博碩士論文 91521056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.117.105.215
姓名 蔣國軍(Kuo-Chun Chiang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 覆晶式藍光發光二極體製程技術之研究
(The Study of Process Technique for Flip-Chip Blue Light Emitting Diodes (LEDs))
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 覆晶式氮化鎵藍光發光二極體比正面發光式氮化鎵藍光發光二極體有提高發光亮度以及可增加熱散逸的能力,減緩因熱累積而造成的效率下降等好處,所以覆晶式氮化鎵藍光發光二極體已經成為LED產業的主流產品。本篇論文研究將針對鈦/鋁/鈦/金 (Ti/Al/Ti/Au)、鉻/鋁/鉻/金 (Cr/Al/Cr/Au)、鉻/鈦/金(Cr/Ti/Au) 金屬組合,在n型氮化鎵歐姆接觸電極和p型氮化鎵材料上高反射率金屬電極同時製作,不須做n型氮化鎵歐姆接觸電極的金屬融合(Alloy) 和蒸鍍焊墊金屬層 (Bonding Pad),以減少製程步驟和節省材料成本,並且探討這些金屬組合的熱穩定性,觀察發光二極體電流–電壓特性變化以及光反射強度的改變。
關鍵字(中) ★ 藍光發光二極體
★ 覆晶式
關鍵字(英) ★ GaN blue LEDs
★ Flip-Chip
論文目次 第一章 導 論 1
第二章 氮化鎵發光二極體元件結構與製程 4
2.1 發光二極體元件結構 4
2.2 發光二極體元件製程 5
2.3歐姆接觸及反射層金屬選擇 13
第三章 電流-電壓特性與熱穩定性分析 21
3.1 Ti/Al/Ti/Au金屬電極 23
3.2 Cr/Al/Cr/Au金屬電極 29
3.3 Cr/Ti/Au金屬電極 33
3.4金屬電極的表面形態 36
3.5 Ti/Al/Ti/Au、Cr/Al/Cr/Au 與Cr/Ti/Au金屬電極熱穩定性比較 41
第四章 光反射強度特性分析 44
4.1介 紹 44
4.2 Ti/Al/Ti/Au、Cr/Al/Cr/Au 與Cr/Ti/Au金屬電極比較 47
第五章 結 論 51
參考文獻 52
參考文獻 [1] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., vol. 76, p. 1363, 1994.
[2] S. C. Binari, K. Doverspike, G. Kelner, H. B. Dietrich, and A. E. Wikenden, “GaN FETs for microwave and high-temperature applications,” Solid-State Electron., vol. 41, p.177, 1997.
[3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes gro-w on GaN substrates,” Appl. Phys. Lett., vol. 72, p. 2014, 1998.
[4] M. Razeghi, and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., vol. 79, p. 7433, 1996.
[5] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices,” J. Appl. Phys., vol. 86, p. 1, 1999.
[6] Kevin Linthicum, Thomas Gehrke, Darren Thomson, Eric Carlson, Pradeep Rajagopal, Tim Smith, Dale Batchelor, and Robert Davis, “Pendeoepitaxy of gallium nitride thin films,” Appl. Phys. Lett., vol. 75, p. 196, 1999.
[7] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, p. 855, 2004.
[8] Chul Huh, Kug-Seung Lee, Eun-Jeong Kang, and Seong-Ju Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., vol. 93, p. 9383, 2003.
[9] http://www.cree.com/ftp/pub/CPR3CM.pdf, High Power Blue LED chips (SiC substrate) have a geometrically enhanced Epi-down design to maximize light extraction efficiency, and require only a single wire bond connection.
[10] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O'Shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys.Lett., vol. 78, p. 3379, 2001.
[11] M. Koike, N. Koide, S. Asami, J. Umezaki, S. Nagai, S. Yamasaki, N. Shibata, H. Amano, and I. Akasaki, “InGaN/GaN multiple quantum wells green LEDs,” in Proc. SPIE International Society for OpticalEngineering, vol. 3002, pp. 36–39, 1997.
[12] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of p-Type GaN Films,” Jpn. J. Appl. Phys., vol. 31, p.1258, 1992.
[13] M. S. Minsky, M. White, and E. L. Hu, “Room-temperature photoenhanced wet etching of GaN,” Appl. Phys. Lett., vol. 68, p. 1531, 1996.
[14] C. Youtsey, I. Adesida, L. T. Romano, and G. Bulman, “Smooth n-type GaN surfaces by photoenhanced wet etching,” Appl. Phys. Lett., vol. 72, p. 560, 1997.
[15] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN,” J. Appl. Phys., vol. 83, p. 3172, 1998.
[16] Li-Chien Chen, Fu-Rong Chen, Ji-Jung Kai, Li Chang, Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen, and Kwang-Kuo Shih, “Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN,” J. Appl. Phys., vol. 86, p. 3826, 1999.
