參考文獻 |
1. Anderson, J. E. and McCarty, P. L., “Transformation Yield of Chlorinated Ethenes by a Methanotrophic Mixed Culture Expressing Particlulate Methane Monooxygenase,” Appl. Environ. Microbiol, 63(2), pp. 687-693 (1997).
2. Alvarez-cohens, L. and G. E. Speitel Jr., “Kinetics of Aerobic Cometablism of Chlorinated Solvents,” Biodegradation, 12(2), pp. 105-126(2001)
3. Bradley, P. M. and F. H. Chapelle, “Effect of Contaminant Concentration on Aerobic Microbial Mineralization of DCE and VC in Stream-Bed Sediments,” Environmental Science and Technology, 32(5), pp. 553-557(1998).
4. Bielefeldt, A. R., H. D. Stensel, S. E. Strand, “Cometabolic Degradation of TCE and DCE without Intermediate Toxicity,” Journal of Environmental Engineering, 121(11), pp. 791-797(1995)
5. Chang, H. L. and L. Alvarez-cohen, “Model of the Cometabolism Biodegradation of Chlorinated Organics,” Environmental Science and Technology, 29(9), pp. 2357-2367(1995).
6. Cho, M. C., D. O. Kang, B. D. Yoon and K. Lee, “Toluene Degradation Pathway from Pseudomonas putida F1: Substrate Specificity and Gene Induction by 1-Substituted Benzenes,” Journal of Industrial Microbiology & Biotechnology, 25(3), pp. 163-170 (2000).
7. Devlin, J. F., D. Katic and J. F. Barker, “In Situ Sequenced Bioremediation of Mixed Contaminants in Groundwater,” Journal of contaminant Hydrology, 69(3-4), pp. 233-261(2004).
8. Dolan, M. E. and P. L. McCarty, “Small-Column Microcosm for Assessing Methane-Stimulated Vinyl Chloride Transformation in Aquifer Samples,” Environmental Science and Technology, 29(8), pp. 1892-1897(1995).
9. Ely, R. L., K. J. Williamson, R. B. Guenther, M. R. Hyman and D. J. Arp, “A Cometabolic Kinetics Model Incorporating Enzyme Inhibition, Inactivation and Recovery: I. Model Development, Analysis and Testing,” Biotechnology and Bioengineering, 46(3), pp. 218-231(1995).
10. Fennell, D. E., J. M. Gossett and S. H. Zinder. “Comparison of Butyric Acid, Ethanol, Lactic Acid, and Propionic Acid as Hydrogen Donors for the Reductive Dechlorination of Tetrachloroethene,” Environmental Science and Technology, 31(3), pp. 918-925(1997).
11. Freeman, D. L. and S. D. Herz, “Use of Ethylene and Ethane as Primary Substrates for Aerobic Cometabolism of Vinyl Chloride,” Water Environment Research, 68(3), pp. 320-328(1996).
12. Gerritse, J., V. Renard, J. Visser, J. C. Gottschal, “Complete Degradation of Tetrachloroethene by Combining Anaerobic Dechlorinating and Aerobic Methanotrophic Enrichment Cultures,” Applied Microbiology Biotechnology, 43(5), pp. 920-928(1995)
13. Harkness, M. R., A. A. Bracco, M. J. Brennan Jr., K. A. DeWeerd and J. L. Spivack, “Use of Bioaugmentation to Stimulate Complete Reductive Dechlorination of Trichloroethene in Dover Soil Columns,” Environmental Science and Technology, 33(7), pp. 1100-1109(1999).
14. Hartmans, S. and J. DeBont, “Aerobic Vinyl Chloride Metabolism in Mycobacterium Arurum Li,” Applied and Environmental Microbiology, 58(4), pp. 1220-1229(1992).
15. Hartmans, S., A. Kaptein, J. Tramper and J. A. M. DeBont, “Characterization of a Mycobacterium sp. and Xanthobacter sp. for the Removal of Vinyl Chloride and 1,2-Dichloroethane from Waste Gases,” Applied Microbiology Biotechnology, 37, pp. 796-801(1992).
16. Hopkins, G. D. and P. L. McCarty, “Field Evaluation of In Situ Aerobic Cometabolism of Trichloroethylene and Three Dichloroethylene Isomers Using Phenol and Toluene as the Primary Substrates,” Environmental Science and Technology, 29(6), pp. 1628-1637(1995).
