博碩士論文 91344012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.119.133.211
姓名 林克融(Ko-Jung Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討通氣量與光照度對巴西蘑菇活性物質生產之影響
(Effects of aeration rate and light intensity on the production of bioactive materials by Agaricus blazei in batch cultures)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 巴西蘑菇是食藥用菇的一種,因其具有許多活性物質而廣受大家注目,尤其是抗腫瘤多醣體。文獻中對其活性物質之功能已有相當多的研究報告,然而對利用液態深層發酵生產的操作條件,文獻卻相對較少,為了提高巴西蘑菇發酵生產的產量,本實驗室過去曾對培養基組成、pH值、攪拌速率、溫度等操作條件進行探討並發表研究報告,因此本研究針對通氣量及光照度對巴西蘑菇液態深層發酵生產活性物質的影響來作探討,本研究探討之主要產物包括多醣體、beta-(1,3)-glucan、beta-(1,3)-glucanase酵素、麥角固醇及二次代謝物blazeispirol A,此外也利用體外測試(in vitro)之動物細胞實驗,評估不同發酵條件所得到的巴西蘑菇多醣體、麥角固醇與blazeispirol A之生物活性或抗腫瘤能力測定。
第一部分的實驗為通氣量對巴西蘑菇活性物質生產之影響,分別進行搖瓶實驗及5 L攪拌式發酵槽實驗。搖瓶震盪培養係利用不同工作體積分別為50、100及150 mL三組搖瓶實驗,探討對巴西蘑菇液態發酵生產上的影響,實驗結果發現,隨著工作體積的增加,單位體積之液面表面積隨之減少;菌體形態隨之由菌球變成絲狀;beta-(1,3)-glucanase酵素活性與blazeispirol A之yield值(YP3/X、YP3/S)隨之下降;但是麥角固醇之yield值(YP2/X、YP2/S)卻是隨之上升的結果。另外,最適菌體、多醣體、beta-(1,3)-glucan、大分子量多醣生產之工作體積為100 mL。
5 L攪拌式發酵槽培養實驗係探討五組不同通氣量分別為0.1-0.5 vvm,對巴西蘑菇液態深層發酵的影響,實驗結果顯示隨著通氣量的增加,氧氣質傳速率係數kLa隨之上升;菌體形態隨之由絲狀變菌球;最適菌體利用氧氣效率之通氣量為0.4 vvm。而最適beta-(1,3)-glucan、大分子量多醣、麥角固醇生成之通氣量為較低之0.2 vvm,此通氣量下生產之多醣體生物活性最高;另外最適菌體生長、多醣體生成、beta-(1,3)-glucanase酵素活性生成之通氣量則為較高之0.4 vvm;但最適blazeispirol A生成及麥角固醇轉化成blazeispirol A之通氣量則介於中間為0.3 vvm。
第二部分的實驗為光照度對巴西蘑菇活性物質生產上的影響,同樣分別進行搖瓶實驗及5 L攪拌式發酵槽實驗。在搖瓶震盪培養分別進行光照度0、300、500與1000 lux四組搖瓶實驗,實驗結果發現,隨著光照度的增加,單位基質之菌體產量(YX/S)、多醣體之yield值(YP1/X、YP1/S)、多醣體中beta-(1,3)-glucan含量、多醣體平均分子量、beta-(1,3)-glucanase酵素活性隨之上升。而最適麥角固醇與blazeispirol A生成之光照度為500 lux。
5 L攪拌式發酵槽培養實驗分別進行光照度0、500、1000與1500 lux四組發酵槽實驗,實驗結果顯示隨著光照度的增加,菌體產率隨之上升。而最適麥角固醇、blazeispirol A、麥角固醇轉化成blazeispirol A之光照度為較低之500 lux,與搖瓶實驗結果一致;另外最適菌體生長、多醣體、beta-(1,3)-glucan、大分子量多醣、beta-(1,3)-glucanase酵素活性生成之光照度為較高之1000 lux,此光照度下生產之多醣體生物活性最高。
此外,對於麥角固醇與二次代謝物blazeispirol A之抗腫瘤能力的測試,在體外試驗(in vitro)動物細胞實驗的結果發現,對Hepa-1c1c7與HeLa兩種癌細胞所得到之IC50皆低於市售抗癌藥物,顯示巴西蘑菇麥角固醇與blazeispirol A具有抗腫瘤之潛力。
摘要(英) In oriental culture, mushrooms, attracted attention because of their biochemical composition and medicinal characteristics, have been used as health foods and home remedies for thousands of years. The Basidiomycete fungus Agaricus blazei Murill, originally a native of Brazil, is one such species. The chemical components isolated from its fruiting bodies have been widely studied, especially its polysaccharides with antitumor activity. Besides, ergosterol and blazeispirol A are important bioactive components of A. blazei. However, yields and functionality of these bioactive metabolites produced by fermentation in submerged culture are highly dependent on the culture conditions, such as medium composition and environmental parameters including pH, temperature, agitation rate and aeration rate. Nevertheless, relatively few efforts have been focused on the influence of these operational conditions on the production of these metabolites. In previous studies, we reported the effects of medium composition, pH, temperature and agitation rate on the production of bioactive polysaccharides by A. blazei in batch cultures.