[17] Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen, and Kwang-Kuo Shih, “Low-resistance ohmic conta- cts to p-type GaN,” Appl. Phys. Lett., vol. 74, p. 1275, 1999.
[18] Hidenori Ishikawa, Setsuko Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and Masanori Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys., vol. 81, p. 1315, 1997.
[19] Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Kwang-Kuo Shih, Li-Chien Chen, Fu-Rong Chen, and Ji-Jung Kai, “ Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys., vol. 86, p. 4491, 1999.
[20] B. Liu, E. Lambers, W. B. Alexander, and P. H. Holloway, “Effects of a Ni cap layer on transparent Ni/Au ohmic contacts to p-GaN,” J. Vac. Sci. Technol. B 20(4), p. 1394, 2002.
[21] Handbook of Chemistry and Physics, David R. Lide, editor in chief 82nd Edition page 12-133.
[22] Zhifang Fan, S. Noor Mohammad, Wook Kim, Ozgur Aktas, Andrei E. Botchkarev, and Hadis Morkoc, “Very low resistance multilayer Ohmic contact to n-GaN,” Appl. Phys. Lett., vol. 68, p. 1672, 1996.
[23] Abhishek Motayed, Ravi Bathe, Mark C. Wood, Ousmane S. Diouf, R. D. Vispute, and S. Noor Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” J. Appl. Phys., vol. 93, p. 1087, 2003.
[24] Ching-Ting Leea, and Hsiao-Wei Kao, “Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN,” Appl. Phys. Lett., vol. 76, p. 2364, 2000.
[25] E. F. Chor, D. Zhang, H. Gong, G. L. Chen, and T. Y. F. Liew, “Electrical characterization and metallurgical analysis of Pd-containing multilayer contacts on GaN,” J. Appl. Phys., vol. 90, p. 1242, 2001.
[26] V. Kumar, L. Zhou, D. Selvanathan, and I. Adesida, “Thermally-stable low-
resistance Ti/Al/Mo/Au multilayer ohmic contacts on n–GaN,” J. Appl. Phys., vol. 92, p. 1712, 2002.
[27] T. Nakayama, H. Miyamoto, Y. Ando, Y. Okamoto, T. Inoue, K. H-ataya, and M. Kuzuhara, “Low-contact-resistance and smooth-surface Ti/Al/Nb/
Au ohmic electrode on AlGaN/GaN heterostructure,” Appl. Phys. Lett., vol. 85, p. 3775, 2004.
[28] N. A. Papanicolaou, A. Edwards, M. V. Rao, J. Mittereder, and W. T. Anderson, “Cr/Al and Cr/Al/Ni/Au ohmic contacts to n-type GaN,” J. Appl. Phys., vol. 87, p. 380, 2000.
[29] S. Ruvimov, Z. Lilliental-Weber, J. Washburn, K. J. Duxstad, E. E. Haller, Z.-F. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, “Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n-GaN,” Appl. Phys. Lett., vol. 69, p. 1556, 1996.
[30] B. P. Luther, S. E. Mohney, T. N. Jackson, M. Asif Khan, Q. Chen, and J. W. Yang, “Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN,” Appl. Phys. Lett., vol. 70, p. 57, 1997.
[31] S. E. Mohney, D. J. MacMahon, and K. A. Whitmire, “Condensed phase equilibria in the Cr–Ga–N system,” Mater. Sci. Engin., B49, pp. 152–154, 1997.
[32] E. V. Kalinina, N. I. Kuznetsov, A. I. Babanin, V. A. Dmitriev, and A. V. Shchukarev, “Structural and electrical properties of Schottky barriers on n-GaN,” Diamond and Related Materials., vol. 6, pp. 1528–1531, 1997.
[33] Dong-Feng Wang, Feng Shiwei, C. Lu, Abhishek Motayed, Muzar Ja-h, S. Noor Mohammad, Kenneth A. Jones, and L. Salamanca-Riba, “Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN,” J. Appl. Phys., vol. 89, p. 6214, 2001.
[34] 許文杰, “大面積覆晶式氮化鎵發光二極體之研製與特性探討,” 國立中央大學電機所碩士論文, 頁36–44, 2004.
[35] S. Noor Mohammad, “Contact mechanisms and design principles for nonalloyed ohmic contacts to n-GaN,” J. Appl. Phys., vol. 95, p. 48–56, 2004.
[36] N. A. Papanicolaou, M. V. Rao, J. Mittereder, and W. T. Anderson, “Reliable Ti/Al and Ti/Al/Ni/Au ohmic contacts to n-type GaN formed by vacuum annealing,” J. Vac. Sci. Technol., B19, p. 261, 2001.
[37] A. C. Schmitz, A. T. Ping, M. Asif Khan, Q. Chen, J. W. Yang, and I. Adesida, “Schottky barrier properties of various metals on n-type GaN,” Semicond. Sci. Technol., vol. 11, pp. 1464–1467, 1996.
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2005-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明