博碩士論文 91343006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:18.117.254.236
姓名 陳益德(Yi-De Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 控制系統下干擾消除方法之研究
(Studied on Disturbance Rejection Methods of Control Systems)
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究
★ 自動化鞋型切削機之設計與實現★ 以FPGA為基礎之精密位置控制IC
★ CNC三維圓弧插補器★ PID與模糊控制在營建工程自動化的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 外力干擾發生在許多控制工程的應用場合中,本篇論文提出幾種主動式干擾消除的方法來降低控制系統中週期或非週期干擾所造成的影響。首先討論幾種常見的解決週期干擾的方法,並提出一個改良的凹口濾波器來消除線性系統中的週期干擾,使用此方法可快速的降低外力干擾的影響,而外力干擾的週期量測誤差範圍及降低干擾影響的效果可藉由調整凹口濾波器的參數來做設計。其次針對未知頻率的週期或非週期干擾,提出兩種具強健性的干擾消除方案,第一種方案是結合滑動控制與提出的新的干擾消除控制器,而第二種則是利用修改過的滑動控制器與時間延遲控制作結合,不同於以往常見的方法,兩種方案都不需要對干擾的頻率作估測,並可在不確定性的穩定系統及不穩定系統中降低週期或非週期干擾的影響,在第一種方案中所提出的干擾消除控制器亦可進一步地與Astrom’s Smith預測器及灰色預測方法作結合,於線性延遲系統中降低週期外力干擾的影響。
摘要(英) Disturbance problems can occur in many different engineering control applications. This dissertation presents some active disturbance rejection methods to reduce influences of periodic or non-periodic unknown disturbances in control systems. First, several common methods of periodic disturbances rejection are discussed. A modified notch filter is proposed to reject the periodic disturbance in the linear control system. The use of the notch controller can lead to a quick reduction of the influence of an excitation force. The tolerant error range of the corresponding frequency and the disturbance reduction effect can be designed by adjusting parameters of the modified notch filter. Next we propose two robust disturbance rejection schemes for dealing with disturbances of unknown frequencies. One of disturbance rejection schemes is a novel disturbance reduction controller with a sliding mode controller. Another scheme is a modified sliding mode controller with time delay control. Unlike many other approaches, both the schemes proposed here do not require the disturbance frequencies of the separate harmonics to be estimated and can reduce both periodic and non-periodic unknown disturbances with uncertainties in stable systems or in unstable systems. The proposed controller in one of the schemes can be extended to be combined with Astrom’s modified Smith predictor and a grey predictor for periodic disturbance reduction in linear delay systems.
關鍵字(中) ★ 干擾消除
★ 內部模型原理
★ 適應性前餽消除
★ 滑動控制
★ 時間延遲控制
★ 灰色預測
★ 史密斯預測器
關鍵字(英) ★ disturbance rejection
★ internal mode principle
★ adaptive feedforward cancellation
★ sliding mode control
★ grey prediction
★ time delay control
★ smith predictor
論文目次 摘要 I
ABSTRACT II
誌謝 IV
Contents i
Figure Captions iv
1 Introduction P.1
1.1 Motivation P.1
1.2 Literature survey P.3
1.3 Organization of this dissertation P.5
2 Rejection of Periodic Disturbances P.8
2.1 Outline of this chapter P.8
2.2 Periodic disturbances system P.8
2.3 Conventional methods for the rejection of periodic disturbances P.11
2.3.1 Internal mode principle P.11
2.3.2 Adaptive feedforward cancellation P.13
2.3.3 Equivalence between IMP and AFC controllers P.16
2.4 Application of notch filter controller P.16
3 Robust Disturbance Rejection Schemes P.20
3.1 Outline of this chapter P.20
3.2 Disturbance rejection scheme 1 P.20
3.2.1 Problem statement P.20
3.2.2 Novel disturbance reduction controller P.21
3.2.3 Combined disturbance reduction controller and sliding mode controller P.26
3.3 Disturbance rejection scheme 2 P.29
3.3.1 Problem statement P.29
3.3.2 Modified SMC with time delay control P.32
4 Modified Smith Predictor Scheme for Periodic Disturbance Reduction in Linear Delay Systems P.37
4.1 Outline of this chapter P.37
4.2 Smith predictor control P.37
4.3 Disturbance reduction scheme P.42
4.3.1 Disturbance reduction controller P.42
4.3.2 Grey prediction P.47
5 Simulations P.51
5.1 Outline of this chapter P.51
5.2 Disturbance rejection in an unstable system with modeling uncertainties P.51
5.3 Tracking problem of a nonlinear system with unknown disturbance P.62
5.4 Periodic disturbance reduction in linear delay systems P.71
6 Discussions and Conclusions P.81
References P.84
Publication Lists P.91
參考文獻 [1] B. Francis and B. Wonham, “The internal model principle of control theory”, Automatica, vol. 12, no. 5, pp. 457-465, Sept. 1976.