17. Kao, C. M., S. C. Chen and M. C. Su, “Laboratory Column Studies for Evaluating a Barrier System for Providing Oxygen and Substrate for TCE Biodegradation,” Chemosphere, 44, pp. 925-934(2001).
18. Lebeault, J. M., “Selecting Innovative Cleanup Technologies for Soil and Groundwater: From a Physiological to an Engineering Approach,” 1997 International Conference on Groundwater Quality Protection, Taipei, pp. 129-146 (1997).
19. Little, C. D., A. V. Palumbo, S. E. Herbes, M. E. Lidstrom, R. L. Tyndall and P. J. Gilmer, “Trichloroethylene Biodegradation by a Methane-OxidizingBacterium,” Applied and Environmental Microbiology, 54(4), pp. 951-956(1988).
20. Lovelace, K. A., “Evaluating the Technical Impracticability of Groundwater Cleanup,” 1997 International Conference on Groundwater Quality Protection, Taipei, pp. 165-179(1997).
21. Lu, C. J. and M. S. Lee, “The Effect of Toluene on the Cometabolic Trichloroethylene Removal from Soil,” Journal of the Chinese Institute of Environmental Engineering, 13(1), pp. 7-15(2003).
22. Malachowsky, K. J., T. J. Phelps, A. B. Teboli, D. E. Minnikin and D. C. White, “Aerobic Mineralization of Trichloroethylene, Vinyl Chloride, and Aromatic Compounds by Rhodococcus species,” Applied and Environmental Microbiology, 60(2), pp. 542-548(1994).
23. McCarty, P. L., M. N. Goltz, G. D. Hopkins, M. E. Dolan, J. P. Allan, B. T. Kawakami, and T. J. Carrothers, “Full-Scale Evaluation of In-Situ Cometabolic Degradation of Trichloroethylene in Groundwater through Toluene Injection,” Environmental Science and Technology, 32(1), pp. 88-100(1998).
24. Munakata-Marr, J., V. G. Matheson, L. J. Forney, J. M. Tiedje and P. L. McCarty, “Long- Term Biodegradation of Trichloroethylene Influenced by Bioaugmentation and Dissolved Oxygen in Aquifer Microcosms,” Environmental Science and Technology, 31(3), pp. 786-791(1997).
25. Oldenhuis, R., J. Y. Oedzes, J. J. Van Der Waarde and D. B. Janssen, “Kinetics of Chlorinated Hydrocarbons Degradation by Methylosins Trichosporium OB3b and Toxicity of Trichloroethylene,” Applied and Environmental Microbiology, 57(1), pp. 7-14(1991).
26. Rittmann, B. E. and P. L. McCarty, Environmental Biotechnology:Principles and Applications, New York, pp. 130-145.
27. Schafer, A. and E. J. Bouwer, “Toluene Induced Cometabolism of Cis-1,2-Dichloroethylene and Vinyl Chloride under Conditions Expected Downgradient of A Permeable Fe(0) Barrier,” Water Research, 34(13), pp. 3391-3399(2000).
28. Semprini, L., P. V. Roberts and G. D. Hopkins, “A Field Evaluation of In-Situ Biodegradation of Chlorinated Ethenes: Results of Biostimulation and Biotransformation Experiments,” Ground Water, 28, pp. 715-727(1990).
29. Smatlak, C. R., J. M. Gossett and S. H. Zinder, “Comparative Kinetics of Hydrogen Utilization for Reductive Dechlorination of Tetrachloroethene and Methanogenesis in an Anaerobic Enrichment Culture,” Environmental Science and Technology, 30(9), pp. 2850 - 2858(1996).
30. Travis, B. J. and N. D. Rosenberg, “Modeling In Situ Bioremediation of TCE at Savannah River: Effects of Product toxicity and Microbial Interactions on TCE Degradation,” Environmental Science and Technology, 31(11), pp. 3093-3102(1997).
31. Tschantz, M. F., J. P. Bowman, T. L. Donaldson, P. R. Bienkowski, J. M. Strong-Gunderson, A. V. Palumbo, S. E. Herbes and G. S. Sayler, “Methanotrophic TCE Biodegradation in a Multi-stage Bioreactor,” Environmental Science and Technology, 29(8), pp. 2073-2082(1995).
