博碩士論文 91344013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.189.178.138
姓名 呂承璋(Cheng-Zhang Lu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高性能鋰離子電池陰極材料之研製
(Study of high performance cathode materials for lithium ion batteries)
相關論文
★ LixNi1-yCoyO2及LiM0.5-yM'yMn1.5O4之合成與電池性能★ 鋅空氣一次電池之自放電與鋅極腐蝕 抑制改善之研究
★ 鋰離子電池陽極碳材料開發★ 鋰離子電池LixNi1-yCoyO2陰極材料之溶膠凝膠法製程研究
★ 鋰離子電池混合金屬氧化物材料之電化學特性分析★ 由天然農作物製備鋰離子電池負極碳材料
★ LiCoO2陰極材料重要製程評估與改質研究★ LiNi0.8Co0.2O2陰極材料製程與改質研究
★ 由花生殼製備鋰離子電池高電容量負極碳材料★ 鋰離子電池層狀結構陰極材料合成與改質研究
★ 以三乙醇氨-蔗糖燃燒法合成LiCoO2製程研究★ 以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究
★ 以奈米級ZrO2為塗佈物質改良鋰離子電池LiCoO2陰極材料充放電性能研究★ 以複合金屬氧化物為塗佈物質表面處理 鋰離子電池LiCoO2 陰極材料之製程研究
★ 鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究★ 鋰離子電池鈷酸鋰陰極材料之表面改質及電池性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文包含六各章節, 前言與結論分別在第一與第六章,所有的結果與討論分別位於第二至第五章。第二章乃用溶液燃燒法,以尿素作為燃料合成奈米結構之錳酸鋰陰極材料;第三章乃以溶膠凝膠法製備3LaAlO3:Al2O3氧化物改質鈷酸鋰陰極材料,研究其於高電壓充電之電化學行為;第四章吾人以高溫固態法,利用具高表面積之碳粉先驅物,改質磷酸亞鐵鋰陰極材料;第五章,吾人利用一新穎的酸性界面活性劑,處理高分子PS球,並將此處理後之PS球作為碳源,改質磷酸亞鐵鋰陰極材料,探討其電化學行為。
第二章: 使用溶液燃燒法,以尿素作為燃料合成奈米結構之錳酸鋰陰極材料,在製程研究上,以700oC煆燒10 hr為最佳製程條件,在4.3 ~ 3.0 V以0.1 C-rate充放電測試下,循環壽命可達229次。由XRD結構分析可發現,所有的錳酸鋰產物皆為純相。TEM圖片顯示所得之產物,具奈米結構,其粒徑約為20-50 nm之間。CV結果顯示,奈米錳酸鋰材料,其幾乎沒有相變化之產生,顯示其可逆性佳,因而循環壽命較長。研究結果顯示,以溶液燃燒法確實可得具奈米粒徑之錳酸鋰陰極材料,並且具有良好之循環穩定性與電池性能。
第三章以3LaAlO3:Al2O3氧化物改質鈷酸鋰陰極材料,由TEM結果發現在鈷酸鋰的表面確實有一層La-Al-O化物薄膜之存在,且其厚度約40 nm左右。電池性能顯示以1.0 wt.% 3LaAlO3:Al2O3氧化物改質鈷酸鋰為最佳,充電至4.4 V時,其循環壽命為182次,相較於未改質之鈷酸鋰材料僅有38次,增加約5倍左右。
第四章乃以高表面積碳粉先驅物改質磷酸亞鐵鋰陰極材料,碳粉之來源為天然廢棄物花生殼經熱裂解後所得。由結果顯示,經過碳塗佈之磷酸亞鐵鋰材料,可以增進其導電度,因而使得材料之電池性能及循環穩定性增加。
第五章乃利用酸性分散劑處理過之PS球為碳源,製備磷酸亞鐵鋰/碳複合材料。由結果顯示,以PS球處理後之磷酸亞鐵鋰材料,其碳層厚度相當均一,約2 nm左右。在4.0-2.8 V,0.2 C-rate充放電條件測試下,初次放電電容量為147 mAhg-1,且經過100循環後,電荷維持率仍為100 %。當碳量增加時,可發現電容量及導電度亦隨之增加,但過多之碳粉會使得電容量降低,原因乃是過多之碳粉會使得電活性物質變少,因而降低整體之電容量。添加適量之碳粉,方有助於電池性能之提升。
摘要(英) This dissertation contains six chapters. Introduction and conclusion are presented in Chapter 1 and Chapter 6, respectively. All results and discussion are divided into the rest of chapters. In Chapter 2, we used urea as the fuel for the solution combustion synthesis of nanoparticulate LiMn2O4 from metal nitrates to use as a cathode for 4 V lithium batteries. Lithium–manganese oxides have received more attention in recent years as high-capacity intercalation cathodes for rechargeable lithium-ion batteries and nanostructured electrodes have been shown to enhance cell cyclability. The optimal synthesis protocol was 10 h calcination at 700 oC, which produced a product that could sustain 229 cycles between 3.0 and 4.3 V at a charge–discharge rate of 0.1 C before reaching an 80% charge retention cut-off value. X-ray diffraction and electron diffraction pattern investigations demonstrated that all the LiMn2O4 products are a spinel phase crystal. TEM micrographs show the prepared products are highly crystalline with an average particle size of 20–50 nm. Cyclic voltammetry shows the absence of phase transitions in the samples ensures negligible strain, resulting in a longer cycle life. This work shows the feasibility of the solution combustion method for obtaining manganese oxides with nano-architecture and high cyclability, and suggests it is a promising method for providing short diffusion pathways which improve lithium-ion intercalation kinetics and minimize surface distortions during cycling.
