原生菌相互競爭甲苯基質,導致影響降解效果,TCE的降解率下降至89%。另一方面,當土壤原生菌以VC為唯一碳源時,可直接好氧降解VC,其降解率約為60%,此外,本研究實驗結果亦發現,在土壤原生菌降解VC的同時,若提供50和100 mg/L的甲苯,對VC降解率的提升並沒有明顯的幫助,顯示土壤原生菌無法以甲苯為基質,以好氧共代謝的方式祛除VC,至於是否有其他合適之好氧共代謝基質,可被土壤原生菌利用於代謝VC,仍需進一步驗證。
土壤管柱實驗主要包括三部分,(1)土壤原生菌管柱好氧直接氧化VC,(2)土壤原生菌管柱好氧共代謝TCE和(3)外添加P. putida F1之土壤管柱好氧共代謝TCE。在管柱操作0~20天,由於甲苯加氧酵素不足或微生物代謝活性低,使得各管柱均發生污染物貫穿現象,且污染物的生物袪除作用主要發生在管柱前端,同時,隨著操作時間的增加,污染物貫穿至出流端的濃度遞減。當管柱操作至30天時,管柱前端5cm處,對污染物的袪除率均可達99%以上,顯示管柱前端進入操作穩定期,此時生物降解作用最為旺盛。此外,在TCE與VC的好氧降解過程中,並未觀察到其他含氯中間產物的生成或累積。
摘要(英) The biodegradation and removal of trichloroethylene (TCE) and vinyl chloride (VC) in groundwater under aerobic condition by indigenous soil cells and toluene-degrading cell (Pseudomonas putida F1) were investigated in this study. A series of batch experiments using toluene as co-substrate to induce toluene dioxygenase (TDO) for co-metabolizing of TCE and VC were carried out. In addition, bioremediation of TCE and VC in contaminated saturated aquifer were studied by laboratory scale column tests, which were designed to simulate the bio-barriers under the conditions of enhancing activity of in-situ soil cells by bio-stimulation.
Batch experimental results showed that the indigenous soil cells and P. putida F1 could effectively co-metabolize TCE with 100 mg/L toluene added and the removal efficiency of TCE was 87% and 94%, respectively. However, when P. putida F1 seeded to soil, the TCE removal efficiency decreased from 94% to 89% due to the competition for toluene between P. putida F1 and indigenous soil cells. Additionally, indigenous soil cells could utilize VC as a sole carbon source and the removal efficiency of VC was around 60%. It also found that the supplement of exogenous primary substrate, e.g. toluene, did not increase the degradation of VC in this study. Thus, further studies are needed to figure out if any other compatible co-substrate could enhance the co-metabolize degradation of VC by indigenous cells.
Soil column tests included (1) indigenous soil column for aerobic oxidation of VC, (2) indigenous soil column for aerobic co-metabolism of TCE and (3) indigenous soil column with adding P. putida F1 for TCE co-metabolism. The test results indicated that TCE and VC would breakthrough along the columns during the initial start up period due to the lack of induced toluene dioxygenase or the low activity of microorganisms. Moreover, the dominant biodegradation occurred in the front end of the column after 20 days of operation. It observed that the concentrations of TCE and VC in the column effluent decreased with the increase of the operation time. The removal efficiencies of TCE and VC were greater than 99% after 30 days of operation. As a result, the soil columns could effectively biodegrade the contaminants when the growth of microorganisms approached to steady phase. In addition, no other chlorinated byproducts were detected while TCE and VC were biodegraded.