Therefore, the aim of this study was to propose a fermentation process of A. blazei with highly bioactive polysaccharides, ergosterol and blazeispirol A by investigating the effects of aeration rate and light intensity on their yields, the molecular weight distribution of polysaccharides, beta-(1,3)-glucan content in polysaccharides, beta-(1,3)-glucanase activity and TNF-alpha release capability on macrophage cells, to investigating the antitumor activity of ergosterol and blazeispirol A against the mouse hepatoma cell lines, Hepa-1c1c7, and human cervical epithelioid carcinoma cell line, HeLa, and to propose a novel approach to optimizing fermentation process of blazeispirol A using the conversion ratio of ergosterol into blazeispirol A.
First part of this research is to investigate the effects of aeration rate on the production of bioactive metabolites by A. blazei in batch cultures. The flask experiments were carried out by investigating three working volumes, 50, 100 and 150 mL. The results of flask experiments show that as the working volume increased, the value of surface of liquid per volume, beta-(1,3)-glucanase activity, and the yields of blazeispirol A (YP3/X, YP3/S) decreased, and the morphology of mycelia was changed from pellet to filamentous; however, the yields of ergosterol (YP2/X, YP2/S) enhanced. In addition, the optimal working volume for biomass, polysaccharides and beta-(1,3)-glucan formation was at 100 mL.
5 L stirred tank experiments were carried out by investigating five aeration rates, 0.1 to 0.5 vvm. The results of stirred tank experiments show that as the aeration rate increased, the oxygen transfer rate coefficient, kLa, enhanced, and the morphology of mycelia was changed from filamentous to pellet. Additionally, the optimal aeration rate for beta-(1,3)-glucan, high molecular weight fraction of polysaccharides and ergosterol formation was at 0.2 vvm, while that for biomass, polysaccharides and ?-(1,3)-glucanase activity formation was at 0.4 vvm, and the maximal bioactivity of polysaccharides was at the aeration rate of 0.2 vvm. However, the optimal aeration rate for blazeispirol A formation was at 0.3 vvm.
Second part of this research is to investigate the effects of light intensity on the production of bioactive metabolites by A. blazei in batch cultures. The flask experiments were carried out by investigating four light intensities, 0, 300, 500, 1000 lux. The results of flask experiments show that as the light intensity increased, the yields of biomass (YX/S) and polysaccharides (YP1/X, YP1/S), beta-(1,3)-glucan content, the average molecular weight of polysaccharides and beta-(1,3)-glucanase activity enhanced. Besides, the optimal light intensity for ergosterol and blazeispirol A formation was at 500 lux.
5 L stirred tank experiments were carried out by investigating four light intensities, 0, 500, 1000 and 1500 lux. The results of stirred tank experiments show that the optimal light intensity for ergosterol and blazeispirol A formation was at 500 lux, while that for biomass, polysaccharides, beta-(1,3)-glucan, high molecular weight fraction of polysaccharides and beta-(1,3)-glucanase activity formation was at 1000 lux, and the maximal bioactivity of polysaccharides was at the light intensity of 1000 lux.
Based on the result of the lower IC50 values of ergosterol and blazeispirol A against the proliferation of Hepa-1c1c7 and HeLa cells presented in this study, the contents of ergosterol and blazeispirol A in A. blazei play important roles in antitumor effects besides polysaccharides.