In Chapter 3, we attempted to synthesize different wt. % 3LaAlO3:Al2O3-coated LiCoO2 cathode materials by an in-situ sol-gel process and study their electrochemical performance at higher charging voltages. The LiCoO2 particles were coated with various wt. % of lanthanum aluminum garnets (3LaAlO3:Al2O3) by an in-situ sol-gel process, followed by calcination at 1123 K for 12 h in air. X-ray diffraction (XRD) patterns confirm the formation of a single-phase hexagonal ?-NaFeO2-type structure of the core material without any modification. Scanning electron microscope (SEM) images reveal surface modification of the cathode particles. Transmission electron microscope (TEM) images indicate that the surface of the core material is coated with a uniform compact layer of 3LaAlO3:Al2O3, with an average thickness of 40 nm. Galvanostatic cycling studies demonstrated that the 1.0 wt. % 3LaAlO3:Al2O3 coated LiCoO2 cathode showed excellent cycle stability of 182 cycles, which was much more than the 38 cycles sustained by the pristine LiCoO2 cathode material when charged at 4.4 V.
In Chapter 4, we adopted a solid state method to obtain fine LiFePO4 powders and mixed them with small amounts of a high surface area carbon precursor to prepare the carbon-coated LiFePO4 cathode material. The LiFePO4 particles were embedded in amorphous carbon and the carbonaceous materials were synthesized by the pyrolyzing peanut shells under argon in a two-step process that occurred between 573 and 873 K. The shells were also treated with a proprietary porogenic agent in order to alter the pore structure and surface area of the pyrolysis products. The carbon coating can significantly enhance the electronic conductivity of LiFePO4. The electrochemical properties of the as-prepared LiFePO4/C composite cathode materials were systematically characterized by X-ray diffraction, scanning electron microscope, element mapping, energy dispersive spectroscopy, Raman spectroscopy, and TOC analysis. The specific capacity, cycle property and rate capability were impressive compared to the pure olivine LiFePO4 material. The carbon-coated LiFePO4 cathode demonstrated high capacity and stable cyclability.
Chapter 5 presents a novel concept of synthesizing the LiFePO4 by a solid state method using acidic surfactant treated polystyrene spheres that were a uniformly dispersed source, and characterizes its electrochemical behavior. The resultant carbon was entirely coated on LiFePO4 particles as a thin layer of about 2 nm. The LiFePO4/C composite delivered a first discharge capacity of 147 mAhg-1 at a 0.2 C-rate between 4.0 to 2.8 V, and the capacity remains 100% after 180 cycles. The electrochemical behavior and the four-point probe conductivity measurements revealed that the capacity and the conductivity of LiFePO4/C both improved as increased levels of carbon were added. However, too much carbon coating could reduce the capacity of LiFePO4/C because it lowers the ratio of active material in the composite and raises the resistance of lithium ion diffusion on the surface of the material. Adding an optimum amount of carbon increases the utilization of the active material and the electrical conductivity of electrode.