關鍵字(中) ★ 氯乙烯
★ 三氯乙烯
★ Pseudomonas putida F1
★ 土壤原生菌
★ 共代謝
★ 生物反應牆
關鍵字(英) ★ co-metabolism
★ indigenous soil cells
★ Pseudomonas putida F1
★ TCE
★ VC
★ bio-barrier
論文目次 目錄 i
表目錄 iv
圖目錄 vi
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
1-3 研究內容 2
第二章 文獻回顧 3
2-1 三氯乙烯與氯乙烯之污染特性 3
2-1-1 物化特性及用途 3
2-1-2 對人體之危害 5
2-1-3 環境危害性 8
2-2 三氯乙烯與氯乙烯生物降解之研究 10
2-2-1 三氯乙烯與氯乙烯之生物復育機制之研究 10
2-2-2 好氧共代謝原理 17
2-2-3 分解菌株之研究 23
2-3 地下水污染整治技術之研究現況 27
2-3-1 地下水污染整治技術之回顧 27
2-3-2 現地生物復育技術 32
2-3-3 現地生物復育於實場應用之型式 35
第三章 實驗設備、材料與方法 37
3-1 研究流程 37
3-2 實驗設計及操作方法 37
3-2-1 批次實驗 37
3-2-1-1 實驗內容 37
3-2-1-2 實驗操作方法 39
3-2-2 管柱實驗 46
3-2-2-1 實驗裝置 46
3-2-2-2 實驗操作方法 48
3-3 實驗設備與材料 51
3-3-1 實驗材料 51
3-3-2 實驗設備 54
3-4 分析方法 58
3-4-1 水質分析 58
3-4-2 微生物菌數測定 62
第四章 結果與討論 63
4-1 批次實驗 63
4-1-1 TCE共代謝生物降解 66
4-1-2 VC生物降解 73
4-1-3 鐵離子及過氧化氫濃度對TCE降解的影響 75
4-2 管柱實驗 77
4-2-1 背景實驗 77
4-2-2 生物管柱袪除TCE 79
4-2-2-1 土壤原生菌管柱 79
4-2-2-2 外添加P. putida F1袪除TCE 83
4-2-3 生物管柱袪除VC 86
4-2-4 管柱出流水DO與pH 90
4-3 中間產物鑑定與微觀觀察 92
4-3-1 中間產物鑑定 92
4-3-2 微生物數量觀察 97
4-3-3 土壤原生菌和土壤表面微觀觀察 99
4-4 生物反應牆之操作 101
4-4-1 生物反應牆污染物降解動力數學式 101
4-4-2 生物反應牆長期操作評估 103
第五章 結論與建議 104
5-1 結論 104
5-2 建議 105
參考文獻 106
參考文獻 1. Anderson, J. E. and McCarty, P. L., “Transformation Yield of Chlorinated Ethenes by a Methanotrophic Mixed Culture Expressing Particlulate Methane Monooxygenase,” Appl. Environ. Microbiol, 63(2), pp. 687-693 (1997).
2. Alvarez-cohens, L. and G. E. Speitel Jr., “Kinetics of Aerobic Cometablism of Chlorinated Solvents,” Biodegradation, 12(2), pp. 105-126(2001)
3. Bradley, P. M. and F. H. Chapelle, “Effect of Contaminant Concentration on Aerobic Microbial Mineralization of DCE and VC in Stream-Bed Sediments,” Environmental Science and Technology, 32(5), pp. 553-557(1998).
4. Bielefeldt, A. R., H. D. Stensel, S. E. Strand, “Cometabolic Degradation of TCE and DCE without Intermediate Toxicity,” Journal of Environmental Engineering, 121(11), pp. 791-797(1995)
5. Chang, H. L. and L. Alvarez-cohen, “Model of the Cometabolism Biodegradation of Chlorinated Organics,” Environmental Science and Technology, 29(9), pp. 2357-2367(1995).
6. Cho, M. C., D. O. Kang, B. D. Yoon and K. Lee, “Toluene Degradation Pathway from Pseudomonas putida F1: Substrate Specificity and Gene Induction by 1-Substituted Benzenes,” Journal of Industrial Microbiology & Biotechnology, 25(3), pp. 163-170 (2000).
7. Devlin, J. F., D. Katic and J. F. Barker, “In Situ Sequenced Bioremediation of Mixed Contaminants in Groundwater,” Journal of contaminant Hydrology, 69(3-4), pp. 233-261(2004).
8. Dolan, M. E. and P. L. McCarty, “Small-Column Microcosm for Assessing Methane-Stimulated Vinyl Chloride Transformation in Aquifer Samples,” Environmental Science and Technology, 29(8), pp. 1892-1897(1995).
9. Ely, R. L., K. J. Williamson, R. B. Guenther, M. R. Hyman and D. J. Arp, “A Cometabolic Kinetics Model Incorporating Enzyme Inhibition, Inactivation and Recovery: I. Model Development, Analysis and Testing,” Biotechnology and Bioengineering, 46(3), pp. 218-231(1995).
10. Fennell, D. E., J. M. Gossett and S. H. Zinder. “Comparison of Butyric Acid, Ethanol, Lactic Acid, and Propionic Acid as Hydrogen Donors for the Reductive Dechlorination of Tetrachloroethene,” Environmental Science and Technology, 31(3), pp. 918-925(1997).
11. Freeman, D. L. and S. D. Herz, “Use of Ethylene and Ethane as Primary Substrates for Aerobic Cometabolism of Vinyl Chloride,” Water Environment Research, 68(3), pp. 320-328(1996).
12. Gerritse, J., V. Renard, J. Visser, J. C. Gottschal, “Complete Degradation of Tetrachloroethene by Combining Anaerobic Dechlorinating and Aerobic Methanotrophic Enrichment Cultures,” Applied Microbiology Biotechnology, 43(5), pp. 920-928(1995)
13. Harkness, M. R., A. A. Bracco, M. J. Brennan Jr., K. A. DeWeerd and J. L. Spivack, “Use of Bioaugmentation to Stimulate Complete Reductive Dechlorination of Trichloroethene in Dover Soil Columns,” Environmental Science and Technology, 33(7), pp. 1100-1109(1999).