32. U.S. EPA, “Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water,” Office of Research and Development, <http://www.epa.gov/ada/reports.html>
33. U.S. EPA, “Permeable Reactive Subsurface Barriers for Interception and Remediation of Chlorinated Hydrocarbon and Chromium(Ⅵ) Plumes in Ground Water,” National Risk Management Research Laboratory, EPA-600-F-97-008(1997)
34. U.S. EPA, “Field Applictions of In Situ Remediation Technologies: Permeable Reactive Barrier,” Office of Solid Waste and Emergency Response, EPA-542-R-99-002(1999a)
35. U.S. EPA, “Groundwater Cleanup: Overview of Operation Experience at 28 sites,” Office of Solid Waste and Emergency Response, EPA-542-R-99-006(1999b)
36. U.S. EPA, “Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications,” Office of Solid Waste and Emergency Response, EPA-542-R-00-008(2000)
37. Verce, M. F., R. L. Ulrich and D. L. Freeman, “Characterization of an Isolate That Uses Vinyl Chloride as a Growth Substrate under Aerobic Conditions,” Applied and Environmental Microbiology, 66(8), pp. 3535-3542(2000).
38. Verce, M. F., C. K. Gunsch, A. S. Danko and D. L. Freeman, “Cometabolism of cis-1,2-Dichloroethylene by Aerobic Cultures Grown on Vinyl Chloride as the Primary Substrate,” Environmental Science and Technology, 36(10), pp.2171-2177(2002).
39. Vogel, T. M. and P. L. McCarty, “Biotransformation of Tetrachloroethylene to Trichloroethylene, Dichloroethylene, Vinyl Chloride, and Carbon Dioxide under Methanogenic Condition,” Applied and Environmental Microbiology, 49(5), pp. 1080-1083(1985).
40. Vogel, T. M. and P. L. McCarty, “Rate of Abiotic Formation of 1,1-Dichloroethylene from 1,1,1-Trichloroethane in Groundwater,” Journal of Contaminant Hydrology, 1(1987a).
41. Vogel, T. M., C. S. Criddle and P. L. McCarty, “Transformations of Halogenated Aliphatic Compounds,” Environmental Science and Technology, 21(8), pp. 727-736(1987b).
42. Wilson, J. T. and B. H. Wilson, “Biotrnsformation of Trichloroethylene in Soil,” Applied and Environmental Microbiology, 49(1), pp. 242-243(1985).
43. Winter, R. B.,K. M. Yen and B. D. Ensley, “Efficient Degradation of Trichloroethylene by a Recombinant Escherichia coli,” Bio/Technology, 7, pp. 282-285(1989)
44. 李志文,李文智,陳志勇,「一氯乙烯在高週波電漿中之反應機制」,碩士論文,國立成功大學環境工程學系,台南(1999)。
45. 李茂山「受2,4-二氯酚、三氯乙烯污染土壤之生物復育」,碩士論文,國立中興大學環境工程研究所,台中(1997)。
46. 吳宗南,「以電解Fenton法處理染料染整廢水之可行性研究」,碩士論文,國立中央大學環境工程研究所,中壢(1996)。
47. 官知嫻、李季眉、盧至人,「酚分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,台中(1998a)。
48. 官知嫻、李季眉、盧至人,「甲苯分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,台中(1998b)。
49. 林建芬,「甲烷分解菌對三氯乙烯好氧分解之影響」,碩士論文,國立中興大學環境工程研究所,台中(1994)。
50. 林秋裕,環境工程微生物學,國彰出版社,再版,第76-77頁,台中(1997)。
51. 郭家倫,「纖維床生物反應器去除甲苯與三氯乙烯之研究」,博士論文,國立中央大學環境工程研究所,中壢(2002)。
52. 蔡文田、林瑞雄,「氯乙烯毒性綜論及其風險性評估探討」,第九屆空氣污染控制技術研討會論文集,第53-61頁,台北(1992)。
53. 蔡政勳,「零價鐵反應牆處理三氯乙烯污染物之反應行為研究」,碩士論文,國立中央大學環境工程研究所,中壢(2000)。
54. 盧滄海、賴龍山,「廢溶劑回收可行性探討」,工業污染防治,第29期,第102-177頁(1989)。 |