關鍵字(中) ★ 鈷酸鋰
★ 錳酸鋰
★ 磷酸亞鐵鋰複合材料
★ 陰極材料
關鍵字(英) ★ cathode material
★ LiMn2O4
★ LiCoO2
★ LiFePO4/C compos
論文目次 Contents
Acknowledgement …………………………………………………………….......Ⅰ
Abstract (Chinese)………………………………………………………………....Ⅱ
Abstract (English)………………………………………………………………... Ⅳ
Contents ...................................................................................................................Ⅷ
Legends of Tables …………………………………………………………………ⅩⅡ
Captions of Figures ……………………………………………………………......ⅩⅢ
Chapter 1 Introduction ……………………………………………………..….1
1.1 Background and development of cathode materials for lithium ion batteries …………………………………………………………………..1
1.2 Objective of our study……………………………………………………4
Chapter 2 Nanocrystalline and long cycling LiMn2O4 cathode material derived by a solution combustion method for
lithium ion batteries ………………………………………....……12
2.1 Introduction ……………………………………………………………...12
2.2 Experimental ………………………………………………………….....15
2.3 Results and discussion ………………………………………………......17
2.3.1 X-ray diffraction.................................................................................17
2.3.2 Particle morphology...........................................................................19
2.3.3 Electrochemical behavior…………………………………………...20
2.3.4 Cyclic voltammetry…………………………………………………22
2.3.5 Cycling results at 55oC……………………………………………...23
2.4 Conclusions……………………………………………………………..24
References…………………………………………………………………..25
Chapter 3 Electrochemical performance of LiCoO2 cathodes by surface modification using lanthanum aluminum garnet …......39
3.1 Introduction …………………………………………………………......39
3.2 Experimental …………………………………………………………....42
3.2.1 Synthesis of lanthanum aluminum garnet by a sol-gel process….....42
3.2.2 In-situ sol-gel synthesis of lanthanum aluminum garnet coated LiCoO2 ……………………………………………………….….....42
3.3 Results and discussion ……………………………………………….....45
3.3.1 X-ray diffraction………………………………………………........45
3.3.2 Morphology…………………………………………………….......46
3.3.3 Electrochemical properties………………………………………....50
3.3.3.1 Cycling performance of the coated samples calcined at different temperatures………………………………………….50
3.3.3.2 Cycling performance of the different wt. % coated samples......51
3.3.3.3 Cycling performance of coated samples at different voltages....53
3.3.3.4 Cycling behavior of coated samples at different C-rates……....54
3.3.3.5 Impedance studies……………………………………………...54
3.3.4 Thermal stability studies………………………….………………...57
3.4 Conclusions …………………………………………….…………….…59
References ………………………………………………….…………….…60
Chapter 4 Study of LiFePO4 cathode materials coated with high surface area carbon ………………………….………….…83
4.1 Introduction ……………………………………………….…………....83
4.2 Experimental …………………………………………….………….….84
4.3 Results and discussion ………………………………….……………...89
4.3.1 X-ray diffraction…………………………………….….……….....89
4.3 2 Electrochemical behavior…………………………….….………...90
4.3 3 Conductivity analysis……………………………….……….….....93
4.3.4 Cyclic voltammetry……………………………….…….………....94
4.3.5 Raman spectroscopy……………………………….…….…….….95
4.3.6 TOC analysis…………………………………………….….…….97
4.3.7 Surface morphology…………………………………….……..….99
4.3.8 TEM/EDX analysis…………………………………….……..….100
4.3.9 Thermal analysis……………………………………….….….….101
4.3.10 Surface area analysis……………………………….…….….…102
4.4 Conclusions …………………………………………….…….……103
References …………………………………………………….…………104
Chapter 5 Synthesis of LiFePO4/C cathode materials using polystyrene spheres as a carbon source …..120
5.1 Introduction …………………………………………………………120
5.2 Experimental ………………………………………………………...122
5.2.1 Preparation of polystyrene spheres and LiFePO4/C cathode materials…………………………………………………………122
5.2.2 Characterization …………………………………………………124
5.3 Results and discussion ..125
5.3.1 Surface morphology………………………………………….....125
5.3.2 TEM/EDX analysis……………………………………………..127
5.3.3 T.O.C. carbon analysis……………………………………….....128
5.3.4 Raman spectra…………………………………………………....129
5.3.5 Electrochemical studies………………………………………….131
5.4 Conclusions………………………………………………………….133
References.................................................................................................134
Chapter 6 Conclusions...........................................................................147
Publication lists ………………………………………………………...…..152
Conference papers…………………………………………………...……..154
參考文獻 Chapter 1
References
[1] H. Takeshita, Portable Li-ion,worldwide. Proc. Conf. Power 2000, San Diego, 25 September 2000.
[2] D. Guyomard, in New Trends in Electrochemical Technology: Energy Storage Systems for Electronics Vol. 9 (eds Osaka, T. & Datta, M.) 253–350 (Gordon & Breach Science Publishers, 2000).
[3] S. Venkatraman, Y. Shin, A. Manthiram, Electrochem. Solid-State Lett. 6
(2003) A9.