關鍵字(中) ★ 巴西蘑菇
★ 通氣量
★ 光照度
★ 多醣體
★ 麥角固醇
★ 二次代謝物
★ 腫瘤壞死因子
★ 抗腫瘤
關鍵字(英) ★ aeration rate
★ light intensity
★ antitumor activity
★ TNF
★ blazeispirol A
★ ergosterol
★ polysaccharide
★ Agaricus blazei
論文目次 中文摘要..................................................i
英文摘要................................................iii
謝誌.....................................................vi
目錄....................................................vii
圖目錄.................................................xiii
表目錄..................................................xix
第一章、緒論..............................................1
1-1 研究動機.............................................1
1-2 研究目的.............................................2
第二章、文獻回顧..........................................4
2-1 菇類的介紹...........................................4
2-1-1 菇類活性物質.....................................5
2-1-2 菇類多醣體.........................................7
2-2 人體免疫系統及抗腫瘤機制............................11
2-2-1 人體免疫系統簡介..................................11
2-2-2 ?-D-葡聚醣(glucan)的抗腫瘤機制...................11
2-2-3 多醣體抗腫瘤生物活性之動物細胞實驗................12
2-3 巴西蘑菇(Agaricus blazei Murill)....................13
2-3-1 巴西蘑菇的化學成分................................14
2-3-2 巴西蘑菇的活性物質................................16
1. 巴西蘑菇之多醣體......................................18
2. 巴西蘑菇之麥角固醇(Ergosterol)........................22
3. 巴西蘑菇之二次代謝物Blazeispirol A....................24
2-4 液態深層培養........................................27
2-5 影響液態深層發酵的環境因子..........................28
2-5-1 培養基組成........................................29
1. 碳源..................................................29
2. 氮源..................................................29
3. 碳氮比................................................30
4. 無機鹽類..............................................30
2-5-2 攪拌速率(Agitation rate)..........................31
2-5-3 溫度..............................................32
2-5-4 pH值..............................................32
2-5-5 溶氧量(Dissolved oxygen)..........................34
2-5-6 黏度(Viscosity)...................................35
2-5-7 通氣量(Aeration rate).............................35
2-5-8 光照度(Light intensity)...........................38
第三章、材料與方法.......................................42
3-1 實驗材料............................................42
3-1-1 實驗菌株..........................................42
3-1-2 實驗藥品..........................................43
3-1-3 實驗儀器及其他設備................................45
3-1-4 發酵實驗裝置......................................47
3-2 巴西蘑菇發酵實驗....................................48
3-2-1 菌株保存..........................................48
3-2-2 培養基組成........................................49
1.固態平面培養基.........................................49
2.前培養之液態培養基.....................................49
3.種瓶與發酵實驗之液態培養基.............................50
3-2-3 實驗方法..........................................51
1.固態平面培養...........................................51
2.前培養之液態培養.......................................51
3.種瓶液態培養...........................................52
4.主發酵培養.............................................52
3-3 分析方法............................................54
3-3-1 發酵液處理流程..................................54
3-3-2 菌重分析..........................................54
3-3-3 葡萄糖殘量分析....................................54
3-3-4 巴西蘑菇多醣體濃度測定............................56
3-3-5 巴西蘑菇?-(1,3)-Glucan濃度測定...................57
3-3-6 巴西蘑菇多醣體分子量測定..........................60
3-3-7 巴西蘑菇beta-(1,3)-Glucanase活性之分析............60
3-3-8 巴西蘑菇麥角固醇之萃取與分析......................61
3-3-9 巴西蘑菇二次代謝物Blazeispirol A之萃取與分析.......63
3-3-10 麥角固醇轉化成Blazeispirol A之轉化率計算.........66
3-4 動物細胞實驗........................................67
3-4-1 細胞株............................................67
3-4-2 細胞培養液組成....................................67
3-4-3 細胞培養..........................................68
3-4-4 細胞株保存........................................69
3-4-5 細胞株解凍........................................69
3-4-6 細胞計數方法....................................70
3-4-7 巴西蘑菇多醣體生物活性實驗方法....................70
3-4-8 麥角固醇與Blazeispirol A抗腫瘤能力測定............71
第四章、通氣量對巴西蘑菇活性物質生產之影響...............73
4-1 前言............................................73
4-2 實驗方法........................................73
4-2-1 搖瓶實驗操作條件................................73
4-2-2 5 L攪拌式發酵槽操作條件.........................74
4-2-3 kLa值與OUR的量測................................75
4-3 搖瓶實驗之結果與討論............................76
4-3-1 單位工作體積之液面表面積........................76
4-3-2 工作體積對巴西蘑菇菌體生長的影響................77
