參考文獻 |
References
[1] D. A. Adjeroh, K. C. Nwosu, Multimedia database management-requirements and issues, IEEE multimedia 4(3) (1997) 24-33.
[2] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’98), pages 94-105, Seattle, WA, June, 1998.
[3] R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases, In Proc. 1993 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’93), pages 207-216, Washington, DC, May 1993.
[4] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo, Fast discovery of association rules, In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press, 1996.
[5] R. Agrawal, Srikant, Fast algorithms for mining association rules in large databases, In Research Report RJ 9839, IBM Almaden Research Center, San Jose, CA, June 1994.
[6] M. Ankerst, M. Breunig, H.-P. Kriegel, J. Sander, OPTICS: Ordering points to identify the clustering structure, In Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’99), pages 49-60, Philadelphia, PA, June, 1999.
[7] Association for Information Systems, “MIS Journal Ranking”. Retrieved April 4, 2006, from the World Wide Web: http://www.isworld.org/csaunders/rankings.htm.
[8] D. BarBara, W. DuMouchel, C. Faloutsos, P. J. Haan, J. H. Helerstein, Y. Ioanniddis, H. V. Jagadish, T. Johnson, R. Ng, V. Poosala, K. A. Ross, K. C. Servcik, The New Jersey data reduction report, Bulletin of the Technical Committee on Data Engineering, 20 (1997), 3-45.
[9] S. Basumallick, J. S. K. Wong, Design and implementation of a distributed database system, Journal of System Software 34(4) (1996) 21-29.
[10] A. Berson, S. J. Smith, Data Warehousing, Data Mining, and OLAP, McGraw-Hill, 1997.
[11] P. A. Bradley, 1994, BradleyCase-based reasoning: Business applications, Communication of the ACM, 37(3) (1994) 40-42.
[12] P. Bradley, U. Fayyad, C. Reina, Scaling clustering algorithms to large databases, In Proc. 1998 Int. Conf. Knowledge Discovery and Data Mining (KDD’98), pages 9-15, New York, August, 1998.
[13] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression Trees, Wadsworth International Group, 1984.
[14] Y. Cai, N. Cercone, J. Han Attribute-Oriented induction in relational database. In G. Piatetsky-Shapiro, W. J. Frawley, editors, Knowledge Discovery in Databases, Cambridge, 1991.
[15] C. Carter, H. Hamilton, Efficient attribute-oriented generalization for knowledge discovery from large databases, IEEE Trans. Knowledge and Data Engineering, 1998.
[16] S. Chaudhuri, U. Dayal, An overview of data warehousing and OLAP technology, ACM SIGMOD Record, 26 (1997) 65-74.
[17] Y. C. Chen, H. L. Hu, A novel approach for mining typical patterns from databases. Manuscript submitted for publication (2006).
[18] W. Cleveland, Visualizing Data. Summit, Hobart Press, 1993.
[19] S. P. Curran, J. Mingers, Neural networks, decision tree induction and discriminate analysis: An empirical comparison, J. Operational Research Society, 45, 1994.
[20] M. Dash, H. Liu, Feature selection methods for classification, Intelligent Data Analysis: An International Journal, 1, 1997.
[21] R.N. Dave, Validating Fuzzy Partitions obtained through c-shells clustering, Pattern Recognition Letters 17(6) (1996) 613-623.
[22] J. L. Devore. Probability and Statistic for Engineering and the Sciences, 4th ed. Duxbury Press, 1995.
[23] R. Duda, P. Hart, Pattern Classification and Scene Analysis, John Wiley & Sons, 1973.
[24] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, Fourth Edition, Addison-Wesley, 2003.
[25] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases, In Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining (KDD’96), pages 226-23, Portland, OR, August, 1996.
[26] M. Ester, H. -P. Kriegel, X. Xu, Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification, In Proc. 4th Int. Symp. Large Spatial Databases (SSD’95), pages 67-82, Portland, ME, August, 1995.