[4] G. T. K. Fey, V. Subramanian and J. G. Chen, Electrochemistry Comm. 3 (2001) 234.
[5] G. T. K. Fey, V. Subramanian and C. Z. Lu, Ionics 7 (2001) 210.
[6] G. T. K. Fey and C. Z. Lu, Industrial Materials 180 (2001) 162.
[7] G. T. K. Fey, V. Subramanian and J. G. Chen, Materials Letters 52 (2002) 197.
[8] G. T. K. Fey, R. F. Shiu, V. Subramanian, J. G. Chen and C. L. Chen, J. Power Sources 103 (2002) 265.
[9] G. T. K. Fey, W. H. Yo, and Y. C. Chang, J. Power Sources 105 (2002) 82.
[10] G. T. K. Fey and C. Z. Lu, Industrial Materials 181 (2002) 147.
[11] G. T. K. Fey, R. F. Shiu, V. Subramanian and C. L. Chen, Solid State Ionics 148 (2002) 291.
[12] V. Subramanian and G. T. K. Fey, Solid State Ionics 148 (2002) 351.
[13] G. T. K. Fey, J. G. Chen, V. Subramanian and T. Osaka, J. Power Sources 112 (2002) 384.
[14] G. T. K. Fey, Z. F. Wang and T. P. Kumar, Ionics 8 (2002) 351.
[15] G. T. K. Fey, V. Subramanian and C. Z. Lu, Solid State Ionics 152/153 (2002) 83.
[16] G. T. K. Fey , J. G. Chen, V. Subramanian, D. L. Huang, T. Akai and H. Masui, Mater. Chem. Phys. 79 (2003) 21.
[17] G. T. K. Fey, J. G. Chen and V. Subramanian, J. Power Sources 119-121 (2003) 658.
[18] G. T. K. Fey, R. F. Shiu, T. P. Kumar and C. L. Chen, Materials Science and Engineering B B100 (2003) 234.
[19] G. K. Fey, Z. X. Weng, J. G. Chen and T. P. Kumar, Mater. Chem. Phys. 82 (2003) 5.
[20] G. T. K. Fey, H. Z. Yang and T. P. Kumar, Ionics 9 (2003) 182.
[21] G. T. K. Fey, J. G. Chen, Z. F. Wang, H. Z. Yang and T. P. Kumar, Mater. Chem. Phys. 87 (2004) 246.
[22] G. T. K. Fey, P. Muralidharan, C. Z. Lu and Y. D. Cho Solid State Ionics, 176 (2005) 2759.
[23] A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada & J.B. Goodenough,. J. Electrochem. Soc. 144 (1997) 1609–1613.
[24] J.B. Goodenough, K.S. Nanjundaswamy, C. Masquelier, Cathode
materials for secondary (rechargeable) lithium batteries, International
Patent Application WO 97/40541, 30th October 1997.
[25] H. Huang, S.C. Yin, L.F. Nazar, Electrochem. Solid State Lett. 4 (2001)
A170.
[26] M.Y. Saidi, H. Huang, J.L. Swoyer, J. Barker, March 2002, Fort
Lauderdale, Florida.
[27] N. Ravet, et al., Abstr. No. 127, ECS Fall meeting, Hawaii, 1999.
[28] M. Morcrette, C. Wurm, J. Gaubicher, and C. Masquelier, Abstr. No. 93, Electrode Materials Meeting, Bordeaux Arcachon, 27 May–1 June 2001.
Chapter 2
References
[1] D.W. Murphy, F.J. DiSalvo, J.N. Carides, J.V. Waszczak, Mater. Res.
Bull. 13 (1978) 1395.
[2] D.W. Murphy, J.N. Carides, J. Electrochem. Soc. 126 (1979) 349.
[3] M. Lazzari, B. Scrosati, J. Electrochem. Soc. 127 (1980) 773.
[4] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res.
Bull. 15 (1980) 783.
[5] J.J. Auborn, Y.L. Barbario, J. Electrochem. Soc. 134 (1987) 638.
[6] J.M. Tarascon, J. Electrochem. Soc. 132 (1985) 2089.
[7] J.M. Tarascon, D. Guyomard, J. Electrochem. Soc. 138 (1991) 2864.
[8] M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, Mater.
Res. Bull. 18 (1983) 461.
[9] M.M. Thackeray, Prog. Solid State Chem. 25 (1997) 1.
[10] J.M. Tarascon, F. Coowar, G. Amatuci, F.K. Shokoohi, D.G. Guyomard,
J. Power Sources 54 (1995) 103.
[11] V. Manev, B. Banov, A. Momchilov, A. Nassalevska, J. Power Sources 57
(1995) 99.