4-3-3 工作體積對巴西蘑菇活性多醣與beta-(1,3)-glucanase酵素活性生產的影響.........................................79
4-3-4 工作體積對巴西蘑菇麥角固醇(Ergosterol)與二次代謝物Blazeispirol A生產的影響.................................85
4-4 5 L發酵槽實驗之結果與討論.......................87
4-4-1 通氣量對巴西蘑菇菌體形態的影響..................88
4-4-2 通氣量對巴西蘑菇發酵動力學的影響................90
4-4-3 通氣量對kLa與SOUR的影響.........................93
4-4-4 通氣量與SOUR對巴西蘑菇菌體生產的影響............95
4-4-5 通氣量與SOUR對巴西蘑菇活性多醣與beta-(1,3)-glucanase酵素活性生產的影響..............................97
4-4-6 通氣量與SOUR對巴西蘑菇麥角固醇(Ergosterol)與二次代謝物Blazeispirol A生產的影響............................103
4-5 麥角固醇與巴西蘑菇二次代謝物Blazeispirol A抗腫瘤能力測試..................................................107
4-6 結論...........................................109
4-6-1 搖瓶實驗結論...................................109
4-6-2 5 L攪拌式發酵槽實驗結論........................110
第五章、光照度對巴西蘑菇活性物質生產之影響..............111
5-1 前言...........................................111
5-2 實驗方法.......................................112
5-2-1 搖瓶實驗操作條件.................................112
5-2-2 5 L攪拌式發酵槽操作條件..........................112
5-3 搖瓶實驗之結果與討論...........................116
5-3-1 光照度對巴西蘑菇菌體生產的影響.................116
5-3-2 光照度對巴西蘑菇活性多醣與beta-(1,3)-glucanase酵素活性生產的影響..........................................117
5-3-3 光照度對巴西蘑菇麥角固醇(Ergosterol)與二次代謝物Blazeispirol A生產的影響................................122
5-4 5 L發酵槽實驗之結果與討論......................124
5-4-1 光照度對巴西蘑菇發酵動力學的影響...............124
5-4-2 光照度對巴西蘑菇菌體生產的影響.................127
5-4-3 光照度對巴西蘑菇活性多醣與beta-(1,3)-glucanase酵素活性生產的影響..........................................130
5-4-4 光照度對巴西蘑菇麥角固醇(Ergosterol)與二次代謝物Blazeispirol A生產的影響................................136
5-5 結論...........................................139
5-5-1 搖瓶實驗之結論...................................139
5-5-2 5 L攪拌式發酵槽之結論..........................140
第六章、總結與建議......................................141
6-1 總結...............................................141
6-2 建議...............................................142
參考文獻................................................143
作者簡歷................................................155
著作目錄................................................156
參考文獻 [1] M.-F. Moradali, H. Mostafavi, S. Ghods and G.-A. Hedjaroude, “Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi)”, Int. Immunopharmacol., Vol 7, pp. 701-724. 2007.
[2] J. Zhang, G. Wang, H. Li, C. Zhuang, T. Mizuno, H. Ito, C. Suzuki, H. Okamoto and J. Li, “Antitumor polysaccharides from a Chinese mushroom, “yuhuangomo,” the fruiting body of Pleurotus citrinopileatus”, Biosci. Biochem., Vol 58, pp. 1195-1202, 1994.
[3] T. Mizuno, H. Saito, T. Nishitoba and H. Kawagishi, “Antitumoractive substance from mushrooms”, Food Rev. Int., Vol 11, pp. 23-61, 1995.
[4] S. P. Wasser, “Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides”, Appl. Microbiol. Biotechnol., Vol 60, pp. 258-274, 2002.
[5] 水野卓,川合正允,菇類的化學?生化學,賴慶亮譯,初版,國立編譯館,臺北市,民國八十六年。
[6] G. Carolan, B. J. Catley and F. J. Mcdougal, “The location of tetrasaccharide units in pullulan”, Carbohydr. Res., Vol 114, pp. 237-243, 1983.
[7] M. Fevre and M. Rougier, “Beta-1-3-glucan and Beta-1-4-glucan synthesis by membrane-fractions from the fungus Saprolegnia”, PLANTA, Vol 151, pp. 232-241, 1981.
[8] D. R. Quigley and C. P. Selitrennikoff, “Beta-(1-3)glucan synthase activity of neurospora-crassa-stabilization and partial characterization”, Exp. Mycol., Vol 8, pp. 202-214, 1984.
[9] S. Taurhesia and B. McNeil, “Physicochemical factors affecting the formation of the biological response modifier Scleroglucan”, J. Chem. Technol. Biotechnol., Vol 59, pp. 157-163, 1994.
[10] H. X. Wang, T. B. Ng, W. K. Liu, V. E. C. Ooi and S. T. Chang, “Polysaccharide-peptide complexes from the cultured mycelia of the mushroom Coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages”, Int. J. Biochem. Cell Biol., Vol 28, pp. 601-607, 1996.
[11] J. P. Fruehauf, G. D. Bonnard and R. B. Herberman, “The effect of lentinan on production of interleukin-1 by human monocytes”, Immunopharmacology, Vol 5, pp. 65-74, 1982.
[12] S. Arinaga, N. Karimine, K. Takamuku, S. Nanbara, M. Nagamatsu, H. Ueo and T. Akiyoshi, “Enhanced production of interleukin 1 and tumor necrosis factor by peripherai monocytes after lentinan administration in patients with gastric carcinoma”, Int. J. Immunopharmac., Vol 14, pp. 43-47, 1992.
[13] G. Chihara, “Immunopharmacology of lentinan, a polysaccharide isolated from Lentinus edodes: its applications as a host defense potentiator”, Int. J. Orient Med., Vol 17, pp. 57-77, 1992.