14. Hartmans, S. and J. DeBont, “Aerobic Vinyl Chloride Metabolism in Mycobacterium Arurum Li,” Applied and Environmental Microbiology, 58(4), pp. 1220-1229(1992).
15. Hartmans, S., A. Kaptein, J. Tramper and J. A. M. DeBont, “Characterization of a Mycobacterium sp. and Xanthobacter sp. for the Removal of Vinyl Chloride and 1,2-Dichloroethane from Waste Gases,” Applied Microbiology Biotechnology, 37, pp. 796-801(1992).
16. Hopkins, G. D. and P. L. McCarty, “Field Evaluation of In Situ Aerobic Cometabolism of Trichloroethylene and Three Dichloroethylene Isomers Using Phenol and Toluene as the Primary Substrates,” Environmental Science and Technology, 29(6), pp. 1628-1637(1995).
17. Kao, C. M., S. C. Chen and M. C. Su, “Laboratory Column Studies for Evaluating a Barrier System for Providing Oxygen and Substrate for TCE Biodegradation,” Chemosphere, 44, pp. 925-934(2001).
18. Lebeault, J. M., “Selecting Innovative Cleanup Technologies for Soil and Groundwater: From a Physiological to an Engineering Approach,” 1997 International Conference on Groundwater Quality Protection, Taipei, pp. 129-146 (1997).
19. Little, C. D., A. V. Palumbo, S. E. Herbes, M. E. Lidstrom, R. L. Tyndall and P. J. Gilmer, “Trichloroethylene Biodegradation by a Methane-OxidizingBacterium,” Applied and Environmental Microbiology, 54(4), pp. 951-956(1988).
20. Lovelace, K. A., “Evaluating the Technical Impracticability of Groundwater Cleanup,” 1997 International Conference on Groundwater Quality Protection, Taipei, pp. 165-179(1997).
21. Lu, C. J. and M. S. Lee, “The Effect of Toluene on the Cometabolic Trichloroethylene Removal from Soil,” Journal of the Chinese Institute of Environmental Engineering, 13(1), pp. 7-15(2003).
22. Malachowsky, K. J., T. J. Phelps, A. B. Teboli, D. E. Minnikin and D. C. White, “Aerobic Mineralization of Trichloroethylene, Vinyl Chloride, and Aromatic Compounds by Rhodococcus species,” Applied and Environmental Microbiology, 60(2), pp. 542-548(1994).
23. McCarty, P. L., M. N. Goltz, G. D. Hopkins, M. E. Dolan, J. P. Allan, B. T. Kawakami, and T. J. Carrothers, “Full-Scale Evaluation of In-Situ Cometabolic Degradation of Trichloroethylene in Groundwater through Toluene Injection,” Environmental Science and Technology, 32(1), pp. 88-100(1998).
24. Munakata-Marr, J., V. G. Matheson, L. J. Forney, J. M. Tiedje and P. L. McCarty, “Long- Term Biodegradation of Trichloroethylene Influenced by Bioaugmentation and Dissolved Oxygen in Aquifer Microcosms,” Environmental Science and Technology, 31(3), pp. 786-791(1997).
25. Oldenhuis, R., J. Y. Oedzes, J. J. Van Der Waarde and D. B. Janssen, “Kinetics of Chlorinated Hydrocarbons Degradation by Methylosins Trichosporium OB3b and Toxicity of Trichloroethylene,” Applied and Environmental Microbiology, 57(1), pp. 7-14(1991).
26. Rittmann, B. E. and P. L. McCarty, Environmental Biotechnology:Principles and Applications, New York, pp. 130-145.
27. Schafer, A. and E. J. Bouwer, “Toluene Induced Cometabolism of Cis-1,2-Dichloroethylene and Vinyl Chloride under Conditions Expected Downgradient of A Permeable Fe(0) Barrier,” Water Research, 34(13), pp. 3391-3399(2000).
28. Semprini, L., P. V. Roberts and G. D. Hopkins, “A Field Evaluation of In-Situ Biodegradation of Chlorinated Ethenes: Results of Biostimulation and Biotransformation Experiments,” Ground Water, 28, pp. 715-727(1990).
29. Smatlak, C. R., J. M. Gossett and S. H. Zinder, “Comparative Kinetics of Hydrogen Utilization for Reductive Dechlorination of Tetrachloroethene and Methanogenesis in an Anaerobic Enrichment Culture,” Environmental Science and Technology, 30(9), pp. 2850 - 2858(1996).