[12] A. Yamada, K. Miura, K. Hinokuma, M. Tanaka, J. Electrochem. Soc.
142 (1995) 2149.
[13] Y. Xia, M. Yoshio, J. Electrochem. Soc. 143 (1996) 825.
[14] P. Barboux, J.M. Tarascon, F.K. Shokoohi, J. Solid State Chem. 94 (1991)
185.
[15] P. Barboux, F.K. Shokoohi, J.M. Tarascon, US Patent 5,135,732, 1992.
[16] S. Bach, M. Henry, N. Baffier, J. Livage, J. Solid State Chem. 88 (1990)
325.
[17] M. Yoshio, H. Noguchi, T. Miyashita, H. Nakamura, A. Kozawa, J. Power
Sources 54 (1995) 483.
[18] Y. Xia, H. Takeshige, H. Noguchi, M. Yoshio, J. Power Sources 56 (1995)
61.
[19] Y. Xia, M. Yoshio, J. Power Sources 57 (1995) 125.
[20] G.T.K. Fey, C.Z. Lu, T.P. Kumar, Mater. Chem. Phys. 80 (2003) 309.
[21] G.T.K. Fey, C.Z. Lu, T.P. Kumar, J. Power Sources 115 (2003) 332.
[22] G.T.K. Fey, C.Z. Lu, T.P. Kumar, New trends in intercalation compounds
for energy storage conversion, in: K. Zaghib, C.M. Julien, J. Prakash
(Eds.), Proceedings of the Electrochemical Society, vol. 2003-20, 2003,
p. 475.
[23] Q. Zhang, A. Bonakdarpour, M. Zhang, Y. Guo, J.R. Dahn, J. Electrochem. Soc. 144 (1997) 1.
[24] J.M. Tarascon, E. Wang, F.K. Shokoohi, W.R. McKinnon, S. Colson,
J. Electrochem. Soc. 138 (1991) 2859.
[25] T. Tsumura, A. Shimizu, M. Inagaki, Solid State Ionics 20 (1996) 197.
[26] J. Kim, A. Manthiram, Nature 390 (1997) 265.
[27] P. Lucas, C.A. Angell, J. Electrochem. Soc. 147 (2000) 4459.
[28] S.H. Kang, J.B. Goodenough, L.K. Rabenberg, Electrochem. Solid-State
Lett. 4 (2001) A49.
[29] Y. Shao-Horn, S.A. Hackney, A.J. Kahaian, K.D. Kepler, E. Skinner,
J.T. Vaughey, M.M. Thackeray, J. Power Sources 81 (1996) 496.
[30] M.M. Thackeray, Y.S. Horn, A.J. Kahaian, K.D. Kepler, E. Skinner,
J.T. Vaughey, S.A. Hackney, Electrochem. Solid State Lett. 1 (1998) 7.
[31] J. Cho, M.M. Thackeray, J. Electrochem. Soc. 146 (1999) 3557.
[32] J. Kim, A. Manthiram, Electrochem. Solid State Lett. 1 (1998) 207.
[33] S.R. Jain, K.C. Adiga, V. Pai Verneker, Combust. Flame 40 (1981) 71–79.
[34] Y. Zhang, G.C. Stangle, J. Mater. Res. 9 (1994) 1997–2004.
[35] T. Mimani, J. Alloys Compd 315 (2001) 123.
[36] T. Mimani, K.C. Patil, Mater. Phys. Mech. 4 (2001) 134.
[37] C. Masquelier, M. Tabuchi, K. Ado, R. Kanno, Y. Kobayashi, Y. Maki,
O. Nakamura, J.B. Goodenough, J. Solid State Chem. 123 (1996) 255.
[38] W. Borchardt-Ott, Crystallography, Springer, New York, 1993.
[39] Y. Xia, H. Takeshige, H. Noguchi, M. Yoshio, J. Power Sources 56 (1995) 61.
[40] D. Aurbach, Y. Gofer, J. Electrochem. Soc. 138 (1991) 3529.
[41] T. Tsumura, M. Inagaki, Solid State Ionics 104 (1997) 35.
Chapter 3
References
[1] L.D. Dyer, B.S. Borie Jr., G.P. Smith, J. Am. Chem. Soc. 76 (1954) 1499.
[2] H.F. Wang, Y.I. Jang, B.Y. Huang, D.R. Sadoway, Y.M. Chiang, J. Electrochem. Soc. 146 (1999) 473.