[14] G. M. Sia and J. K. Candlish, “Effect of shiitake (Lentinus edodes) extract on human neutrophils and the U937 monocytic cell line”, Phytother. Res., Vol 13, pp. 133-137, 1999.
[15] H. Sakagami, M. Ikeda and K. Konno, “Stimulation of tumor necrosis factor-induced human myelogenous leukemic cell differentiation by high molecular weight PSK subfraction”, Biochem. Biophys. Res. Commun., Vol 162, pp. 597-603, 1989.
[16] T. Mizuno, T. Hagiwara, T. Nakamura, H. Ito, K. Shimura, T. Sumiya and A. Asakura, “Antitumor activity and some properties of water-soluble polysaccharides from ”Himematsutake,” the fruiting body of Agaricus blazei Murill”, Agric. Biol. Chem., Vol 54, pp. 2889-2896, 1990.
[17] S. P. Wasser and A. L. Weis, “Therapeutic effects of substances occurring in higher basidiomycetes mushrooms: a modern perspective”, Crit. Rev. Immunol., Vol 19, pp. 65-96, 1999.
[18] H. Kawagishi, A. Nomura, T. Yumen and T. Mizuno, “Isolation and properties of a lectin from the fruiting bodies of Agaricus blazei”, Carbohydr. Res., Vol 183, pp. 150-154, 1988.
[19] T. Takaku, Y. Kimura and H. Okuda, “Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action”, J. Nutr., Vol 131, pp. 1409-1413, 2001.
[20] H. Kawagishi, R. Katsumi, T. Sazawa, T. Mizuno, T. Hagiwara and T. Nakamura, “Cytotoxic steroids from the mushroom Agaricus blazei”, Phytochemistry, Vol 27, pp. 2777-2779, 1988.
[21] S. Izawa and Y. Inoue, “A screening system for antioxidants using thioredoxin-deficient yeast: discovery of thermostable antioxidant activity from Agaricus blazei Murill”, Appl. Microbiol. Biotechnol., Vol 64, pp. 537-542, 2004.
[22] S.-Y. Tsai, H.-L. Tsai and J.-L. Mau, “Antioxidant properties of Agaricus blazei, Agrocybe cylindracea, and Boletus edulis”, LWT-Food Sci. Technol., Vol 40, pp. 1392-1402, 2007.
[23] A. A. Soares, C. G. M. Souza, F. M. Daniel, G. P. Ferrari, S. M. G. Costa and R. M. Peralta, “Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity”, Food Chem., Vol 112, pp. 775-781, 2009.
[24] T. Mizuno, R. Inagaki, T. kanao, T. Hagiwara, T. Nakamura, H. Ito, K. Shimura, T. Sumiya and A. Asakura, “Antitumor activity and some properties of water-insoluble hetero-glycans from “Himematsutake,” the fruiting body of Agaricus blazei Murill”, Agric. Biol. Chem., Vol 54, pp. 2897-2905, 1990.
[25] K. Shimura, H. Ito and H. Hibasami, “Screening of host-mediated antitumor polysaccharides by crossed immunoelectrophoresis using fresh human serum”, Jpn. J. Pharmacol., Vol 33, pp. 403-408, 1983.
[26] N. Ohno, M. Furukawa, N. N. Miura, Y. Adachi, M. Motoi and T. Yadomae, “Antitumor ?-glucan from the cultured fruit body of Agaricus blazei”, Biol. Pharm. Bull., Vol 24, pp. 820-828, 2001.
[27] Q. Dong, J. Yao, X. Yang and J. Fang, “Structural characterization of a water-soluble ?-D-glucan from fruiting bodies of Agaricus blzaei Murr”, Carbohydr. Res., Vol 337, pp. 1417-1421, 2002.
[28] 黃鈴娟,「樟芝與姬松茸之抗氧化性質及其多醣組成分析」,國立中興大學,碩士論文,民國89年。
[29] L.W. Parks, S. J. Smith and J. H. Crowley, “Biochemical and physiological effects of sterol alterations in yeast-a review”, Lipids, Vol 30, pp. 227-230, 1995.
[30] M. Veen and C. Lang, “Interactions of the ergosterol biosynthetic pathway with other lipid pathways”, Biochem. Soc. Trans., Vol 33, pp. 1178-1181, 2005.
[31] M. Veen and C. Lang, “Production of lipid compounds in the yeast Saccharomyces cerevisiae”, Appl. Microbiol. Biotechnol., Vol 63, pp. 635-646, 2004.
[32] C. Arnezeder and W. A. Hampel, “Influence of growth rate on the accumulation of ergosterol in yeast-cells”, Biotechnol. Lett., Vol 12, pp. 277-282, 1990.