[2] N. K. Gupta, “Frequency-shaped cost functionals: extension of linear-quadratic- gaussian design methods”, Journal of Guidance and Control, vol. 3, no. 6, pp. 529-535, Nov. 1980.
[3] K. Chew and M. Tomizuka, “Digital control of repetitive errors in disk drive systems”, IEEE Control Systems Magazine, vol. 10, no.1, pp. 16-19, Jan. 1990.
[4] S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Repetitive control systems: A new type servo system for periodic exogenous signals”, IEEE Transaction of Automatic Control, vol. 33, no. 7, pp. 659-668, Jul. 1988.
[5] S. Weerasooriya, J. L. Zhang, and T. S. Low, “Efficient implementation of adaptive feedforward runout cancellation in a disk drive”, IEEE Transactions of Magnetics, vol.32, issue 5, pp. 3920-3922, Sept. 1996.
[6] M. F. Byl, S. J. Ludwick, D. L. Trumper, “A loop shaping perspective for tuning controllers with adaptive feedforward cancellation”, Precision Engineering, vol. 29, no. 1, pp. 27-40, Jan. 2005.
[7] H. S. Lee, “Implementation of adaptive feedforward cancellation algorithms for pre-embossed rigid magnetic disks”, IEEE Transactions on Magnetics, vol. 33, no.3, pp. 2419-2423, May 1997.
[8] M. Bodson, A. Sacks, and P. Khosla, “Harmonic generation in adaptive feedforward cancellation schemes”, IEEE Transaction of Automatic Control, vol. 39, no.9, pp. 1939-1944, Sept. 1994.
[9] A. Sacks, M. Bodson, and P. Khosla, “Experimental results of adaptive periodic disturbance cancellation in a high performance magnetic disk drive”, Journal of Dynamics Systems, Measurement, and Control, Transactions of the ASME, vol. 118, pp. 416-424, Sept. 1996.
[10] W. Messner and M. Bodson, “Design of adaptive feedforward algorithms using internal model equivalence”, International Journal of Adaptive Control and Signal Processing, vol. 9, no.2, pp. 199-212, Mar. 1995.
[11] M. Bodson and S. C. Douglas, “Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequency”, Automatica, vol. 33, no. 12, pp. 2213-2223, Dec. 1997.
[12] P. Regalia, “An improved lattice-based adaptive IIR notch filter”, IEEE Trans. Signal Processing, vol. 39, no.9, pp. 2124-2128, Sept. 1991.
[13] M. Bodson, J. S. Jensen, and S. C. Douglas, “Active noise control for periodic disturbances”, IEEE Trans. Control Syst. Technol., vol. 9, no.1, pp. 200-205, Jan. 2001.
[14] B. Wu and M. Bodson, “A magnitude/phase-locked loop approach to parameter estimation of periodic signals”, IEEE Transaction of Automatic Control, vol. 48, no. 4, pp. 612-618, Apr. 2003.
[15] C. T. Tsao, Y. X. Qian, and M. Nemani, “Repetitive control for asymptotic tracking of periodic signals with an unknown period”, Journal of Dynamic Systems, Measurement, and Control, Transactions of the ASME, vol. 122, pp. 364-369, Jun. 2000.
[16] L. J. Brown and Q. Zhang, “Periodic disturbance cancellation with uncertain frequency”, Automatica, vol. 40, no. 4, pp. 631-637, Apr. 2004.
[17] J.-J. E. Slotine, “Sliding controller design for nonlinear systems”, International Journal of Control, vol. 40, no. 2, pp. 421-434, Aug. 1984.
[18] V. Utkin and J. Shi, “Integral sliding mode in systems operating under uncertainty conditions”, Proceedings of the IEEE Conference on Decision and Control, vol. 4, pp. 4591-4596, 1996.
[19] D. S. Yoo and M. J. Chung, “A variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties”, IEEE Transactions on Automatic Control, vol. 37, no. 6, pp. 860-865, Jun. 1992.
[20] H.-H. Tsai, C.-C. Fuh, and C.-N. Chang, “A robust controller for chaotic systems under external excitation”, Chaos, Solitons and Fractals, vol. 14, no. 4, pp. 627-632, Sept. 2002.
[21] K. Youcef-Toumi and O. Ito, “A time delay controller for systems with unknown dynamics”, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 112, no. 1, pp. 133-142, Mar. 1990.
[22] K. Youcef-Toumi and S.-T. Wu, “Input/output linearization using time delay control”, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 114, no. 1, pp. 10-19, Mar. 1992.
[23] H. Morioka, K. Wada, and A. Sabanovic, “Sliding mode control based on the time delay estimation”, IEEE International Workshop on Variable Structure Systems, VSS, Proceedings, pp. 102-107, 1996.
[24] C. Wen, Z. Huaguang, and Y. Chaowan, “Input/output linearization for nonlinear systems with uncertainties and disturbances using TDC”, Cybernetics and Systems, vol. 28, no. 7, pp. 625-634, Oct. 1997.