[27] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, J. D. Ullman, Computing iceberg queries efficiently, In Proc. 1998 Int. Conf. Very Large Data Bases (VLDB’98), pages 299-310, New York, Aug. 1998.
[28] D. Fisher, Improving inference through conceptual clustering, In Proc. 1987 AAAI Conf., pages 461-465, Seattle, WA, July, 1987.
[29] J. H. Friedman, A recursive partitioning decision rule for nonparametric classifiers, IEEE trans. on Comp., (26) (1977) 404-408.
[30] Y. H. Fu, Scientific Collaboration and Coauthors in Life Science Journal Articles, Journal of Library and Information Studies (17) (2002) 71-80.
[31] P. Ganesan, H. Garcia-Molina, J. Widom, Exploiting Hierarchical Domain Structure to Compute Similarity, ACM Transactions on Information Systems, 21 (1) (2003) 64–93.
[32] D. Goldberg, Genetic Algorithms in Search , Optimization, and Machine Learning. Reading, Addison-Wesley, 1989.
[33] J. Grabmeier, A. Rudolph, Techniques of Cluster Algorithms in Data Mining, Data Mining and Knowledge Discovery journal 6(4) ( 2002) 303-360.
[34] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, H. Pirahesh, Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals, Data Mining and Knowledge Discovery, 1(1997) 29-54.
[35] S. Guha, R. Rastogi, K. Shim, Cure: An efficient clustering algorithm for large databases, In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’98), pages 73-84, Seattle, WA, June, 1998.
[36] S. Guha, R. Rastogi, K. Shim, Rock: A robust clustering algorithm for categorical attributes, In Proc. 1999 Int. Conf. Data Engineering (ICDE’99), pages 512-521, Sydney, Australia, March, 1999.
[37] C. S. Guynes, L. Pelley, Monitoring database performance in an end user environment, Journal of System Management 44(8) (1993) 27-30.
[38] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Academic Press, San Francisco, 2001.
[39] J. Han, Y. Cai, N. Cersone, Data-driven discovery of quantitative rules in relational databases. IEEE Trans. Knowledge and Data Engineering, 5 (1993) 29-40.
[40] J. Han, Y. Fu, Discovery of multiple-level association rules form large databases, In Proc. 1995 Int. Conf. Very Large Data Bases (VLDB’95), pages 420-431, Zurich, Switzerland, Sept. 1995.
[41] J. Han, Y. Fu, Exploration of the power of attribute-oriented induction in data mining, In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, Cambridge, 1996.
[42] B. C. Hardgrave, K. A. Walstrom, Forums for MIS Scholars, Communications of the ACM 40 (11) (1997) 119-124.
[43] A. Hinneburg, D. A. Keim, An efficient approach to clustering in large multimedia databases with noise, In Proc. 1998 Int. Conf. Knowledge Discovery and Data Mining (KDD’98), pages 58-65, New York, August, 1998.
[44] C. W. Holsapple, L. E. Johnson, H. Manakyan, J. Tanner, A Citation Analysis of Business Computing Research Journals, Information Management 25 (5) (1993) 231-244.
[45] N.C. Hsieh, Hybrid Mining Approach in the Design of Credit Scoring Models, Expert Systems with Applications 28(4) (2005) 655-665.
[46] Z. Huang, Extensions to the k-means algorithm for clustering large datasets with categorical values, Data Mining and Knowledge Discovery (2) (1998) 283-304.
[47] P.W. Huang, P.L. Lin, H.Y. Lin, Optimizing storage utilization in R-tree dynamic index structure for spatial databases, The Journal of Systems and Software 55(3) (2001) 291-299.
[48] W. H. Inmon, Building the Data Warehouse, John Wiley & Sons, 1996.
[49] A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: A survey, ACM comput. Surv., (31) (1999) 264-323.
[50] M. James, Classification Algorithms, John Wiley & Sons, 1985.
[51] D. K. Jeffrey, H. G. Kristin, D. Cynthia, A Method for Building Core Journal Lists in Interdisciplinary Subject Areas, Journal of Document 54 (4) (1998) 477-488.