[33] P. Mattila, A.-M. Lampi, R. Ronkainen, J. Toivo and V. Piironen, “Sterol and vitamin D2 contents in some wild and cultivated mushrooms”, Food Chem., Vol 76, pp. 293-298, 2002.
[34] J.-P. Yuan, J.-H. Wang, X. Liu, H.-C. Kuang and X.-N. Huang, “Determination of ergosterol in ganoderma spore lipid from the germinating spores of Ganoderma lucidum by high-performance liquid chromatography”, J. Agric. Food Chem., Vol 54, pp. 6172-6176, 2006.
[35] Y. Zhang, G. L. Mills and M. G. Nair, “Cyclooxygenase inhibitory and antioxidant compounds from the mycelia of the edible mushroom Grifola frondosa”, J. Agric. Food Chem., Vol 50, pp. 7581-7585, 2002.
[36] J. Y. Wu, Q. X. Zhang and P. H. Leung, “Inhibitory effects of ethyl acetate extract of Cordyceps sinensis mycelium on various cancer cells in culture and B16 melanoma in C57BL/6 mice”, Phytomedicine, Vol 14, pp. 43-49, 2007.
[37] M. Hirotani, S. Hirotani, H. Takayanagi and T. Yoshikawa, “Blazeispirol A, an unprecedented skeleton from the cultured mycelia of the fungus Agaricus blazei”, Tetrahedron Lett., Vol 40, pp. 329-332, 1999.
[38] M. Hirotani, A. Kaneko, Y. Asada and T. Yoshikawa, “Biosynthesis of blazeispirol A, an unprecedented skeleton from the cultured mycelia of the fungus Agaricus blazei”, Tetrahedron Lett., Vol 41, pp. 6101-6104, 2000.
[39] M. Hirotani, K. Sai, A. Kaneko, Y. Asada and T. Yoshikawa, “Biosynthetic studies on blazeispirane and protoblazeispirane derivatives from the cultured mycelia of the fungus Agaricus blazei”, Tetrahedron, Vol 58, pp. 10251-10257, 2002.
[40] Z.-Y. Su, L. S. Hwang, Y.-H. Kuo, C.-H. Shu and L.-Y. Sheen, “Black soybean promotes the formation of active components with antihepatoma activity in the fermentation product of Agaricus blazei”, J. Agric. Food Chem., Vol 56, pp. 9447-9454, 2008.
[41] H. Ito, K. Shimura, H. Itoh and M. Kawade, “Antitumor effects of a new polysaccharide-protein complex (ATOM) prepared from Agaricus blazei (Iwade strain 101) ‘Himematsutake’ and its mechanisms in tumor-bearing mice”, Anticancer Res., Vol 17, pp. 277-284, 1997.
[42] J. P. Park, S.W. Kim, H. J. Hwang and J. W. Yun, “Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris”, Lett. Appl. Microbiol., Vol 33, pp. 76-81, 2001.
[43] C.-H. Shu and C.-J. Xu, “Medium optimization for producing bioactive exopolysaccharides by Agaricus brasiliensis S. Wasser et al. (=A. blazei Murrill ss. Heinem) in submerged culture”, Food Technol. Biotechnol., Vol 45, pp.327-333, 2007.
[44] 鄭萬禎,「利用批式發酵生產巴西洋菇菌絲體及胞外多醣之研究」,國立中興大學,碩士論文,民國91年。
[45] 黃賜源,「靈芝液態培養及氣舉式生化反應器應用之研究」,東海大學,碩士論文,民國85年。
[46] P. A. Gibbs and R. J. Seviour, “Does the agitation rate and/or oxygen saturation influence exopolysaccharide production by Aureobasidium pullulans in batch culture?”, Appl. Microbiol. Biotechnol., Vol 46, pp. 503-510, 1996.
[47] C.-H. Shu and B.-J. Wen, “Enhanced shear protection and increased production of an anti-tumor polysaccharide by Agaricus blazei in xanthan-supplemented cultures”, Biotechnol. Lett., Vol 25, pp. 873-876, 2003.
[48] B. McNeil and B. Kristiansen, “Temperature effects on polysaccharide formation by Aureobasidium pullulans in stirred tanks”, Enzyme Microb. Technol., Vol 12, pp. 521-526, 1990.
[49] Y. Wang and B. McNeil, “Effect of temperature on scleroglucan synthesis and organic acid production by Sclerotium glucanicum”, Enzyme Microb. Technol., Vol 17, pp. 893-899, 1995.
[50] C.-H. Shu and S.-T. Yang, “Effects of temperature on cell growth and xanthan production in batch cultures of Xanthomonas campestris”, Biotechnol. Bioeng., Vol 35, pp. 454-468, 1990.
[51] R. G. Forage, D. E. F. Harrison and D. E. Pitt, “Effect of environment on microbial activity”, Comprehensive Biotechnology, 1, 253-279, 1985.