[3] G.G. Amatucci, J.M. Tarascon, L.C. Klein, Solid State Ionics 83 (1996) 167
[4] J.M. Tarascon, M. Armand, Nature (London) 414 (2001) 359.
[5] C. Julien, S. Gastro-Garcia, J. Power Sources 97-98 (2001) 290.
[6] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Adv. Mater. 10 (1998) 725.
[7] J. Cho, G. Kim, Electrochem. Solid-State Lett. 2 (1999) 253.
[8] Z. Chen, J. R. Dahn, Electrochem. Solid-State Lett. 5 (2002) A213.
[9] Z. Chen, J. R. Dahn, Electrochim. Acta 49 (2004) 1079.
[10] N.V. Kosova, E.T. Devyatkina, J. Power Sources 174 (2007) 959.
[11] G.T.K. Fey, C.-F. Huang, P. Muralidharan, E.S.S. Chang, J. Power Sources 174 (2007) 1147.
[12] G. T. K. Fey, P. Muralidharan, C. Z. Lu, Y. D. Cho, Electrochim. Acta 51 (2006) 4850.
[13] G.T.K. Fey, C. Z. Lu, J. D. Huang, T. P. Kumar, Y. C. Chang, J. Power Sources 146 (2005) 65.
[14] A.M. Kannan, L. Rabenberg, A. Manthiram, Electrochem. Solid-State Lett. 6 (2003) A16.
[15] G.T.K. Fey, H.M. Kao, P. Muralidharan, T.P. Kumar, Y.D. Cho, J. Power Sources 163 (2006) 135.
[16] G.T.K. Fey, J. G. Chen, T.P. Kumar, J. Appl. Electrochem. 35 (2005) 177.
[17] K. Y. Chung, W. S. Yoon, J. McBreen, X.Q. Yang, S. H. Oh, H. C. Shin, W. I. Cho, B. W. Cho, J. Power Sources 174 (2007) 619.
[18] H. W. Ha, N. J. Yun, M. H. Kim, M. H. Woo, K. Kim, Electrochim. Acta 51 (2006) 3297.
[19] J. Cho, T.G. Kim, C. Kim, J.G. Lee, Y.W. Kim, B. Park, J. Power Sources 146 (2005) 58.
[20] J.G. Lee, T.G. Kim, B. Park, Mat. Res. Bul. 42 (2007) 1201.
[21] H. Wang, W. D. Zhang, L. Y. Zhu, M. C. Chen, Solid State Ionics 178 (2007) 131.
[22] G. T. K. Fey, Z. F. Wang, C. Z. Lu, T. P. Kumar, J. Power Sources 146 (2005) 245.
[23] A. Leleckaite, A. Kareiva, Optical Mater. 26 (2004) 123.
[24] R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, J. Euro. Cer. Soc. 19 (1999) 1747.
[25] M. Veith, S. Mathur, A. Kareiva, M. Jilavi, M. Zimmer, V. Huch, J. Mater. Chem. 9 (1999) 3069.
[26] K. Xiong, J. Robertson, S.J. Clark, Microelectronic Eng. 85 (2008) 65.
[27] L. John Berchmans, S. Angappana, A. Visuvasama, K.B. Ranjith Kumar, Mat. Chem. Phys. 109 (2008) 113.
[28] M. Nieminen, T. Sajavaara, E. Rauhala, M. Putkonen Lauri Niinistö, J. Mater. Chem. 11 (2001) 2340.
[29] N. Van Landschoot, E.M. Kelder, P. J. Kooyman, C. Kwakernaak, J. Schoonmana, Journal of Power Sources 138 (2004) 262.
[30] A.T. Appapillai, A.N. Mansour, J. Cho,Y. S. Horn, Chem. Mater. 19 (2007) 5748.
[31] http://www.xpsdata.com/XI_BE_Lookup_table.pdf.
[32] C. F. Huang, Master thesis, National Central University, Taiwan, R.O.C. (2006).http://thesis.lib.ncu.edu.tw/ETD-db/ETD-search-c/view_etd?URN=93324032
[33] J. M. Chen, C. L. Hsiao and G. T. K. Fey, Abstracts of the 2007 Conference of the International Battery Materials Association, Shenzhen, China, p.115.
[34] G. T. K. Fey, C. F. Huang, P. Muralidharan and E. Chang, J. Power Sources 174 (2007)1147.
[35] G. T. K. Fey, C. L. Hsiao, and P. Muralidharan, J. Power Sources, accepted (2008).
[36] D. Aurbach, M.D. Levi, E. Levi, H. Teller, B. Markovsky, G. Salitra, L. Heider and U. Heider, J. Electrochem. Soc. 145 (1998) 3024.