30. Travis, B. J. and N. D. Rosenberg, “Modeling In Situ Bioremediation of TCE at Savannah River: Effects of Product toxicity and Microbial Interactions on TCE Degradation,” Environmental Science and Technology, 31(11), pp. 3093-3102(1997).
31. Tschantz, M. F., J. P. Bowman, T. L. Donaldson, P. R. Bienkowski, J. M. Strong-Gunderson, A. V. Palumbo, S. E. Herbes and G. S. Sayler, “Methanotrophic TCE Biodegradation in a Multi-stage Bioreactor,” Environmental Science and Technology, 29(8), pp. 2073-2082(1995).
32. U.S. EPA, “Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water,” Office of Research and Development, <http://www.epa.gov/ada/reports.html>
33. U.S. EPA, “Permeable Reactive Subsurface Barriers for Interception and Remediation of Chlorinated Hydrocarbon and Chromium(Ⅵ) Plumes in Ground Water,” National Risk Management Research Laboratory, EPA-600-F-97-008(1997)
34. U.S. EPA, “Field Applictions of In Situ Remediation Technologies: Permeable Reactive Barrier,” Office of Solid Waste and Emergency Response, EPA-542-R-99-002(1999a)
35. U.S. EPA, “Groundwater Cleanup: Overview of Operation Experience at 28 sites,” Office of Solid Waste and Emergency Response, EPA-542-R-99-006(1999b)
36. U.S. EPA, “Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications,” Office of Solid Waste and Emergency Response, EPA-542-R-00-008(2000)
37. Verce, M. F., R. L. Ulrich and D. L. Freeman, “Characterization of an Isolate That Uses Vinyl Chloride as a Growth Substrate under Aerobic Conditions,” Applied and Environmental Microbiology, 66(8), pp. 3535-3542(2000).
38. Verce, M. F., C. K. Gunsch, A. S. Danko and D. L. Freeman, “Cometabolism of cis-1,2-Dichloroethylene by Aerobic Cultures Grown on Vinyl Chloride as the Primary Substrate,” Environmental Science and Technology, 36(10), pp.2171-2177(2002).
39. Vogel, T. M. and P. L. McCarty, “Biotransformation of Tetrachloroethylene to Trichloroethylene, Dichloroethylene, Vinyl Chloride, and Carbon Dioxide under Methanogenic Condition,” Applied and Environmental Microbiology, 49(5), pp. 1080-1083(1985).
40. Vogel, T. M. and P. L. McCarty, “Rate of Abiotic Formation of 1,1-Dichloroethylene from 1,1,1-Trichloroethane in Groundwater,” Journal of Contaminant Hydrology, 1(1987a).
41. Vogel, T. M., C. S. Criddle and P. L. McCarty, “Transformations of Halogenated Aliphatic Compounds,” Environmental Science and Technology, 21(8), pp. 727-736(1987b).
42. Wilson, J. T. and B. H. Wilson, “Biotrnsformation of Trichloroethylene in Soil,” Applied and Environmental Microbiology, 49(1), pp. 242-243(1985).
43. Winter, R. B.,K. M. Yen and B. D. Ensley, “Efficient Degradation of Trichloroethylene by a Recombinant Escherichia coli,” Bio/Technology, 7, pp. 282-285(1989)
44. 李志文,李文智,陳志勇,「一氯乙烯在高週波電漿中之反應機制」,碩士論文,國立成功大學環境工程學系,台南(1999)。
45. 李茂山「受2,4-二氯酚、三氯乙烯污染土壤之生物復育」,碩士論文,國立中興大學環境工程研究所,台中(1997)。
46. 吳宗南,「以電解Fenton法處理染料染整廢水之可行性研究」,碩士論文,國立中央大學環境工程研究所,中壢(1996)。
47. 官知嫻、李季眉、盧至人,「酚分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,台中(1998a)。
48. 官知嫻、李季眉、盧至人,「甲苯分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,台中(1998b)。
49. 林建芬,「甲烷分解菌對三氯乙烯好氧分解之影響」,碩士論文,國立中興大學環境工程研究所,台中(1994)。
50. 林秋裕,環境工程微生物學,國彰出版社,再版,第76-77頁,台中(1997)。
51. 郭家倫,「纖維床生物反應器去除甲苯與三氯乙烯之研究」,博士論文,國立中央大學環境工程研究所,中壢(2002)。
52. 蔡文田、林瑞雄,「氯乙烯毒性綜論及其風險性評估探討」,第九屆空氣污染控制技術研討會論文集,第53-61頁,台北(1992)。
53. 蔡政勳,「零價鐵反應牆處理三氯乙烯污染物之反應行為研究」,碩士論文,國立中央大學環境工程研究所,中壢(2000)。
54. 盧滄海、賴龍山,「廢溶劑回收可行性探討」,工業污染防治,第29期,第102-177頁(1989)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2004-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明