[52] C.-H. Shu, K.-J. Lin and B.-J. Wen, “Effects of culture pH on the production of bioactive polysaccharides by Agaricus blazei in batch cultures”, J. Chem. Technol. Biotechnol., Vol 79, pp. 998-1002, 2004.
[53] Q. H. Fang and J. J. Zhong, “Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum,” Process Biochem., Vol 37, pp. 769-774, 2002.
[54] R. A. Moraine, and P. Rogovin, “Kinetics of the xanthan fermentation”, Biotechnol Bioeng., Vol 15, pp. 225-237, 1973.
[55] C.-H. Shu and M.-Y. Lung, “Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures”, Process Biochem., Vol 39, pp. 931-937, 2004.
[56] Y. Wang and B. McNeil, “pH effects on exopolysaccharide and oxlic acid production in cultures of Sclerotium glucanicum”, Enzyme Microb. Technol., Vol 17, pp. 124-130, 1995.
[57] C. Lacroix, A. LeDuy, G. Noel and L. Choplin, “Effect of pH on the batch fermentation of pullulan from sucrose medium”, Biotechnol. Bioeng., Vol 27, pp. 202-207, 1985.
[58] N. S. Madi, B. McNeil and L. M. Harvey, “Influence of culture pH and aeration on ethanol production and pullulan molecular weight by Aureobasidium pullulans”, J. Chem. Tech. Biotechnol., Vol 66, pp. 343-350, 1996.
[59] J.-H. Lee, J.-H. Kim, I.-H. Zhu, X.-B. Zhan, J.-W. Lee, D.-H. Shin and S.-K. Kim, “Optimization of conditions for the production of pullulan and high molecular weight pullulan by Aureobasidium pullulans”, Biotechnol. Lett., Vol 23, pp. 817-820, 2001.
[60] R. A. Moraine and P. Rogovin, “Xanthan biopolymer production at increased concentration by pH control”, Biotechnol. Bioeng., Vol 13, pp. 381-391, 1971.
[61] P. J. Heald, and B. Kristiansen, “Synthesis of polysaccharide by yeast like forms of Aureobasidium pullulans”, Biotechnol. Bioeng., Vol 27, pp. 1516-1519, 1985.
[62] U. Rau, E. Gura, E. Olszewski and F. Wagner, “Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing”, J. Ind. Microbiol. Biotechnol., Vol 9, pp. 19-26, 1992.
[63] A. Wecker and U. Onken, “Influence of dissolved oxygen concentration and shear rate on the production of pullulan by Aureobasidium pullulans”, Biotechnol. Lett., Vol 13, pp. 155-160, 1991.
[64] E. B. Chain, G. Gualandi and G. Morisi, “Aeration studies. IV. Aeration condition in 3000-liter submerged fermentation with various microorganisms”, Biotechnol. Bioeng., Vol 8, pp. 595-619, 1966.
[65] Y. Chao, M. Mitarai, Y. Sugano and M. Shoda, “Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor”, Biotechnol. Prog., Vol 17, pp. 781-785, 2001.
[66] F. Garcia-Ochoa, V. E. Santos, J. A. Casas and E. Gomez, “Xanthan gum: production, recovery, and properties”, Biotechnol. Adv., Vol 18, pp. 549-579, 2000.
[67] C.-H. Shu, P.-F. Chou and I-C. Xu, “Effects of morphology and oxygen supply on schizophyllan formation by Schizophyllum commune using a pellet size controlling bioreactor”, J. Chem. Technol. Biotechnol., Vol 80, pp. 1383-1388, 2005.
[68] X. Kang, Y. Wang, L. M. Harvey and B. McNeil, “Effect of air flow rate on scleroglucan synthesis by Sclerotium glucanicum in an airlift bioreactor with an internal loop”, Bioprocess Biosyst. Eng., Vol 23, pp. 69-74, 2000.
[69] J. P. Park, Y. M. Kim, S. W. Kim, H. J. Hwang, Y. J. Cho, Y. S. Lee, C. H. Song and J. W. Yun, “Effect of aeration rate on the mycelial morphology and exo-biopolymer production in Cordyceps militaris”, Process Biochem., Vol 37, pp. 1257-1262, 2002.
[70] A. Idnurm and J. Heitman, “Photosensing fungi: phytochrome in the spotlight”, Current Biol., Vol 15, pp. R829-R832, 2005.
[71] A. Herrera-Estrella and B. A. Horwltz, “Looking through the eyes of fungi: molecular genetics of photoreception”, Mol. Microbiol., Vol 64, pp. 5-15, 2007.
[72] P. H. Quail, “Phytochrome: a light-activated molecular switch and regulates plant gene expression”, Annu. Rev. Genet., Vol 25, pp. 389-409, 1991.