[52] G. Karypis, E.-H. Han, V. Kumar, CHAMELEON: A hierarchical clustering algorithm using dynamic modeling, COMPUTER, (32) (1999) 68-75.
[53] L. Kaufman, P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, New York, John Wiley & Sons, 1990.
[54] R. L. Kennedy, Y. Lee, B. Van Roy, C. D. Reed, R. P. Lippman, Solving Data Mining Problems Through Pattern Recognition, Prentice Hall, 1998.
[55] R. Kimball, The Data Warehouse Toolkit, John Wiley & Sons, 1996.
[56] S. L. Lauritzen, The EM algorithm for graphical association models with missing data, Computational Statistics and Data Analysis, (19) (1995) 191-120.
[57] S.I. Lee, S. Batzoglou, Application of Independent Component Analysis to Microarrays, Genome Biology 4 (11) No. R76 (2003).
[58] B. Lent, A. Swami, J. Widom, Clustering association rules, In Proc. 1997 Int. Conf. Data Engineering (ICDE’97), pages 220-231, Birmingham, England, Apr. 1997.
[59] H. Liu, H. Motoda, editors, Feature Extraction, Construction, and Selection: A Data Mining Perspective, Kluwer Academic Publishers, 1998.
[60] H. Liu and H. Motoda. Feature Selection for knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998.
[61] P. B. Lowry, D. Romans, A. Curtis, Global journal prestige and supporting disciplines: A scientometric study of information systems journals, Journal of the Association for Information Systems 5 (2) (2004) 29-75.
[62] C. Lu, M.S. Drew, J. Au, An Automatic Video Classification System Based on a Combination of HMM and Video Summarization, International Journal of Smart Engineering System Design 5 (2003) 33-45.
[63] J. MacQueen, Some methods for classification and analysis of multivariate observations, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability 1 ( 1967) 281-297.
[64] H. Mannila, H. Toivonen, A. I. Verkamo, Efficient algorithms for discovering association rules, In Proc. AAAI’94 Workshop Knowledge Discovery in Databases (KDD’94), pages 181-192, Seattle, WA, July 1994.
[65] G. S. Mela, Radiological Research in Europe: A Bibliometric Study, European Radiology 13 (4) (2003) 657-662.
[66] R. S. Michalski, R. E. Stepp, Learning from observation: Conceptual clustering, In R. S. Michalski, J. G. Carbonell, T. M. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach (1), San Mateo, Morgan Kaufmann, 1983.
[67] N.A. Mylonopoulos, V. Theoharakis, On-Site: Global Perceptions of IS Journals, Communications of the ACM 44 (9) (2001) 29-33.
[68] W. J. Nash, T. L. Sellers, S. R. Talbot, A.J. Cawthorn, W. B. Ford, The Population Biology of Abalone (_Haliotis_species) in Tasmania. I. Blacklip Abalone (_H. rubra_) from the North Coast and Islands of Bass Strait, Sea Fisheries Division, Technical Report 48 (1994).
[69] J. Neter, M. H. Kutner, C. J. Nachtsheim, L. Wasserman, Applied Linear Statistical Models, Fifth edition, McGraw-Hill, 2005.
[70] R. Ng, J. Han, Efficient and effective clustering method for spatial data mining, In Proc. 1994 Int. Conf. Very Large Data Bases (VLDB’94), pages 144-155, Santiago, Chile, September, 1994.
[71] E. Ogston, B. Overeinder, M.V. Steen, F. Brazier, A method for decentralized clustering in large multi-agent systems, Proceedings of the second international joint conference on Autonomous agents and multiagent systems (2003) 789-796.
[72] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed itemsets for association rules, In Proc. 7th Int. Conf. Database Theory (ICDT’99), pages 398-416, Jerusalem, Israel, Jan. 1999.
[73] K. Peffers, Y. Tang , Identifying and evaluating the universe of outlets for information systems research: Ranking the journals, The Journal of Information Technology Theory and Application (JITTA) 5 (1) (2003) 63-84.