[37] F. Croce, F. Nobili, A. Deptula, W. Lada, R. Tossici, A. D’Epifanio, B. Scrosati, R. Marassi, Electrochem. Commun. 1 (1999) 605.
[38] M. G. S. R. Thomas, P. G. Bruce, and J. B. Goodenough, J. Electrochem. Soc.132 (1985) 1521.
[39] K. Xu, Chem. Rev. 104 (2004) 4303.
[40] Y. M. Choi, S. I. Pyun, S. I. Moon, Solid Stale Ionics 89 (1996) 43.
[41] H. E. Conway. J. Electrochem. Soc. 138 (1991) 1569.
[42] D. Aurbach, A. Schechter, Electrochim. Acta 46 (2001) 2395.
[43] D. Aurbach, B. Markovsky, M. D. Levi, E. Levi, A. Schechter, M. Moshkovich and Y.S. Cohen, J. Power Sources 81–82 (1999) 95.
[44] J. Cho, Y.J. Kim, T.J. Kim, B. Park, Chem. Mater. 13 (2001) 18.
[45] H.J. Kweon, S.J. Kim, D.G. Park, J. Power Sources 88 (2000) 255.
[46] H. Maleki, G. Deng, A. Anani, J. Howard, J. Electrochem. Soc 146 (1999) 3224.
[47] Y. Baba, S. Okada, J. Yamaki, Solid State Ionics 148 (2000) 311.
[48] D.D. Macneil, J.R. Dahn, J. Electrochem. Soc. 148 (2001) A1205.
[49] G.T.K Fey, Y.Y. Lin, T.P. Kumar, Surface & Coatings Technology 191 (2005) 68.
[50] J. Cho, Electrochimica Acta 48 (2003) 2807.
[51] J. Cho, T.G. Kim, C. Kim, J.-G. Lee, Y.-W. Kim, B. Park, J. Power Sources 146 (2005) 58.
[52] J. Cho, J.G. Lee, B. Kim, B. Park, Chem. Mater. 15 (2003) 3190.
[53] H. Omanda, T. Brousse, C. Marhic, D.M. Schleich, J. Electrochemical Soc. 151 (6) (2004) A922.
Chapter 4
References
[1] Du Pasquier, F. Disma, T. Bowmer, A.S. Gozdz, G. Amatucci, J.M. Tarascon, J. Electrochem. Soc. 145 (1998) 472.
[2] Y. Sakurai, H. Arai, S. Okada, J. Yamaki, J. Power Sources 68 (1997) 711.
[3] R. Kanno, T. Shirane, Y. Kawamoto, Y. Takeda, M. Takano, M. Ohashi, Y. Yamaguchi, J. Electrochem. Soc. 143 (1996) 2435.
[4] Y.S. Lee, C.S. Yoo, Y.K. Sun, K. Kobayakawa, Y. Sato, Electrochem. Commun. 4 (2002) 727.
[5] H. Arai, S. Okada, Y. Skurai, J.I. Yamaki, Solid State Ionics 95 (1997) 275.
[6] A.J. Paterson, A.R. Armstrong, P.G. Bruce, J. Electrochem. Soc. 151 (2004) A1552.
[7] S. Neito, S.B. Majumder, R.S. Katiyar, J. Power Sources 136 (2004) 88.
[8] A.K. Padhi, K.S.Nanjudaswamy, J.B. Goodenough, J. Electrochem. Soc. 144 (4) (1997) 1188.
[9] J. B. Lu, Z. T. Zhang, Z. L. Tang, Rare Metal Materials and Engineering 33(2004) 679.
[10] A. S. Andersson, B. Kalska, L. Haggstrom, J. O. Thomas, Solid State Ionics 130 (2000) 41.
[11] A. Yamada, S. C. Chung, K. Hinokuma, J. Electrochem. Soc. 148 (3) (2001) A224.
[12] N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, M. Armand, J. Power Sources 97–98 (2001) 503.
[13] S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nat. Mater. 1 (2002) 123.
[14] S. Franger, C. Bourbon, F. Gras, J. Electrochem. Soc. 151 (7) 4 (2004) A102.
[15] Z. Chen and J. R. Dahn, J. Electrochem. Soc. 149 (2002) A1184.
[16] G.T.K. Fey, D.C. Lee, Y.Y. Lin, T. Prem Kumar, Synthetic Metals 139 (2003) 71.
[17] B. Carlsson, M. G¨olin, S. Rundqvist, J. Solid State Chem. 8 (1970) 57.