[25] J.-X. Xu and W.-J. Cao, “Synthesized sliding mode and time-delay control for a class of uncertain systems”, Automatica, vol. 36, no. 12, pp. 1909–1914, Dec. 2000.
[26] H. Morioka, A. Sabanovic, A. Uchibori, K. Wada, and M. Oka, “Application of time-delay-control in variable structure motion control systems”, IEEE International Symposium on Industrial Electronics, vol. 2, pp. 1313–1318, 2001.
[27] H. J. Lee and J. J. Lee, “Time delay control of a shape memory alloy actuator’, Smart Materials and Structures, vol. 13, no. 1, pp. 227–239, Feb. 2004.
[28] J.-P. Richard, “Time-delay system: an overview of some recent advances and open problems”, Automatica, vol. 39, no. 10, pp. 1667–1694, Oct. 2003.
[29] K. Watanabe and M. Ito, “A process-model control for linear systems with delay”, IEEE Transaction of Automatic Control, vol. 26, no. 6, pp. 1261–1269, Dec. 1981.
[30] O. J. Smith, “A controller to overcome dead time”, ISA J., vol. 6, pp. 28–33, 1959.
[31] K. J. Astrom, C. C. Hang, and B. C. Lim, “A new smith predictor for controlling a process with an integrator and long dead-time”, IEEE Transaction of Automatic Control, vol.39, no. 2, pp. 343–345, Feb. 1994.
[32] M. R. Matausek and A. D. Micic, “On the modified Smith predictor for controlling a process with an integrator and long dead time”, IEEE Transaction of Automatic Control, vol. 44, no. 8, pp. 1603–1606, Aug. 1999.
[33] I.-L. Chien, S. C. Peng, and J. H. Liu, “Simple control method for integration processes with long deadtime”, Journal of Process Control, vol. 12, no.3, pp. 391–404, Apr. 2002.
[34] M. R. Stojic, M. S. Matijevic, and L. S. Draganovic, “A robust Smith predictor modified by internal models for integrating process with dead time”, IEEE Transaction of Automatic Control, vol. 46, no. 8, pp. 1293–1298, Aug. 2001.
[35] I. Kaya, “IMC based automatic tuning method for PID controllers in a Smith predictor configuration”, Computers & Chemical Engineering, vol. 28, no.3, pp. 281-290, Mar. 2004.
[36] T. Takehara, T. Kunitake, H. Hashimoto, and F. Harashima, “The control for the disturbance in the system with time delay”, International Workshop on Advanced Motion Control, AMC, vol. 1, pp. 349–353, 1996.
[37] Q.-G. Wang, H.-Q. Zhou, Y.-S. Yang, Y. Zhang, and Y. Zhang, “Modified Smith predictor design for periodic disturbance rejection”, 2004 5th Asian Control Conference, vol. 2, pp. 1145–1150, 2004.
[38] S. Sastry and M. Bodson, Adaptive Control, Stability, Convergence, and Robustness., Prentice-Hall: Englewood Cliffs, NJ, 1989.
[39] K. J. Astrom and B. Wittenmark, Adaptive Control., Addison-Wesley Publishing Company: Reading, MA, 1995.
[40] B. Widrow and S. D. Stearns, Adaptive Signal Processing., Prentice-Hall: Englewood Cliffs, NJ, 1985.
[41] N. J. Bershad and J. C. M. Bermudez, “Sinusoidal interference rejection analysis of an LMS adaptive feedforward controller with a noisy periodic reference”, IEEE Trans. Signal Processing, vol. 46, no. 5, pp. 1298-1313, May 1998.
[42] C.-Y. Chang and K.-K. Shyu, “Active noise cancellation with a fuzzy adaptive filtered-X algorithm”, IEE Proceedings: Circuits, Devices and Systems, vol. 150, no. 5, pp. 416-422, Oct. 2003.
[43] H.-S. Ha and Y. Park, “An adaptive feedforward controller for rejection of periodic disturbances”, Journal of Sound and Vibration, vol.201, no. 4, pp.427-435, Apr. 1997.
[44] X. Yegui and T. Yoshiaki, “LMS-based notch filter for the estimation of sinusoidal signals in noise”, Signal Processing, vol. 46, no. 2, pp. 223-231, Oct. 1995.
[45] W. C. Su, S. V. Drakunov, and U. Ozguner, “Constructing discontinuity surfaces for variable structure systems: a Lyapunov approach”, Automatica, vol. 32, no. 6, pp. 925-928, Jun. 1996.
[46] J. J. E. Slotine and S. S. Sastry, “Tracking control of nonlinear systems using sliding surfaces with application to robot manipulators”, International Journal of Control, vol. 38, no. 2, pp. 465-492, Aug. 1983.
[47] J. L. Deng, “Control problem of grey system”, System & Control Letters, vol.1, pp. 288–294, 1982.
[48] S.-J. Huang and C.-L. Huang, “Control of an inverted pendulum using grey prediction model”, IEEE Transactions on Industry Applications, vol. 36, no.2, pp. 452–458, Mar. 2000.
指導教授 董必正(Pi-Cheng Tung) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明