[73] P. Janina, M. Sylvia, K. Christian and F. Reinhard, “Seeing the rainbow: light sensing in fungi”, Current Opinion in Microbiol., Vol 9, pp. 566-571, 2006.
[74] V. Betina, “Photoinduced conidiation in Trichoderma viride”, Folia Microbiol., Vol 40, pp. 219-224, 1995.
[75] J. L. Mooney and L. N. Yager, “Light is required for conidiation in Aspergillus nidulans”, Genes Dev., Vol 4, pp. 1473-1482, 1990.
[76] M. L. Elizabeth, “Effect of light regimens and intensities on morphogenesis of the discomycete pyronema domesticum”, Mycologia, Vol 71, pp. 699-712, 1979.
[77] C.-H. Shu, C.-K. Huang and C.-C. Tsai, “Effects of light wavelength and intensity on the production of ethanol by Saccharomyces cerevisiae in batch cultures”, J. Chem. Technol. Biotechnol., Vol 84, pp. 1156-1162, 2009.
[78] C.-H. Shu, J.-C. Peng and C.-C. Tsai, “Effects of light intensity and light wavelength on the production of mycophenolic acid by Penicillium brevicompactum in batch cultures”, Enzyme Microb. Technol., Vol 46, pp. 466-471, 2010.
[79] Y. Lingappa, A. S. Sussman and I. A. Bernstein, “Effect of light and media upon growth and melanin formation in Aureobasidium pullulans (de By.) Arn. (=Pullularia pullulans)”, Mycopathologia, Vol 20, pp. 109-128, 1963.
[80] T. Miyaki, A. Mori, T. Kii, T. Okuno, Y. Usui, F. Sato, H. Sammoto, A. Watanabe and M. Kariyama, “Light effect on cell development and secondary metabolism in Monascus”, J. Ind. Microbiol. Biotechnol., Vol 32, pp. 103-108, 2005.
[81] M. Nemčovič and V. Farkaš, “Cell-wall compositon and polysaccharide synthase activity changes following photoinduction I Trichoderma viride”, Acta Biol. Hung., Vol 52, pp. 281-288, 2001.
[82] G. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar”, Anal. Chem., Vol 31, pp. 426-428, 1959.
[83] M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith, “Colorimetric method for determination of sugars and related substances”, Anal. Chem., Vol 28, pp. 350-356, 1956.
[84] S. H. Young and R. R. Jacobs, “Sodium hydroxide-induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue”, Carbohydr. Res., Vol 310, pp. 91-99, 1998.
[85] J. Cruz, J. A. Pintor-Toro, T. Benítez, A. Llobell and L. C. Romero, “A novel endo-beta-1,3-glucanase, BGN13.1, involved in the mycoparasitism of Tricoderma harzianum”, J. Bacteriol., Vol 177, pp. 6937-6945, 1995.
[86] X. Zou, “Fed-batch fermentation for hyperproduction of polysaccharide and ergosterol by medicinal mushroom Agaricus brasiliensis”, Process Biochem., Vol 41, pp. 970-974, 2006.
[87] T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays”, J. Immunol. Methods, Vol 65, pp. 55-63, 1983.
[88] L. F. Qin and I. O. L. Ng, “Induction of apoptosis by cisplatin and its effect on cell cycle-related proteins and cell cycle changes in hepatoma cells”, Cancer Lett., Vol 175, pp. 27-38, 2002.
[89] K. Takara, T. Sakaeda, T. Yagami, H. Kobayashi, N. Ohmoto, M. Horinouchi, K. Nishiguchi and K. Okumura, “Cytotoxic effects of 27 anticancer drugs in HeLa and MDR1-overexpressing derivative cell lines”, Biol. Pharm. Bull., Vol 25, pp. 771-778, 2002.
[90] B. Bandyopadhyay and A. E. Humphrey, “Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems”, Biotechnol. Bioeng., Vol 9, pp. 533-544, 1967.
[91] C.-H. Shu, B.-J. Wen and K.-J. Lin, “Monitoring the polysaccharide quality of Agaricus blazei in submerged culture by examining molecular weight distribution and TNF-alpha release capability of macro phage cell line RAW 264.7”, Biotechnol. Lett., Vol 25, pp. 2061-2064, 2003.
[92] C.-H. Shu, C.-J. Xu and E.-S. Lin, “Production, purification and partial characterization of a novel endo-?-1,3-glucanase from Agaricus brasiliensis”, Process Biochem., Vol 41, pp. 1229-1233, 2006.
[93] G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner and M. D. Rollag, “Action spectrum for melatonin regulation in Humans: evidence for a novel circadian photoreceptor”, J. Neurosci., Vol 21, pp. 6405-6412, 2001.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2011-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明