[18] J. R. Dahn, J. Jiang, L. M. Moshurchak, M. D. Fleischauer, C. Buhrmester, L. J. Krausec, J. Electrochem. Soc. 152 (6) (2005) A1283.
[19] M. M. Doeff, Y. Hu, F. McLarnon, R. Kostecki, Electrochemical and Solid-State Letters 6 (2003) A207.
[20] S. W. Song, R. P. Reade, R. Kostecki, K. A. Striebel, J. Electrochem. Soc. 153 (1) (2005) A12.
[21] M.M. Doeff, J.D. Wilcox, R. Kostecki, G. Lau, J. Power Sources 163 (2006) 180.
[22] R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik, J. Jamnik, J. Power Sources 119–121 (2003) 770.
[23] P. Herle, B. Ellis, N. Coombs, L.F. Nazar, Nat. Mater. 3 (2004) 147.
[24] S.S. Zhang , J.L. Allen, K. Xu, T.R. Jow, J. Power Sources 147 (2005) 234.
Chapter 5
References
[1] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144 (1997)1188.
[2] F. Croce, A.D. Epifanio, J. Hassoun, A. Deptula, T. Olezac, B. Scrosati, Electrochem. Solis-State Lett. 5 (2002) A47.
[3] H.S. Kim, B.W. Cho,W.I. Cho, J. Power sources 132 (2004) 235.
[4] M.R. Yang,W.H. Ke, S.H.Wu, J. Power Sources 146 (2005) 539.
[5] S.H.Wu, K.M. Hsiao,W.R. Liu, J. Power Sources 146 (2005) 550.
[6] T.H. Cho, H.T. Chung, J. Power Sources 133 (2004) 272.
[7] H. Huang, S.C. Yin, L.F. Nazar, Electrochem. Solid-State Lett. 4 (2001) A170.
[8] K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, K.T. Kang, H.G. Kim, Solid State Commun. 129 (2004) 311.
[9] Z. Chen, J.R. Dahn, J. Electrochem. Soc. 149 (2002) A1184.
[10] F. Crose, A.D. Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, Electrochem. Solid-State Lett. 5 (2002) A47.
[11] S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nat. Mater. 1 (2002) 123.
[12] P.S. Herle, B. Ellis, N. Coombs, L.F. Nazar, Nat. Mater. 3 (2004) 147.
[13] J.R. Ying, M. Lei, C.Y. Jiang, C.R. Wan, X.M. He, J.J. Li, L. Wang, J.G. Ren, J. Power Sources 158 (2006) 543.
[14] J.K. Kim, G. Cheruvally, J.H. Ahn, J. Solid State Electrochem. 12 (2008) 799.
[15] H.T. Chung, S.K. Jang, H.W. Ryu, K.B. Shim, Solid State Commun. 131 (2004) 549.
[16] R. Dominko, M. Bele, M. Gaberscek,M. Remskar,D. Hanzel, S. Pejovnik, J. Jamnik, J. Electrochem. Soc. 152 (2005) A607.
[17] G.X.Wang, L. Yang, Y. Chen, J.Z.Wang, S. Bewlay, H.K. Liu, Electrochim. Acta 50 (2005) 4649.
[18] A.A. Salah, A. Mauger, K. Zaghib, J.B. Goodenough, N. Ravet, M. Gauthier, F. Gendron, C.M. Julien, J. Electrochem. Soc. 153 (2006) A1692.
[19] D. Jugovi ’ c, N. Cvjeti ’canin, M. Mitri’ c, S. Mentus, Mater. Sci. Forum 555 (2007) 225.
[20] D. Choi, P.N. Kumta, J. Power Sources 163 (2007) 1064–1069.
[21] A. Yamada, S.C. Chung, K. Hinokuma, J. Electrochem. Soc. 148 (2001)
A224–A229.
[22] W. Ming, J. Zhao, X. Lu, C. Wang, S. Fu, Macromolecules 29 (1996) 7678.
[23] Y. D. Cho, G. T. K. Fey and H. M. Kao, J. Solid State Electrochem. 12 (2008) 815.
[24] M. M. Doeff, Y. Hu, F. McLarnon, and R. Kostecki, Electrochem. Solid-State Lett. 6 (2003) A207.
[25] Y. Hu, M. M. Doeff, R. Kostecki, and R. Finones, J. Electrochem. Soc. 151 (2004) A1279.
[26] R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. M. Goupil, S. Pejovnik, and J. Jamnik, J. Power Sources 153 (2006) 274.
[27] Zhang SS, Allen JL, Xu K, Jow TR (2005) J Power Sources 147:234.
指導教授 費定國(George Ting-Kuo Fey) 審核日期 2008-9-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明