[74] J. Pei, J. Han, R. Mao, CLOSET: An efficient algorithm for mining frequent closed itemsets, In Proc. 2000 ACM-SIGMOD Int. Workshop Data Mining and Knowledge Discovery (DMKD00), pages 11-20, Dallas, TX, May 2000.
[75] D. Pyle, Data Preparation for Data Mining, Morgan Kaufmann, 1999.
[76] J. R. Quinlan, Bagging, Boosting, and C4.5, In Proc. 12th Natl. Conf. Artificial Intelligence (AAAI’96), page 725-730, Portland, OR, Aug, 1996.
[77] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.
[78] J. R. Quinlan, Unknown attribute values in induction, In Proc. 6th Int. Workshop on Machine Learning, pages 164-168, Ithaca, NY, June 1989.
[79] R. K. Rainer, M. Miller, Examining differences across journal rankings, Communications of the ACM 48 (2) (2005) 91-94.
[80] R. Ramakrishnan, J. Gehrke, Database Management Systems, Third Edition, McGraw Hill, 2002.
[81] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning internal representations by error propagation, In D. E. Rumelhart, J. L. McClelland, editors, Parallel Distributed Processing, MIT Press, 1986.
[82] J. W. Shavlik, T. G. Dietterich, Readings in Machine Learning, San Meteo, Morgan Kaufmann, 1990.
[83] R. C. Schank, Dynamic Memory: A Theory of Reminding and Learning in Computers and People, Cambridge Press, 1983.
[84] G. Sheikholeslami, S. Chatterjee, A. Zhang, WaveCluster: A multiresolution clustering approach for very large sptial databases, In Proc. 1998 Int. Conf. Very Large Data Bases (VLDB’98), pages 428-439, New York, August, 1998.
[85] A. Silberschatz, H. F. Korth, S. Sudarshan, Database System Concepts, Fifth Edition, McGraw-Hill, 2005.
[86] R. Srikant, R. Agrawal, Mining generalized association rules, In Proc. 1995 Int. Conf. Very Large Data Bases (VLDB’95), pages 407-419, Zurich, Switzerland, Sept. 1995.
[87] P. N. Tan, V. Kumar, J. Srivastava, Selecting the right objective measure for association analysis, Information Systems (29) (2004) 293–313.
[88] C.W. Tao, Unsupervised Fuzzy Clustering with Multi-Center Clusters, Fuzzy Sets and Systems 128(3) (2002) 305-322.
[89] Thomson Corp., “ISI Web of Knowledge and Journal Report”. Retrieved February 28, 2006, from the World Wide Web: http://www.isisnet.com.
[90] J. D. Ullman, J. Widom, A first Course in Database System, Second edition, Prentice Hall, 2001.
[91] W. Wang, J. Yang, R. Muntz, STING: A statistical information grid approach to spatial data mining, In Proc. 1997 Int. Conf. Very Large Data Bases (VLDB’97), pages 186-195, Athens, Greece, August, 1997.
[92] S. M. Weiss, C. A. Kulikowski, Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems, Morgan Kaufmann, 1991.
[93] S. M. Weiss, N. Indurkhya, Predictive Data Mining, Morgan Kaufmann, 1998.
[94] M. E. Whitman, A. R. Hendrickson, A. M. Townsend, Research Commentary. Academic Rewards for Teaching, Research and service: Data and Discourse, Information Systems Research 10 (2) (1999) 99-109.
[95] M.S. Yang, C.H. Ko, On A Class of Fuzzy C-Numbers Clustering Procedures for Fuzzy Data, Fuzzy Sets and Systems 84(1) (1996) 49-60.
[96] C. Zadeh, Fuzzy sets, Information Control, 8 (1965) 338-353.
[97] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: An efficient data clustering method for very large databases, In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’96), pages 103-114, Montreal, Canada, June, 1996.
[98] W. Ziarko, The discovery, analysis, and representation of data dependencies in databases, In G. Piatetsky-Shapiro, W. J. Frawley, editors, Knowledge Discovery in Databases, pages 195-209, Menlo Park: AAAI Press, 1991. |